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1 Vertical Stresses underneath Rectangular Footings 

due to Uniform Loading 

1.1 Problem description 

This problem verifies the vertical stresses beneath rectangular footing of a length of L 

and a width of B. The model geometry and the locations of points of interests are shown 

in Figure 1.1. The footing is subjected to a uniform loading (q) of 1 kPa. Three footings 

were considered in this verification with the different L/B ratio of: 

- Case 1: L/B = 1 where, B = 1 m 

- Case 2: L/B = 2 

- Case 3: L/B = 4 

The vertical stress results are compared to analytical solution, the integration of 

Boussinesq equation over the rectangle, for each case. 
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x 

y 

Point 1 

(0, 0) 

Point 3 

(0, -B/2) 

Point 2 

(L/2, -B/2) 

Point 4 

(L, -B) 

Figure 1.1 – Model Geometry& Points of Interest Locations 

1.2 Closed Form Solution 

Rectangle is a common geometry for footings. Vertical stress profile for this type of 

footings can be obtained analytically by integrating the Boussinesq equation over the 

rectangular domain. The integration version which is most widely used is that of 

Newmark: 

σ = z q
π 
1 

4 

 
 
 

2MN V V +1 2MN V 

 



 

−1+ tan  
V −VV + V1 V  1 
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where 

B 
M = 

z 

L 
N = 

z 

M2 N2V =  +  + 1 

V1 = (MN)2 

and when V1 > V the tan-1 term will become negative and π needs to be added (Bowles, 

1996). 

1.3 Results and Discussion 

Figures 1.2, 1.3, 1.4, and 1.5 show vertical stress profiles at Point 1, Point 2, Point 3, and 

Point 4, respectively, given by Settle3D compared to the analytical solutions. 
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1.4 References 

1. H. G. Poulos and E. H. Davis (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley & Sons. 

2. J. E. Bowles (1996), Foundation Analysis and Design, 5th Ed., New York: McGraw-

Hill. 
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2 Vertical Stresses beneath Circular Footings due to 

Uniform Loading 

2.1 Problem description 

This problem verifies the vertical stresses beneath the center of circular footing of a 

radius a m. The model geometry is shown in Figure 2.1. The footing is subjected to a 

uniform loading (q) of 1 kPa. Three footings were considered in this verification with the 

different radius (a) of: 

- Case 1: a = 1 m 

- Case 2: a = 2 m 

- Case 3: a = 4 m 

The vertical stress result is compared to Boussinesq analytical solution.  

a 

Center 

y 

x 

Figure 2.1 – Model Geometry 

2.2 Closed Form Solution 

Vertical stress below the center of a circular footing can be obtained analytically by 

integrating the Boussinesq equation over the circular domain. The solution is given by 

[1]: 

2 
3 



 




 

1

 

1 
 

=σ z q −
(a z)2

1+
 
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2.3 Results and Discussion 

Figure 2.2 shows vertical stress profiles underneath the center of the circle given by 

Settle3D compared to the analytical solutions. 
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2.4 References 

1. H. G. Poulos and E. H. Davis (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley & Sons. 

2. J. E. Bowles (1996), Foundation Analysis and Design, 5th Ed., New York: McGraw-

Hill. 
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3 Vertical Stresses under Square Footings due to 

Triangular Loading 

3.1 Problem description 

This problem verifies the vertical stresses below the corners of rectangular footing with a 

dimension of L x B subjected to triangular loading. Two loading shapes are considered: 

one-way linear load intensity and two-way linear load intensity. The model geometry and 

the points of interest are shown in Figure 3.1. The models have a dimension of 1m x 1m 

and a load value (q) of 1 kPa. The vertical stress results are compared to analytical 

solutions. 

