Hoek–Brown parameters for predicting the depth of brittle failure around tunnels

C.D. Martin, P.K. Kaiser, and D.R. McCreath

Abstract: A review of underground openings, excavated in varying rock mass types and conditions, indicates that the initiation of brittle failure occurs when the damage index, D_j, expressed as the ratio of the maximum tangential boundary stress to the laboratory unconfined compressive strength exceeds ≈ 0.4. When the damage index exceeds this value, the depth of brittle failure around a tunnel can be estimated by using a strength envelope based solely on cohesion, which in terms of the Hoek–Brown parameters implies that $m = 0$. It is proposed that in the brittle failure process peak cohesion and friction are not mobilized together, and that around underground openings the brittle failure process is dominated by a loss of the intrinsic cohesion of the rock mass such that the frictional strength component can be ignored for estimating the depth of brittle failure, an essential component in designing support for the opening. Case histories were analyzed using the Hoek–Brown failure criterion, with traditional frictional parameters, and with the proposed brittle rock mass parameters: $m = 0$ and $s = 0.11$. The analyses show that use of a rock mass failure criteria with frictional parameters ($m > 0$) significantly underpredicts the depth of brittle failure while use of the brittle parameters provides good agreement with field observations. Analyses using the brittle parameters also show that in intermediate stress environments, where stress-induced brittle failure is localized, a tunnel with a flat roof is more stable than a tunnel with an arched roof. This is consistent with field observations. Hence, the Hoek–Brown brittle parameters can be used to estimate the depth of brittle failure around tunnels, the support demand-loads caused by stress-induced failure, and the optimum geometry of the opening.

Key words: spalling, depth of failure, rock mass strength, brittle failure criterion, cohesion loss, Hoek–Brown brittle parameters.

Résumé: Une revue des excavations souterraines dans divers types et conditions de massifs rocheux indiquent que le début de la fracture fragile se produit lorsque l’indice de dommage, D_j, représentant le rapport de la contrainte tangentielle maximale à la frontière sur la résistance en compression non confinée mesurée en laboratoire, dépasse ≈ 0.4. Lorsque l’indice de dommage excède cette valeur, la profondeur de la rupture fragile autour d’un tunnel peut être évaluée au moyen d’une enveloppe de résistance basée seulement sur la cohésion qui en termes des paramètres de Hoek–Brown implique que $m = 0$. L’on propose que dans le processus de rupture fragile, les pics de cohésion et de frottement ne sont pas mobilisés ensemble, et que autour des ouvertures souterraines, le processus de rupture fragile est dominé par une perte de la cohésion intrinsèque du massif rocheux de telle sorte que la composante de frottement de la résistance peut être négligée dans l’évaluation de la profondeur de la rupture fragile, composante essentielle pour le calcul du soutènement de l’ouverture. Des histoires de cas ont été analysées au moyen du critère de rupture de Hoek–Brown avec des paramètres de frottement traditionnels et avec les paramètres de fragilité proposés pour le massif rocheux : $m = 0$ et $s = 0.11$. Les analyses montrent que l’utilisation des critères de rupture du massif rocheux avec des paramètres ($m > 0$) sous-estime de façon significative la prédiction de la profondeur de la rupture fragile alors que l’utilisation des paramètres de fragilité fournit une bonne concordance avec les observations sur le terrain. Les analyses utilisant les paramètres fragiles démontrent également que dans des environnements de contraintes intermédiaires, où la rupture fragile induite par la contrainte est localisée, un tunnel avec un plafond plat est plus stable qu’un tunnel avec un plafond en voûte. Ceci est consistant avec les observations sur le terrain. Ainsi, les paramètres fragiles de Hoek–Brown peuvent être utilisés pour évaluer la profondeur de la rupture fragile autour des tunnels, l’intensité de soutènement en fonction des charges produites par la rupture induite par les contraintes, et la géométrie optimale de l’ouverture.

Mots clés: effritement, profondeur de rupture, résistance du massif rocheux, critères de rupture fragile, perte de cohésion, paramètres de fragilité de Hoek–Brown.

Introduction

Failure of underground openings in hard rocks is a function of the in situ stress magnitudes and the characteristics of the rock mass, i.e., the intact rock strength and the fracture network (Fig. 1). At low in situ stress magnitudes, the failure process is controlled by the continuity and distribution of the natural fractures in the rock mass. However as in situ stress magnitudes increase, the failure process is dominated by new stress-induced fractures growing parallel to the excavation boundary. This fracturing is generally referred to as brittle failure. Initially, at intermediate depths, these failure regions are

Received December 17, 1997. Accepted August 20, 1998.

C.D. Martin1 and P.K. Kaiser, Geomechanics Research Centre, Laurentian University, Sudbury, ON P3E 2C6, Canada.
D.R. McCreath. School of Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada.

1 Corresponding author: Telephone: (705) 675-1151 ext 5094 ; FAX: (705) 675-4838; e-mail: dmartin@nickel.laurentian.ca
Fig. 1. Examples of tunnel instability and brittle failure (highlighted grey squares) as a function of Rock Mass Rating (RMR) and the ratio of the maximum far-field stress (σ_1) to the unconfined compressive strength (σ_c), modified from Hoek et al. (1995).

localized near the tunnel perimeter but at great depth the fracturing envelopes the whole boundary of the excavation (Fig. 1). Unlike ductile materials in which shear slip surfaces can form while continuity of material is maintained, brittle failure deals with materials for which continuity must first be disrupted before kinematically feasible failure mechanisms can form.

Attempts to predict either the onset of this brittle failure process or the maximum depth to which the brittle failure process will propagate, using traditional failure criteria based on frictional strength, have not met with much success (Wagner 1987; Pelli et al. 1991; Martin 1997; Castro et al. 1996; Grimstad and Bhasin 1997). One approach, which attempts to overcome this deficiency, is to model the failure process progressively by using iterative elastic analyses and conventional failure criteria. The initial zone of failure is removed, and the analysis is then repeated based on the updated tunnel geometry. This iterative process is intended to simulate the progressive nature of brittle failure. However, as noted by Martin (1997) this process is not self-stabilizing, and as a result over-predicts the depth of failure by a factor of 2 to 3.

