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1. Introduction 
Rock bolts are the most commonly used measure for supporting excavations in rock 

masses. Bolt models are used in various numerical methods such as the Finite Element 

Method (FEM) (Goodman et al., 1968), the Boundary Element Method (BEM) (Crotty & 

Wardle, 1985) and the Discrete Element Method (Cundall, 1971). 

Phase2 is a FEM that is used in geotechnical and mining engineering as a tool for 

designing and the analyzing tunnels, surface excavations and mining excavations 

(Phase2, 1999). Rock support systems are used in civil and mining situations to prevent 

unraveling of the rock mass in the immediate vicinity of excavations.   

This document outlines the four bolt support theories implemented in Phase2. Rock bolts 

in Phase2 pass through the elements in a mesh and are modeled as one-dimensional 

elements. 

 

 

 



 

 

2. Modelling of rock bolts 
Rock bolts in Phase2 are divided into four types. End-anchored and fully bonded rock 

bolts are based on axial deformation. Plain strand considers more complicated model 

developed in Queen’s University, Canada. Swellex bolts considers the shear resistance of 

the relative movements between bolts and the rock mass. 

 

2.1  End-anchored rock bolt 
The end-anchored rock bolt is represented by a one-dimensional deformable element 

(Figure 1).  

 

 

 

 

 

 

 

Figure 1. End-anchored bolt model 

 

Each bolt behaves as a single element. Interaction with the finite element mesh is through 

the endpoints only. The axial force, F is calculated from the axial displacement by 

 

uKF b∆=                                                  (1) 

where bK is the bolt stiffness which equals to L
EA  , u∆ denotes the relative 

displacement between the two anchorage points which is 21 uuu −=∆ . Failure of an end-

anchored rock bolt occurs due to tensile yielding of the bolt material. Therefore, bolt 

failure is controlled by the yield strength (Fyield).  An end-anchored bolt has no residual 

capacity after failure, the entire bolt is considered to have failed. 
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2.2  Fully-bonded rock bolt 
Fully bonded bolts are divided into ‘bolt elements’ according to where the bolts cross the 

finite elements. These bolt elements act independently of each other. Bolt elements do 

not influence each other directly, but only indirectly through their effect on the rock 

mass.  

 

 

 

 

 

 

 

 

Figure 2. Fully bonded bolt model 

 

The axial force along the bolt determined from the elongation of the bolt element. If the 

length of a bolt element Le, is increased by eu∆  then the induced force in the bolt  

e
e

e u
L
AEF ∆=                                                  (2) 

If the axial force exceeds the yield strength (Fyield) of the bolt material then the bolt force 

is set to Fres (Figure 3) 

 

 

 

 

 

 

 

 

Figure 3. Rock bolt failure criteria 
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2.3  Plain-strand cable bolt 
The Plain-strand cable bolt model is developed at Queen’s University in Kingston, 

Canada. The entire bolt behaves as a single element. Although for purposes of the 

algorithm, the bolt is discretized according to the intersections with the finite elements, 

the behaviour of each segment of the bolt has a direct effect on adjacent segments. This is 

in contrast to the fully bonded cable model, where bolt elements on the same bolt act 

independently of each other. The stiffness of the grout, and the strength and stiffness of 

the bolt/grout interface is taken into account. The failure mechanism of the bolt is by 

tensile rupture of the cable. 

Failure of the cable/grout interface also occurs, but it is not a failure mechanism as such, 

since this interface is always assumed to be in a plastic state as the rock moves. The 

amount of relative slip at this interface, and the stiffness of the interface, determines how 

much shear force is generated at the cable. 

For information about the development of this model, see the following references 

(Moosavi, 1997, Moosavi et al. 1996,  Hyett et. al. 1996 Hyett et. al. 1995). 

 

2.4 Shear bolts (Swellex/Split sets) – new in version 5.0 
The equilibrium equation of a fully grouted rock bolt, Figure 1, may be written as 

(Farmer, 1975 and Hyett et al., 1996) 

 

 

 

 

 

 

Figure 4 Shear bolt model 
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where sF is the shear force per unit length and A is the cross-sectional area of the bolt  

and bE is the modulus of elasticity for the bolt. The shear force is assumed to be linear 

function of the relative movement between the rock and the bolt and presented as 

( )xrs uukF −=                                                      (4) 

Usually, k is the shear stiffness of the bolt-grout interface measured directly in laboratory 

pull-out tests. Substitute equation (4) in (3), then the weak form can be expressed as: 
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Let is consider the generic element, Figure 5. The displacements u are to be linear in axial 

coordinate s (Cook, 1981). The displacement field equals to u1 at one end and u2 at the 

other. Then, the displacement at any point along the element can be given as 

 

 

 

 

 

 

Figure 5 Linear displacement variation 
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for the two displacement fields, equation 7 can be written as 
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Then equation (4) can be written as 
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Equations (13) and (14) are used to assemble the stiffness for bolts. Phase2 uses bolts that 

are not necessarily connected to the element vertices, mapping procedure carried out to 

transfer the effect to the element vertices. This procedure is done for each bolt segment 

by mapping the stiffness by the shape function depends on the intersected side of the 

elements. 



 

 

3. Numerical bolt implementation in Phase2 
Bolts in Phase2 are modeled as single elements. In Phase2 programs, a bolt is discretized 

according to the manner in which it intersects with finite elements in a mesh. For plain 

cable bolts and shear bolts, the behaviour of each segment of a bolt has a direct influence 

on adjacent segments. For fully bonded bolts, a segment indirectly influences adjacent 

segments through its effect on the rock mass.  

 

 
 

Figure 6 Phase2 model 

 

In general, there is a common procedure for handling bolt models in the compute engine 

of Phase2. This procedures is outlined as follows: 

• Each bolt is defined by a start and an end point (Figure 6). 

• A stiffness is calculated for a bolt depending on its model. The bolt stiffness is then 

transferred to element nodes according to the following approach 
o Transform the global coordinates of each bolt into the local coordinate 

systems of elements. 



 

 

o Map the shape function of the transformed coordinate points as follows 
! Find the shape function for each end point based on its local 

coordinate system. 
! Define a shape matrix that stores the shape function of the bolt with 

respect to the elements in the mesh (as shown for elements 14 and 17 

in Figure 7). 
o Transfer the bolt stiffness of each bolt segment to new stiffness based on 

mapping the bolts’ stiffness values to the nodes of the intersecting elements 

(as shown in nodes 8,9 16 and 17 in Figure 7). 
 

 
 

Figure 7. Enlarged view of the bolt region 

 

Based on the outlined procedure, the global stiffness system is assembled. In the case of 

yielded bolts, an iterative process is used to update bolt stresses. 
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