Plan view: Loading shape: 

Point 1 Point 2 

B 

L 

q 

Point 2Point 1 

Case 1 (one-way linear load intensity) 

Case 2 (two-way linear load intensity) 

Plan view: 

Point 1 

Point 2 

B 

L 

Loading shape: 

Point 2 

Point 1 

q 

Figure 3.1 – Model Geometry 
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3.2 Closed Form Solution 

Vitone and Valsangkar (1986) formulated equations to calculate vertical stress 

underneath points 1 and 2 of the two cases. The equations are: 

Case 1 (one-way linear load intensity): 

At point 1, 

q L  z z 3 
σ =  −  

z  2 2π B R R R L B D  

At point 2, 

  q L  z R z B B L D −1 σ z =  2 
− + sin  

2 1 2 2 2 2 2π B  RL 
RL L  (B L + RD z )  

Case 2 (two-way linear load intensity): 

At point 1, 

σ z = 
q 

4π 

 L 

 B 



 

z 

RL 

− 
3 z 

2R RD B 


 + 
 

B 

L 



 

z 

RB 

− 
3 z 

2R RD L 

 

At point 2, 

σ z = 
q 

4π 

 L 
 

B 



 

z RD 

2RL 

− 
z 

RL 


 + 
 

B 

L 



 

z RD 

2RB 

− 
z 

RB 


 + 
 

 
−12sin 

 2 2(B L 

B L 

2 2 1 2 
+ R z )D 

 

where 2RB = 2B + 2 z 

2RL = 2L + 2 z 

2RD = 2B + 2L + 2 z 

3.3 Results and Discussion 

Figures 3.2 and 3.3 show vertical stress profiles of points 1 and 2 for Case 1 and Case 2 

respectively given by Settle3D compared to the analytical solutions. 
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3.4 References 

1. D. M. Vitone and A. J. Valsangkar (1986), “Stresses from Loads over Rectangular 

Areas”, JGED, ASCE, vol. 112, no. 10, Oct, pp. 961-964. 

2. J. E. Bowles (1996), Foundation Analysis and Design, 5th Ed., New York: McGraw-

Hill. 
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4 Vertical Stresses below a Foundation due to 

Embankment Loading 

4.1 Problem description 

This problem verifies the vertical stresses under a foundation subjected to embankment 

loading. The model geometry with its properties and the points of interest are shown in 

Figure 4.1. The vertical stress results are compared to analytical solution. 

 

Point 3Point 2Point 1 

γ = 110 pcf 

20 ft 10 ft 10 ft 

 

Figure 4.1 – Model Geometry 

4.2 Closed Form Solution 

For the general case shown below: 

Center Line 

x 

z 

a 

b 

α β 
R0 

R1 

R2 

q 

(x, z) 

Figure 4.2 – General Case of Vertical Embankment Loading 
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Vertical stress at point (x, z) is given by: 

q  xα z 
σ z = β + − 

2 
(x − b)π a R 2  

Vertical stress under Point 1 can be computed by using the following superposition: 

b bb 

a   a a 

 

 2

   

 
  

 (x1 
    (x2 

2   1  

Figure 4.3 – Superposition Scheme for Vertical Stress Underneath Point 1 

The superposition to compute vertical stress below Point 2 is given by: 

b b b 

a a aq 

q q= + 

   

z (a, z) z (x1, z) z (x2, z) 

x1 = a x2 = 2b – a 

x x
Point 2 Point 2 Point 2 

Figure 4.4 – Superposition Scheme for Vertical Stress Underneath Point 2 
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Lastly, vertical stress beneath Point 3 can be computed as the following: 

b b 

a 

 

b 

a 

q 

(x2, z) 

Point 3 
x2 

a q 

x 

q= + 

x
Point 3 Point 3 

 

z (b, z) z (x1, z) z 

x1 = b x2 = b 

Figure 4.5 – Superposition Scheme for Vertical Stress Underneath Point 3 

4.3 Results and Discussion 

Figure 4.6 shows vertical stress profiles underneath the three points given by Settle3D 

compared to the analytical solutions. 
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Fig. 4.6 Vertical Stress Profiles 

4.4 References 

1. H. G. Poulos and E. H. Davis (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley & Sons. 
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5 Vertical Stresses between Multiple Footings 

5.1 Problem description 

This problem verifies the vertical stresses under the surface between two footings. The 

footings are subjected to a uniform loading (q) of 1 kPa and their dimension is 1 m x 1 m. 

The model geometry and the points of interest are shown in Figure 5.1. Four footing 

schemes with different values of h and d (see Figure 5.1) were considered. They are as 

follows: 

- Case 1: h = 1 m & d = 0.5 m, 

- Case 2: h = 1 m & d = 1 m, 

- Case 3: h = 0 & d = 0.5 m, 

- Case 4: h = 0 & d = 1 m. 