Martin and Chandler (1994) demonstrated in laboratory experiments that in the brittle failure process peak cohesion
and friction are not mobilized together and that most of the cohesion was lost before peak friction was mobilized. They postulated that around underground openings the brittle-failure process is dominated by a loss of the intrinsic cohesion of the rock mass such that the frictional strength component can be ignored. Recently, Martin (1997) showed that the maximum depth of stress-induced brittle fracturing around a circular test tunnel in massive granite could be approximated by a criterion that only considered the cohesive strength of the rock mass. This paper considers the applicability of this approach as a general criterion for estimating the depth of brittle failure around tunnels.

Brittle rock-mass strength around tunnels

The strength of a rock mass is often estimated by back-analyzing case histories where examples of failure have been carefully documented (Sakurai 1993). In brittle rock masses failure around tunnels occurs in the form of spalling or fracturing, and back-analyses involve establishing the stresses required to cause this fracturing. Ortlepp et al. (1972) compiled experience from square 3 to 4 m tunnels in brittle rocks in South African gold mines and suggested that the stability of these tunnels could be assessed using the ratio of the far-field maximum stress \(\sigma_1 \) to the laboratory uniaxial compressive strength \(\sigma_c \):

\[
\frac{\sigma_1}{\sigma_c} = \frac{3\sigma_1 - \sigma_2 - \sigma_3}{\sigma_c} = \frac{3\sigma_1 - \sigma_3}{\sigma_c}
\]

For a stress environment where the ratio of the maximum to minimum far-field stress \(K_0 \) is equal to 0.5, Ortlepp et al. concluded that minor spalling occurs when \(\frac{\sigma_1}{\sigma_c} > 0.2 \). Hoek and Brown (1980) compiled additional South African observations from underground mining in massive brittle rocks and suggested the stability classification given in Fig. 2. The stability classification in Fig. 2 ranges from 0.1 through 0.5 and can be briefly described as follows: \(\frac{\sigma_1}{\sigma_c} \leq 0.1 \) a stable unsupported opening, i.e., no damage; \(\frac{\sigma_1}{\sigma_c} = 0.2 \) minor spalling (failure) can be observed, requiring light support; \(\frac{\sigma_1}{\sigma_c} = 0.3 \) severe spalling (failure), requiring moderate support; \(\frac{\sigma_1}{\sigma_c} = 0.4 \) heavy support required to stabilize the opening; and \(\frac{\sigma_1}{\sigma_c} = 0.5 \) stability of the opening may be very difficult to achieve, extreme support required.

The stability classification developed by Hoek and Brown (1980) is not directly transferable to other tunnel shapes as it only considers the far-field stress under a constant \(K_0 = 0.5 \). The stress-induced failure process initiates at the stress concentrations near the boundary of the tunnel and therefore the maximum tangential stress at the boundary of the tunnel, which is a function of tunnel shape, must be considered. Wiseman (1979) attempted to overcome this limitation by considering the stresses at the sidewall of the excavation. He proposed a sidewall stress concentration factor (SCF) given by

\[
SCF = \frac{3\sigma_1 - \sigma_3}{\sigma_c}
\]

where \(\sigma_1 \) and \(\sigma_3 \) are the far-field in situ stresses and \(\sigma_c \) is the laboratory uniaxial compressive strength. In a detailed survey of 20 km of gold mine tunnels Wiseman (1979) observed that the conditions for unsupported tunnels deteriorated rapidly when the sidewall stress concentration factor reached a value of about 0.8. He noted that the sidewall stress concentration factor provided the maximum tangential stress at the boundary of a circular opening but that none of the tunnels surveyed "was even approximately circular in cross section."

The South African examples illustrate that the stability of tunnels in massive rocks can be assessed by comparing stresses on the boundary of essentially square openings to the laboratory uniaxial compressive strength. However, to apply the South African empirical stability classification to other sites, the effect of the tunnel geometry and varying stress ratios on the maximum tangential stress at the boundary of the tunnel must be evaluated. Numerical programs can readily be used to assess these effects on the boundary stress. Alternatively the closed form solution developed by Greenspan (1944) can be used for tunnel geometries that can be expressed in the parametric form given by

\[
x = p \cos \beta + r \cos 3\beta \\
y = q \sin \beta - r \sin 3\beta
\]

where \(p, q, \) and \(r \) are parameters and \(\beta \) is an angle. Through the appropriate choice of \(p, q, \) and \(r, \) near-rectangular openings can be analyzed and this approach has been used to determine the maximum tangential stress for the case histories used by Hoek and Brown (1980).

The conversion of the classification expressed in Fig. 2 into terms that consider the maximum tangential boundary stress \(\sigma_{max} \) is given in Fig. 3. The ratio of \(\sigma_{max} \) to the laboratory short-term unconfined compressive strength \(\sigma_c \) will be re-
ferred to as the damage index \(D_1\). The damage index indicates that for \(D_1 \leq 0.4\) the rock mass is basically elastic and no visible damage is recorded. Hence, the maximum rock-mass strength near the opening, in the case histories used by Hoek and Brown (1980), is approximately 0.4\(\sigma_c\). This notion that the field strength of massive or moderately jointed rock is approximately one half the laboratory strength has been reported by several researchers for a wide range of rock types (see, for example, Martin 1995; Pelli et al. 1991; Myrvang 1991; Stacey 1981).

The shear strength of a rock mass is usually described by a Coulomb criterion with two strength components: a constant cohesion and a normal-stress-dependent friction component. In 1980, Hoek and Brown proposed an empirical failure criterion that is now widely used in rock engineering and in the generalized form is given as

\[
\sigma_2' = \sigma_3' + \sigma_c \left(\frac{\sigma_1'}{\sigma_c} + s \right)^a
\]

where \(\sigma_1'\) and \(\sigma_3'\) are the maximum and minimum effective stresses at failure, \(\sigma_c\) is the laboratory uniaxial compressive strength, and the empirical constants \(m\) and \(s\) are based on the rock-mass quality. For most hard-rock masses the constant \(a\) is equal to 0.5 and eq. 4 is usually expressed in the following form:

\[
\sigma_1 = \sigma_3 + \sqrt{ma_s \sigma_3 + s \sigma_c^2}
\]

where \(\sigma_1\) and \(\sigma_3\) are again the maximum and minimum effective stresses at failure. The empirical constants are related in a general sense to the angle of internal friction of the rock mass \((m)\) and the rock-mass cohesive strength \((s)\). Hoek and Brown (1980) provided a methodology for deriving the frictional and cohesive strength components for a given normal stress. For both the Coulomb and the Hoek–Brown failure criteria, it is implicitly assumed that the cohesive \((c\) or \(s\)) and the frictional \((\phi\) or \(m\)) strength components are mobilized simultaneously.

Hoek and Brown (1980) suggested that \(m\) and \(s\) can be estimated by

\[
\begin{align*}
6 & = m_1 \exp \left(\frac{RMR - 100}{28}\right) \\
7 & = \exp \left(\frac{RMR - 100}{9}\right)
\end{align*}
\]

where \(m_1\) is the value of \(m\) for intact rock and \(RMR\) is the rock-mass rating based on the classification system developed by Bieniawski (1989). It can be seen from eqs. 6 and 7 that as the rock-mass quality improves, i.e., as \(RMR\) approaches 100, the strength of the rock mass approaches the strength of the intact rock. For the boundary of a tunnel, where \(\sigma_3 = 0\), eq. 5 reduces to

\[
\sigma_1 = \sqrt{s \sigma_c^2}
\]

and for intact rock \(s = 1\) such that at the boundary of a tunnel when failure occurs \(\sigma_1\) should be approximately equal to \(\sigma_c\). However, Read and Martin (1996) have shown, from recent experience with the Mine-by test tunnel in massive intact granite \((RMR \approx 100)\), that even for these conditions where the rock mass is intact \(s\) is approximately equal to 0.25 such that \(\sigma_1 \approx 0.5\sigma_c\). This is in keeping with the South African experience described previously, where failure on the boundary of tunnels initiates at about 0.4\(\sigma_c\) or in terms of the Hoek–Brown parameter \(s \approx 0.2\). Martin (1997) attributed this difference between the laboratory strength and in situ strength to the loading path. In the laboratory the strength is estimated via a simple monotonically increasing loading path where as the in situ strength is mobilized essentially by unloading the rock mass through a complex loading path involving stress rotation. Hence, it would appear that the strength in situ can only be estimated by back-analyses and that for tunnels in massive rocks the in situ rock-mass strength is approximately 0.4\(\sigma_c\). While this approach is useful in establishing the rock-mass strength at zero confining stress, it cannot be used to estimate the depth of failure, an essential parameter in designing the rock support for these tunnels. This aspect of brittle failure is discussed in the following sections.

Characteristics of stress-induced brittle failure

A characteristic of stress-induced failure of tunnels in brittle rock is the notched-shape of the failure region and the associated slabbing and spalling that may occur in a stable manner or violently in the form of strainbursts. These slabs can range in thickness from a few millimetres to tens of centimetres and with large openings can be several square metres in surface area (see Ortlepp 1997; Martin et al. 1997). Fairhurst and Cook (1966) suggested that the formation and thickness of these slabs could be related to strain energy. Martin et al. (1997) provided detailed observations of the failure process around a circular test
tunnel and concluded that the slab formation is associated with the advancing tunnel face, and that once plane-strain conditions are reached the new notched-tunnel shape is essentially stable. More importantly, their observations showed that the brittle failure process forms slabs that have very little cohesive strength between the slabs such that when subjected to gravitational loading they fall from the roof. Yet outside this notch region they found that the rock mass was much less damaged and retained its integrity. For support design purposes this observation is extremely important as only the rock-mass slabs inside the failure region need to be supported and the extent or depth of the failure zone determines the required bolt length.

A review of published case histories where the shape of the slabbing region has been measured and documented, shows that the brittle failure process leads to the development of a v-shaped notch, regardless of the original opening shape or size (Fig. 4). As shown in Fig. 4 the location, extent, and depth of the notch, and hence the support requirements, can vary significantly.

In the previous section it was shown that the formation of the notch initiates when the tangential stresses on the boundary of the tunnel exceed approximately 0.4σc. At these stress levels the failure process involves microscale fracturing that can be detected with microseismic monitoring equipment (Martin et al. 1995). Observations from around the tunnels indicate that these microscale fractures lead to the formation of slabs that grow in a plane parallel to the tunnel boundary, i.e., normal to σ3, such that the mode of origin of these macroscale fractures is extension.

An earlier attempt to predict the depth of brittle failure around tunnels in massive quartzites was carried out by Stacey (1981). He proposed that the on-set and depth of failure could be estimated by a considering the extension strain that can be calculated from

\[\epsilon = \frac{1}{E} [\sigma_3 - \nu(\sigma_1 + \sigma_2)] \]

where ν is the Poisson’s ratio and E is the Young’s modulus of the rock mass. Stacey (1981) proposed that if the calculated extension strain was greater than the critical extension strain, spalling would occur. The notion that an extensional strain criterion could be used to predict the depth of spalling coupled with the observational evidence that the spalling process involves the growth of extensionlike fractures around tunnel suggests that the brittle failure process is controlled by the cohesion of the rock mass. Stacey and Page (1986) suggest that where the failure is nonbrittle a more appropriate criterion to apply is that based on a shear failure mechanism.