The vertical stress results are compared to analytical solution. 
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Figure 5.1 – Model Geometry 

5.2 Closed Form Solution 

Vertical stresses at any depth (z) below Point 1, Point 2 and Point 3 are calculated using 

Newmark’s integration: 

1 2MN V V +1 −1 
 2MN V  

σ z = q  + tan   4π V + V V V −V 1 1    

B 
where M = 

z 

L 
N = 

z 

M2 N2V = + + 1 

V1 = (MN)2 

and when V1 > V the tan-1 term will become negative and π needs to be added (Bowles, 
1996). 
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5.3 Results and Discussion 

Figures 5.2 – 5.5 show vertical stress profiles under the surface of point locations. Four 

cases of various distances between the loads are compared to analytical solutions 

Stress (kPa) 

0 0.05 0.1 0.15 0.2 0.25 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

D
e
p

th
 (

m
) 

Settle3D 

Boussinesq analytical solution 

Point 3 

Point 2 

Point 1 

Fig. 5.2 Vertical Stress Profile for Case 1 
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Fig. 5.3 Vertical Stress Profile for Case 2 
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Fig. 5.4 Vertical Stress Profile for Case 3 
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Fig. 5.5 Vertical Stress Profile for Case 4 

5.4 References 

1. H. G. Poulos and E. H. Davis (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley & Sons. 

2. J. E. Bowles (1996), Foundation Analysis and Design, 5th Ed., New York: McGraw-

Hill. 
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6 Vertical Stresses below an Infinite Strip Subjected to 

Uniform Loading 

6.1 Problem description 

This problem verifies the vertical stresses beneath an infinite strip footing subjected to 

uniform loading. The model geometry with the location of points of interest is shown in 

Figure 6.1. The vertical stress results are compared to analytical solution. 

 

   

 





Figure 6.1 – Model Geometry 

6.2 Closed Form Solution 

For the general case shown below: 

q 

2b 

(x, z) 

x 

z 

α 
δ 

Figure 6.2 – General Case of Uniform Loading on anInfinite Strip 
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Vertical stress at any point (x, z) is given by: 

q
σ z = [α + sinα cos(α + 2δ )]

π 

6.3 Results and Discussion 

Figure 6.3 shows vertical stress profiles underneath the four points given by Settle3D 

compared to the analytical solutions. 
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Fig. 6.3 Vertical Stress Profiles 

6.4 References 

1. H. G. Poulos and E. H. Davis (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley & Sons. 
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7 Vertical Stresses underneath an Irregular Shape 

Footing due to Uniform Loading 

7.1 Problem description 

This problem verifies the vertical stresses below one of the corners of an irregular shape 

footing. The footing is subjected to a uniform loading (q) of 1 kPa. The model geometry 

is shown in Figure 7.1. The vertical stress results are compared to analytical solution. 

1 m 

A 

1 m 

1 m 

1 m 

Figure 7.1 – Model Geometry 

7.2 Closed Form Solution 

Vertical stress at any depth (z) below Point A is obtained by using Newmark’s 

integration: 

2MN V V +1 2MN V 
 
 



 



σ = z q

π 
1 

4 

−1+ tan  
V −VV + V1 V  1 

where 

M = 
B 

z 

N = 
L 

z 

V = M2 N2+ + 1 
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V1 = (MN)2 

and when V1 > V the tan-1 term will become negative and π needs to be added (Bowles, 

1996). 

7.3 Results and Discussion 

Figure 7.2 shows vertical stress profile at Point A given by Settle3D compared to the 

analytical solutions. 
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Fig. 7.2 Vertical Stress Profiles atPoint A 

7.4 References 

1. H. G. Poulos and E. H. Davis (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley & Sons. 

2. J. E. Bowles (1996), Foundation Analysis and Design, 5th Ed., New York: McGraw-

Hill. 
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8 Analysis of Mean Stress 

8.1 Problem description 

This problem verifies the mean stresses distribution beneath two types of uniform 

loading: circular and infinite strip. The loading used in this verification example (q) is 

100 kPa. 