More recently, Martin and Chandler (1994) showed via damage-controlled laboratory tests that the accumulation of these extension cracks reduces the intrinsic cohesion of the intact rock and that this reduction in cohesion occurs before the peak strength of the sample is reached. While it is customary to assume that the peak friction and peak cohesion of a rock mass are mobilized at the same displacements, their results showed that cohesion is reduced by about 70% as friction is fully mobilized and that this reduction occurs after only a small amount of damage or inelastic straining. Martin (1997) also showed, based on microseismic evidence, that damage-initiation and the depth of failure around the Mine-by test tunnel could be approximated by a constant deviatoric stress; \(\sigma_1 - \sigma_3 = 75 \text{ MPa} \) or \(1/3\sigma_c \). Other researchers (e.g., Brace et al. 1966; Scholz 1968; Peng and Johnson 1972; Hallbauer et al. 1973; Martin and Chandler 1994) have also found that the ini-
tiation of fracturing in uniaxial laboratory tests occurs between 0.25 and 0.5σc for a wide variety of rock types and concrete. The constant deviatoric stress equation proposed by Martin can be expressed in terms of the Hoek–Brown parameters as

\[\sigma_1 = \sigma_3 + \sqrt{3} \sigma_c^2 \]

by setting the frictional constant m to zero to reflect that the frictional strength component has not been mobilized and \(\sqrt{3} = 1/3 \) (Fig. 5). Implicit in eq. 10 is the notion that the stress-induced brittle failure process, which occurs around tunnels, is dominated by cohesion loss caused by the growth of extension cracks near the excavation boundary. Stacey (1981) conducted laboratory tests and found that for most brittle rocks the critical strain for extension fracturing was only slightly dependent on confining stress and occurred in the region of 0.3σc. Hence, Stacey’s extension strain criterion is based on the same mechanistic model as eq. 10. In other words the critical strain criterion corresponds to the proposed “cohesion loss before friction mobilization” model.

It is important to note that eq. 10 is only applicable when considering stress-induced brittle failure. It cannot be used to define regions of tensile failure as it overestimates the tensile strength of the rock mass. If tensile failure is of concern, a Mohr–Coulomb criterion with a tension cut-off would be more appropriate. In the next section eq. 10, which was developed for the Mine-by test tunnel in massive granite, is applied to other rock masses.

Depth of stress-induced failure

The failure zone that forms around an underground opening is a function of the geometry of the opening, the far-field stresses and the strength of the rock mass. Detournay and St. John (1988) categorized possible failure modes around a circular unsupported tunnel according to Fig. 6. The mean and deviatoric stress in Fig. 6 is normalized to the uniaxial compressive field strength (σc*), which is assumed to be approximately 0.5σc for the data superimposed on Fig. 6. In Region I, the extent of the predicted failure zone is localized, and only at large values of the deviatoric and (or) mean stress does the failure shape become continuous.

The shape of the region defined by eq. 10 is controlled by the ratio (Ko) of the maximum stress to the minimum stress (\(\sigma_1/\sigma_3 \)) in the plane of the tunnel cross section. For Ko = 1, damage should theoretically occur uniformly around a circular tunnel when the normalized mean stress exceeds 0.5. However, practical experience indicates that due to heterogeneities, failure is always localized. Figure 7 illustrates the effect of Ko on the shape of the region defined by eq. 10. As Ko increases, the shape of the damage region approaches that described as Region III in Fig. 6. However, the notch shapes presented in Fig. 4 do not match the shape of the damaged regions presented in Fig. 7. Equation 10 only describes the locus of damage initiation, and does not describe the limit of damage evolution, i.e., the extent of the slabbing process. Equation 10, therefore, provides an estimate of the limiting depth to which slabbing can propagate but not of the shape of the slabbing region. Because of the progressive nature of this slabbing process, driven by the gradual stress increase associated with tunnel advance, the notch starts to propagate from the point of maximum tangential stress (in the roof at \(\theta = 90^\circ \) in Fig. 7) towards the damage initiation limit described by eq. 10. It propagates until...
Table 1. Summary of case histories used to establish relationship between depth of failure and maximum tangential stress. All tunnels are circular except where noted.

<table>
<thead>
<tr>
<th>Rock mass</th>
<th>R_f/a</th>
<th>σ_1/σ_3</th>
<th>σ_3 (MPa)</th>
<th>σ_c (MPa)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocky andesitea</td>
<td>1.3</td>
<td>1.92</td>
<td>15.3</td>
<td>100</td>
<td>GRC field notes (El Teniente Mine)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>2.07</td>
<td>14.8</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>2.03</td>
<td>14.7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>2.10</td>
<td>16.3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>2.03</td>
<td>15.4</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>2.09</td>
<td>15.8</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Massive quartzitesa</td>
<td>1.8</td>
<td>2.15</td>
<td>65</td>
<td>350</td>
<td>Ortlepp and Gay (1984)</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>2.15</td>
<td>65</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>1.86</td>
<td>60</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>1.86</td>
<td>60</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Bedded quartzites</td>
<td>1.4</td>
<td>3.39</td>
<td>15.5</td>
<td>250</td>
<td>Stacey and de Jongh (1977)</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>3.39</td>
<td>15.5</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Massive granite</td>
<td>1.5</td>
<td>5.36</td>
<td>11</td>
<td>220</td>
<td>Martin et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>5.36</td>
<td>11</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>5.36</td>
<td>11</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>5.36</td>
<td>11</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>5.36</td>
<td>11</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>3.7</td>
<td>11</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Massive granite</td>
<td>1.1</td>
<td>1.31</td>
<td>40</td>
<td>220</td>
<td>Martin (1989)</td>
</tr>
<tr>
<td>Interbedded siltstone–mudstone</td>
<td>1.4</td>
<td>2.0</td>
<td>5</td>
<td>36</td>
<td>Pelli et al. (1991)</td>
</tr>
<tr>
<td>Bedded limestone</td>
<td>1.1</td>
<td>1.3</td>
<td>12.1</td>
<td>80</td>
<td>Jiayou et al. (1989)</td>
</tr>
<tr>
<td>Bedded quartzites</td>
<td>1.0</td>
<td>1.69</td>
<td>21</td>
<td>217</td>
<td>Kirsten and Klokow (1979)</td>
</tr>
<tr>
<td></td>
<td>1.08</td>
<td>1.69</td>
<td>20</td>
<td>151</td>
<td></td>
</tr>
</tbody>
</table>

aD-shaped tunnel.

it reaches the deepest point of damage in the direction of the minor principal stress (circles in Fig. 7). If this is the case, then the depth of failure should be predictable by using eq. 10.

A review of available literature identified eight case histories where the depth and shape of failure around individual tunnels had been measured (Table 1). These case histories also provided a description of the rock type, σ_c, and the in situ stress state. Examples of the reported notch shapes are shown in Fig. 4 and these case histories are also plotted in Fig. 6. They represent a wide range of stress, rock-mass conditions, and tunnel geometries yet in all cases a well-developed notch formed. Region II, involving yielding or squeezing ground conditions, is typically encountered in rock masses that are relatively weak compared with the mean stress or at great depth in hard rock.

The tunnels listed in Table 1 have either a circular cross section or a D-shaped section. Where the tunnels are D-shaped, an effective tunnel radius is used, as illustrated in Fig. 8. The depth to which the notch propagated in the case histories, is plotted in dimensionless form in Fig. 9. This depth of failure (R_f) in Fig. 9 has been normalized to either the tunnel radius or effective tunnel radius, and the maximum tangential stress (σ_{max}) has been normalized to σ_c. Where the tunnel is D-shaped, the distance from the wall to the equivalent circular shape (Δ in Fig. 8) is not included in the depth of the notch. The data suggest that the depth of failure can be approximated by a linear relationship given as

$$[11] \quad \frac{R_f}{a} = 0.49(\pm0.1) + 1.25\frac{\sigma_{\text{max}}}{\sigma_c}$$

where $\sigma_{\text{max}} = 3\sigma_1 - \sigma_3$ and that failure initiates when $\sigma_{\text{max}}/\sigma_c \approx 0.4 \pm 0.1$. This initiation of failure is in good agreement with the findings discussed previously in Fig. 3.

Figure 10 shows the predicted depth of failure, using eq. 10, with $s = 0.11$ as the criterion for the initiation of damage. This results in a slight over-prediction of the normalized depth of failure in Fig. 10 for $\sigma_{\text{max}}/\sigma_c$ between 0.34 and 0.6. However, the prediction shows a similar linear trend as that measured for the range of damage indexes considered.

The concept of using the Hoek–Brown brittle parameters to define the damaged region around an underground opening was developed for massive unfractured granite (Martin 1995). The results presented in Fig. 10 suggest that the Hoek–Brown brittle parameters are applicable to a much wider range of rock mass types, e.g., interbedded mudstones and siltstones through to massive quartzites. The common elements in these case studies are that failure is stress-induced, the rock mass is moderately jointed to massive, and the rock-mass behaviour is brittle. In these cases the discontinuities in the rock mass are...
Fig. 9. Relationship between depth of failure and the maximum tangential stress at the boundary of the opening.

Fig. 10. Comparison between the predicted depth of damage initiation using the Hoek–Brown brittle parameters given by eq. [10] and measured depths of failure given in Table 1.

not persistent relative to the size of the opening such that the failure process is essentially one of cohesion loss. In the next section the Hoek–Brown brittle parameters are applied to several well-documented case histories and are also used to assess the effect of tunnel geometry on the depth of brittle failure.

Application of Hoek–Brown brittle parameters

In the previous section most of the analyses, using Hoek–Brown brittle parameters, were applied to near circular openings in fairly massive rocks. In this section the same concepts are applied to other opening shapes and to rock masses that are described as anisotropic. All analyses in this section were carried out using the elastic boundary element program Examine2D (Curran and Corkum 1995) or the plastic-finite element program Phase2 (Curran and Corkum 1997). In these programs the stability is expressed in terms of a strength factor that is analogous to the traditional factor of safety such that a Strength Factor < 1 implies failure or the region that is over-stressed.

Martin (1997) showed the brittle failure process initiates near the tunnels face and hence is three-dimensional. Thus, it is not surprising, as indicated by Fig. 7, that two-dimensional analyses using the Hoek–Brown brittle parameters cannot be used to predict the actual shape of the notch. Nonetheless, for support design purposes, it is necessary to determine how deep failure will occur and the lateral extent of failure. This can be achieved by the application of the Hoek–Brown brittle parameters. In the following example applications, taken from documented case histories, a comparison of the results with both Hoek–Brown frictional and brittle parameters are presented to demonstrate that this approach can be used to estimate the depth of failure.

Elastic versus plastic analyses

The theory of elasticity would suggest that the optimum shape of a tunnel is an ellipse with the major axis parallel to the direction of maximum in-plane stress, with the ratio of major (2a) to the minor (2b) axis of the ellipse being equal to the ratio of the maximum (σ1) to minimum (σ3) stresses in the plane of the excavation (Fig. 11a). This optimum shape produces uniform tangential stresses on the boundary of the excavation with the tangential stress equal to σ1 + σ3. Fairhurst (1993) pointed out however, that while the tangential stress is constant on the boundary it is not constant for the regions behind the boundary of the tunnel and should failure occur the inelastic region that develops for an elliptical shaped tunnel, is much larger than if the tunnel geometry were circular or an ellipse oriented parallel to the minimum stress axis (Fig. 11b).