The mean stress results at the center of each load are compared to analytical solutions. 

a 

r 

z 

(r, z) 

q 

Figure 8.1 – Model Geometry for Circular Loading 

2b 

x 

z 

(x, z) 

q 

α 
δ 

Figure 8.2 – Model Geometry for Strip Loading 
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8.2 Closed Form Solution 

Circular Loading 

On the vertical axis (i.e. r=0): 

 3 
 1 

σ z = q 

1−  2  

2 
 

 1+ (a / z)  
  

q  2(1+υ)z z 3 
σ r = σθ = (1+ 2υ)− + 2 2 1/ 2 2 2 3/ 22 (a + z ) (a + z )  

σ z +σ r +σθand σ = m 
3 

Infinite Strip 

q
σ z = {α + sinα cos(α + 2δ )}

π 

q
σ = {α − sinα cos(α + 2δ )}x π 

2q
σ = υα y π 

σ +σ +σ z x y
and σ = m 

3 
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8.3 Results and Discussion 

Figures 8.3 and 8.4 show mean stress profiles at for the circular load and infinite strip 

load respectively, given by Settle3D compared to the analytical solutions. 
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Fig. 8.3 Mean Stress Profile for Circular Load 
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Fig. 8.3 Mean Stress Profile for Infinite Strip Load 
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8.4 References 

1. H. G. Poulos and E. H. Davis (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley & Sons. 
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9 Immediate Settlement 

9.1 Problem description 

This problem verifies the mean immediate settlement beneath two types of uniform 

loading: circular (2.5 m radius) and rectangular (5x10 m). The loading used in this 

verification example (q) is 100 kPa. The modulus of elasticity (E) is varied between 

1800 kPa and 70000 kPa. 

The immediate settlement at the center of each load is compared to a method proposed by 

Mayne and Poulos. 

Figure 9.1 – Model Geometry 
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9.2 Closed Form Solution 

Mayne and Poulos (1999) proposed a method for calculating the immediate settlement at 

the centre of foundations that accounts for the rigidity of the foundation, the depth of 

embedment of the foundation, the change in strength of soil with depth and the location 

of a rigid layer. The settlement is calculated using the following equation: 

∆σB I I I e G F E 
e S = 

E (1− µ 2 )o s 

where IG is an influence factor for the variation of Es with depth, IF is a foundation rigidity 

correction factor, IE is a foundation embedment correction factor. IG varies according to 

Figure 9.2, and IF and IE are calculated using the following equations (see Figure 9.1 for 
parameter definitions): 

π 1 1 
I F = + I E = 1− 

4   
2 

 Be 


 E f 
 2t  3.5exp(1.22µ s − 0.4) +1.6 

4.6 +10   D f 
 

  
 B  Be  e  Eo + k 
 2  

   

 

Figure 9.2 – Variation of IG with β 
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9.3 Results and Discussion 

Figures 9.3 and 9.4 show immediate settlement values for the circular and rectangular 

load, given by Settle3D compared to the method proposed by Mayne and Poulos. 
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Fig. 9.3 Immediate Settlement for Circular Load 
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Fig. 9.4 Immediate Settlement for Rectangular Load 
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10 Uniform Vertical Loading on Circular Surface Area 

of Two-Layer System 

10.1 Problem description 

This example verifies the vertical stress at a location along the perfectly bonded interface 

under uniform vertical loading at the surface. The first (upper) layer has a height of h1 (m) 

while the second layer is assumed to be of infinite height h2 (m). The two-layered system of 

materials is subjected to a uniform vertical loading (p) of 1 kPa acting over a circular area of 

radius a (m). The model geometry is shown on Figure 10.1. On the figure, the radial direction 

(horizontal axis) is labeled r while the vertical axis (that passes through the centre of the 

circular loading area) is labeled z. The elastic constants – Young’s moduli E1 and E2 and 

Poisson’s ratios ν1 and ν2 – of the materials are also indicated. 

a 

r 

h1 

E2, v2 

E1, v1 

h2 

p 

z 

Figure 10.1 – Model Geometry 

10.2 Results and Discussion 

10.2.1 Part 1 
Part 1 of the verification, the results of which are shown on Figure 10.2, plots the elastic 

moduli ratio E1/ E2 against normalized vertical interface stress (on the z axis) for four 

different r/a ratios. The five different cases considered are as follows: 

- Case 1: E1/ E2 = 0.1 

- Case 2: E1/ E2 = 1 

- Case 3: E1/ E2 = 10 

- Case 4: E1/ E2 = 100 

32 



 

  

 

  

   

  

 

    

 

 
 

   

 

 

 
  

   

  

 

 
 

 

 

   

   

   

   

- Case 5: E1/ E2 = 1000 

This part of the verification assumes an h1/a ratio equal to 1, i.e. height of layer 1 equal to the 

radius of the circular loading area. For each of the above cases, normalized vertical interface 

stresses were calculated at values of the elastic moduli ratio E1/E2 = 0.1, 1.0, 10, 100, 1000.  