Read and Chandler (1997) carried out an extensive study to evaluate the effect of tunnel shape on stability by excavating a series of ovaloid and circular openings at the Underground Research Laboratory, Manitoba. Because of the extreme in situ stress ratio (Ko ≈ 6) it was not practical to excavate an ellipse of the optimum shape (e.g., 18 m by 3 m in dimension). As a compromise, they excavated an ovaloid 6.6 m wide and 3 m high in a rock mass with the following average properties:

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Granite</th>
</tr>
</thead>
<tbody>
<tr>
<td>In situ stress</td>
<td>σ1, σ3 59.6, 11.1 MPa</td>
</tr>
<tr>
<td>Intact rock strength</td>
<td>σc 224 MPa</td>
</tr>
<tr>
<td>Rock-mass rating</td>
<td>RMR ≈100</td>
</tr>
<tr>
<td>Hoek–Brown constants</td>
<td>m 28</td>
</tr>
<tr>
<td>Residual parameters</td>
<td>mr 0.16</td>
</tr>
</tbody>
</table>

Figure 12 shows the results from two analyses using Examine2D and the shape of the notched region that formed shortly after excavation (Read, personal communication). In the first analyses, the Hoek–Brown parameters are based on laboratory strength tests, which gave σc = 224 MPa and m = 28, but with the parameter s = 0.16 to reflect that failure initiates at about 0.4σc, consistent with the findings in the section entitled Brittle rock-mass strength around tunnels. Those results are shown in Fig. 12a and indicate that the excavation is stable, i.e., ©1999 NRC Canada
The strength factor >1, except for a very thin (approximately 50 mm thick) zone.

One of the limitations of the two-dimensional elastic analyses is that it does not account for the effect of stress redistribution as failure progresses. Hoek et al. (1995) suggested that elastic-brittle-plastic analyses are adequate for most practical purposes. They indicated that to simulate the elastic-brittle-plastic failure process in Lac du Bonnet granite, the Hoek–Brown residual parameters should be assigned very low values, e.g., $m_r = 1$ and $s_r = 0.01$ to simulate brittle failure. Figure 12b shows the results from the plastic-finite-element program Phase2 with the parameters noted above. In this case failure is indicated as shown by the yield points in Fig. 12b. However, the location and depth of the notch is not captured by this approach and the results are very sensitive to the values for m_r and s_r, which are difficult to determine.

The elastic analysis was repeated with the Hoek–Brown brittle parameters ($m = 0$ and $s = 0.11$) to estimate the depth of failure. Figure 12c shows that this approach indicates that failure will occur but unlike the elastic-brittle-plastic analyses it more accurately predicts the maximum depth of failure. Most interestingly, this analyses also provides a good estimate of the extent of failure, encompassing nearly the entire roof of the excavation. This is consistent with field observations where Read (personal communication) reported that the slabs several centimetres thick formed over the width of the long side of the notch.

The case history in this section serves to illustrate that elas-
tic analyses combined with the appropriate Hoek–Brown brittle parameters are adequate for practical purposes to estimate the depth and extent of the stress-induced failure zone in massive rocks. In the next sections this approach is used to analyze tunnels in moderately fractured anisotropic rocks.

Anisotropic rock masses

Weak sedimentary rock mass

The following case study is taken from the construction of the Donkin–Morien tunnel and reported by Pelli et al. (1991). The 3.8 m radius tunnel was excavated using a tunnel boring machine in a sedimentary rock mass with the following average properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock type</td>
<td>Interbedded siltstone–mudstone</td>
</tr>
<tr>
<td>In situ stress</td>
<td>σ_1, σ_3 10.5 MPa</td>
</tr>
<tr>
<td>Intact rock strength</td>
<td>σ_c 36 MPa</td>
</tr>
<tr>
<td>Rock-mass rating</td>
<td>RMR 85</td>
</tr>
<tr>
<td>Hoek–Brown constants</td>
<td>m 5.85, s 0.189</td>
</tr>
</tbody>
</table>

Pelli et al. (1991) reported that the depth of “loosening” of the rock mass in the crown of the tunnel extended to between 1 and 1.4 m. Figure 13a shows the results from the elastic analyses using the Hoek–Brown parameters recommended for the rock mass conditions. While failure of the crown is indicated in Fig. 13a, it is considerably less than measured in the field. Pel- liet al. (1991) conducted parametric analyses and concluded that the range of Hoek–Brown parameters that matched field observations were clearly outside the range recommended by Hoek and Brown, (1988) for this quality rock mass and suggested that much lower m and higher s values would provide a better fit. Figure 13b shows the results from the analyses with $m = 0$ and $s = 0.11$. For these parameters the depth of failure is in much better agreement with the measured failure.

Foliated rock mass

In the previous examples, the failure occurred during or shortly after excavation. In this example reported by Nickson et al. (1997), failure around an existing shaft occurred after adjacent mining caused elevated stresses in the vicinity of the excavation. The 4 m by 6 m shaft was excavated in a foliated rock mass with the following average properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock type</td>
<td>Metasediments</td>
</tr>
<tr>
<td>In situ stress</td>
<td>σ_1, σ_3 35, 23.4 MPa</td>
</tr>
<tr>
<td>Intact rock strength</td>
<td>σ_c 100 MPa</td>
</tr>
<tr>
<td>Rock-mass rating</td>
<td>RMR 66</td>
</tr>
<tr>
<td>Hoek–Brown constant</td>
<td>m 5.2</td>
</tr>
<tr>
<td></td>
<td>s 0</td>
</tr>
</tbody>
</table>

Nickson et al. (1997) carried out a detailed assessment of the damage to the shaft and noted the following (Fig. 14):

1. The rock in the two opposite corners of the shaft was extensively crushed while the other corners showed only minor crushing;

2. The east and west walls of the shaft extensively spalled with the maximum depth of failure in the east wall extending to approximately 2 m and the depth of failure in the west wall being somewhat less; and

3. No evidence of spalling was observed on the north and south walls of the shaft.

Nickson et al. (1997) carried out extensive three-dimensional numerical analyses to determine the in situ failure envelope needed to match the observed damage around the shaft. They concluded that the slope of the failure line in σ_1/σ_3 space was slightly less than 1, which implies that $m \approx 0$.

Two-dimensional elastic analyses were carried out to determine whether the Hoek–Brown brittle parameters could capture some of the reported observations. Figure 14a shows that the traditional Hoek–Brown parameters for this rock mass would indicate failure of the north and south walls with little failure at the northeast and southwest corners. This is clearly inconsistent with observations. However, the results from the analysis using the Hoek–Brown brittle parameters presented in Fig. 14b are in good agreement with the observations noted by Nickson et al. (1997). In particular, the maximum depth of
Fig. 14. Depth of failure of around shaft excavated in a foliated rock mass. (a) Hoek–Brown frictional parameter. (b) Hoek–Brown brittle parameters.

Fig. 15. Principal stresses around a tunnel with an arched roof in a rock mass with low in situ stresses. (a) Sigma 1. (b) Sigma 3.

Failure of the east wall, reported as 2 m, corresponds well with the predicted depth of 2.2 m. Interestingly, the Hoek–Brown brittle parameters predicted the nonsymmetric crushing at the two corners, which also agrees well with observations.

Depth of failure and tunnel shape

The stress distribution around an excavation in an elastic rock mass is controlled by the shape of the excavation. For example, openings with corners or small radii of curvature will have high compressive stress concentrations in these locations. Hence, there is a tendency to increase the radius of curvature in the design of underground openings, to avoid overstressing of the rock mass. This is particularly evident in civil engineering where tunnels are frequently circular or horse-shoe shaped. In mining, development tunnels often have rectangular shapes with a slightly arched roof to also reduce stress concentrations. However, mining experience suggests that in intermediate-stress environments rectangular-shaped openings with a flat roof are often more stable than rectangular-shaped openings with arched roofs (Castro and McCreath 1997). In the following, the Hoek–Brown frictional and brittle parameters are used to evaluate the stability of tunnels with both arched and flat roofs.

Arched roof: Low in situ stress

In low-stress environments in the Canadian Shield (to approximately 250 m depth) the rock-mass response tends to be elastic as the damage index is less than 0.4, and hence stability is controlled by the rock-mass structure (see Figs. 1 and 2). Thus, the optimum tunnel geometry should reduce the possibility of blocks falling from the roof. Brady and Brown (1993) have shown that sliding along a plane from the roof of a tunnel can be evaluated in two dimensions by

\[
\sigma_{1f} = \frac{2c + \sigma_3 [\sin 2\beta + \tan \phi (1 - \cos 2\beta)]}{\sin 2\beta - \tan \phi (1 + \cos 2\beta)}
\]

where \(\sigma_3\) is the minimum principal stress in the plane, \(c\) is the cohesive strength, \(\phi\) is the friction angle, and \(\beta\) is the angle of the failure plane relative to \(\sigma_3\).

Equation 12 illustrates that the confining stress \(\sigma_3\) plays a major role in structurally controlled stability. Hence, an opti-
Fig. 16. Principal stresses around a tunnel with a flat roof in a rock mass with low in situ stresses. (a) Sigma 1. (b) Sigma 3.

Figures 15 and 16 show the elastic principal stresses around a typical mine development tunnel with an arched and flat roof. Comparing Figs. 15 and 16, it is immediately evident that a flat roof causes a much bigger region of unloading, i.e., low σ_3, and hence would promote structural failure. Thus, in a low-stress environment, an arched roof is a better choice in minimizing the potential for structurally controlled failure.

Arched roof: Intermediate in situ stress

In an intermediate-stress environment in the Canadian Shield (approximately to 1500 m depth) the rock-mass response is nonelastic as $D_i > 0.4$, and hence stability is controlled by the stress-induced damage in the roof (see Figs. 1 and 2). To optimize the tunnel shape in this stress environment, a failure criterion is required that adequately predicts the zone of failure. To evaluate whether a frictional-based failure criterion is appropriate for predicting the depth of stress-induced failure a case history is analyzed from a Canadian mine (S. Espley, personal communication).

A 4.5 m wide and 5 m high tunnel, with an arched roof, was excavated in a moderately jointed rock mass with the following average properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock type</td>
<td>Granite gneiss</td>
</tr>
<tr>
<td>In situ stress σ_1, σ_3</td>
<td>60, 43 MPa</td>
</tr>
<tr>
<td>Intact rock strength σ_c</td>
<td>240 MPa</td>
</tr>
<tr>
<td>Rock-mass rating RMR</td>
<td>70</td>
</tr>
<tr>
<td>Hoek–Brown constants m, s</td>
<td>8.5, 0.036</td>
</tr>
</tbody>
</table>

Failure of the roof progressed during excavation of the tunnel to form a v-shaped notch to a depth of approximately 1 m, similar to that shown in Fig. 17. The tunnel roof geometry was changed from the 1 m high arch to a flat roof. This change in geometry prevented the development of the notch in the flat roof and allowed the tunnel to be excavated with standard roof bolting. To determine if this change in geometry was the main reason for the rock-mass response, the arched tunnel geometry was tried again after excavating without failure using the flat-roof. As soon as the first round was taken with the arched profile, failure occurred.

Figure 17 shows the predicted depth of failure using the Hoek–Brown frictional parameters expressed as “strength factor” contours for the two geometries in the case history, an arched and a flat-roof tunnel. The Hoek–Brown frictional parameters predict that the roof of both tunnels will be unstable and that the depth of failure for the flat-roof tunnel will be the greatest.

The same tunnel geometries described above were reanalyzed using eq. 10 and Hoek–Brown brittle parameters (Fig. 18). For this case, only the arched-roof tunnel is predicted to have extensive failure, extending laterally over the entire roof, and radially to a depth of about 1 m. From the analyses, the flat-roof opening should only experience localized failure at the corners and hence would require significantly less support, compared with the tunnel with the arched roof. This prediction is in keeping with the field observations from the case history, i.e., the flat-roof tunnel is more stable than an arched-roof tunnel, and illustrates that conventional failure criteria are not adequate for estimating the depth of stress-induced brittle failure. Thus, for intermediate stress environments, a tunnel with a flat roof is more stable.

However, once in situ stress magnitudes increase above those used in the case history example, e.g., at depths exceeding 1500 to 2000 m in hard rock, the advantages of the flat roof are diminished. At these higher stress magnitudes the rock mass fails over the entire span of the flat tunnel roof. For these situations the arched roof is more practical as there is less failed rock to support. Thus, the choice of a flat or arched roof for the tunnel design is significantly influenced by the in situ or mining-induced stress environment.

Optimizing tunnel shape for brittle failure

The previous examples illustrated that the shape of the tunnel could be used to control when brittle failure initiates for
any given stress state. However, in some situations, such as during the excavation of large caverns or openings in a mining environment, the final stress state will change significantly from the original stress state as sequential excavations are used to obtain the final geometry. From a support perspective it is important to know the effect of changing tunnel shape on the depth of brittle failure for various stress states.

A series of Examine2D analyses was carried out to investigate the depth of brittle failure for various shaped openings in a good quality rock mass in the Canadian Shield: Granite gneiss

In situ stress	$\sigma_1 = 2\sigma_3$	
Intact rock strength	$\sigma_3 = 0.027$ MPa/m \times depth (m)	
Intact rock strength	$\sigma_3 = 240$ MPa	
Rock-mass rating	RMR	
Hoek–Brown constants	m	0
Hoek–Brown constants	s	0.11

The analyses used a vertical stress gradient equal to the weight of the overburden and a horizontal stress of twice the vertical stress. This is consistent with general stress trends for the Canadian Shield (Arjang and Herget 1997). In the analyses, the excavation shapes had a constant span (S) or width of 5 m and a height (H) that varied from 2.5 to 25 m such that the span to height ratios ($S:H$) 0.5, 1, 2, and 5. For all analyses, except the circular shaped tunnel, the geometries had a flat roof.

Figure 19 shows the results from these analyses in dimensionless form where the depth of brittle failure, measured vertically from the midspan of the tunnel, is normalized to the span of the opening and the vertical depth of the excavation is expressed as the ratio of the far-field maximum stress to the unconfined compressive strength, e.g., a depth of 1000 m is expressed as $(1000 \times 0.027 \times 2)/240 = 0.225$. The results show that brittle failure around the circular tunnel initiates at a depth of approximately 500 m ($\sigma_1/\sigma_c \approx 0.12$) and that the increase in the depth of brittle failure is approximately linear as the far-field stress magnitude increases. However, the tunnels with flat-roofs ($S:H$ between 0.5 and 2) show that while the depth of brittle failure initiates at vertical depths far greater than 500 m, the depth of brittle failure quickly increases above that shown by the circular tunnel for a given ratio of σ_1/σ_c. ©1999 NRC Canada
These empirical design guidelines for the bolt length as a function of the in situ stress environment.

...will depend on the in situ stress environment.

In Fig. 19, the depth of brittle failure in the roof of circular and rectangular shaped tunnels.

\[
H_f / S = \frac{H_f}{S} = \frac{0.3 S}{S} + 2 \text{ m}
\]

This empirical design guidelines for the bolt length as a function of span are indicated in Fig. 19. This figure shows that while rockbolts provide adequate support for brittle failure around a circular tunnel over a wide range of stress to strength ratios their effectiveness is significantly reduced for tunnels with flat roofs, particularly tunnels with span to height ratios greater than 1. Figure 19 also shows that the extent of brittle failure, for the flat roof tunnels, extends outside the suggested support range of cablebolts at stress to strength ratios greater than about 0.35. Hence for these situations, the arched roof is again more practical, as there is less failed rock to support. This example further illustrates that the choice of a flat or arched roof for the tunnel design depends on the in situ stress environment.

Conclusions

Empirical evidence indicates that the initiation of stress-induced brittle failure occurs when the damage index, expressed as the ratio of the maximum tangential boundary stress to the unconfined compressive strength of the rock mass, exceeds 0.4 ± 0.1. When this condition occurs the depth of brittle failure around a tunnel in massive to moderately fractured rock can be estimated by using an elastic analysis with the following Hoek–Brown brittle parameters:

\[
m = 0 \quad \text{and} \quad s = 0.11
\]

The fundamental assumption in using these brittle parameters is that the failure process around the tunnel is dominated by cohesion loss associated with rock-mass fracturing. Hence, it is not applicable to conditions where the frictional strength component can be mobilized and dominates the behaviour of the rock mass near the excavation boundary.

The relationship between the damage index and the normalized depth of brittle failure for near circular tunnels is linear. For the depth of brittle failure for noncircular tunnels, when normalized to the span and the far-field stress, it is nonlinear. For support design purposes, these relationships can be used to determine the required bolt length and the anticipated gravity loading of the support. The Hoek–Brown brittle parameters can also be used to optimize the shape of openings.

In low-stress environments the arched-shape roof minimizes the region of low confining stresses and hence reduces the potential for structurally controlled failure. In intermediate-stress environments the flat roof improves roof stability by forcing failure to occur in the corners of the excavation where the confining stress helps to contain the extent of stress-induced fractures. At higher stress magnitudes fracturing extends across the full span of the tunnel roof as the deviatoric stresses exceed \(1/3\sigma_c\). For these situations the arched roof is again more favourable as there is less failed rock to support. Thus the choice of a flat or arched roof for the tunnel design depends on the in situ stress environment.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada and through collaboration with the hard rock mining industry in Northern Ontario. The authors wish to recognize the contributions made to this work, either directly or through discussions, by J. Alcott (GRC), Dr. L. Castro, M. Diederichs, S. Espley, V. Falmagne, Dr. R. Read, Dr. D. Tannant, and Dr. Xiaoping Yi.

References