The results of the multiple-layer algorithm in Settle3D are compared to those of the Fox 

(1948) two-layered analytical solution and values from the finite element program Phase2 . 
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r/a = 0 

r/a = 1 

r/a = 2 

r/a = 3 

Figure 10.2 – Normalized vertical stress on the axis at the interface (for the ratio h1/a = 1) 

10.2.2 Part 2 
Part 2 of the verification, the results of which are shown on Figure 10.3, plots the elastic 

moduli ratio E1/ E2 against normalized vertical interface stress (on the z axis) for three 

different cases of the ratio h1/a. 

33 



The ratios are as follows: 

- Case 6: h1/a = 0.5 

- Case 7: h1/a = 1.0 

- Case 8: h1/a = 2.0 

For each of the above cases, normalized vertical interface stresses are calculated at values of 

the elastic moduli ratio E1/E2 = 0.1, 1.0, 10, 100, 1000. The results of Settle3D are compared 

to those of Fox (1948) and values obtained from the finite element program Phase2 . 
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Figure 10.3 – Normalized vertical stress on the axis at the interface for different h1/a ratios 

10.3 References 

1. H. G. Poulos and E. H. Davis (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley & Sons. 

2. Fox, L. (1948), Computations of traffic stresses in asimple road structure, 

Proceedings 2nd International Conference on Soil Mechanics and Foundation 

Engineering, Vol.2 pp. 236-246. 
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11 Uniform Vertical Loading on Circular Surface Area 

of Three-Layer System 

11.1 Problem description 

This example verifies the vertical stresses at the two perfectly bonded interfaces of a three 

layer system under uniform vertical loading at the surface. The first (uppermost) layer has a 

height of h1 (m), the second layer a height of h2 (m), while the third is assumed to be of 

infinite height. The three-layered system of materials is subjected to a uniform vertical 

loading (p) of 1 kPa acting over a circular area of radius a (m) equal to 1 (m). 

The model geometry is shown on Figure 11.1. On the figure, the radial direction (horizontal 

axis) is labeled r while the vertical axis (that passes through the centre of the circular loading 

area) is labeled z. The elastic constants – Young’s moduli E1, E2 and E3 and Poisson’s ratios 

ν1, ν2 and ν3 – of the materials are also indicated. The vertical stresses at the interfaces are 

evaluated at the z vertical axis (i.e. at r=0).  

a 

h1 

E2, v2 

E1, v1 

h2 

p 

E3, v3 

r 

z 

Figure 11.1 – Model Geometry 
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11.2 Results and Discussion 

11.2.1 Part 1 
For Part 1 of the verification the following notations are employed: 

a1 = a/h1 

H = h1/h2 

K1 = E1/E2 

K2 = E2/E3 

The Poisson’s ratios of all three materials are assumed to be 0.5 (i.e. v1 = v2 = v3 = 0.5). A 

ratio a1 = 0.1 is also assumed. The following cases of the ratio H are considered: 

- Case 1: H = 0.125 

- Case 2: H = 0.25 

- Case 3: H = 0.5 

- Case 4: H = 1.0 

- Case 5: H = 2.0 

- Case 6: H = 4.0 

Lastly, vertical stresses for the two interfaces were evaluated (on the z axis) at the following 

K1 and K2 ratios: K1= 0.2, 2, 20, 200, and K2= 0.2, 2, 20, 200. 

The vertical stress results calculated by the Settle3D multiple-layer method are compared to 

those given in the tabulated solutions of Jones (1962), which are also provided in Poulos and 

Davis (1974). Figures 11.2 to 11.13 show the plots for the first and second interfaces for the 

different cases of H. 
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Figure 11.2 – Vertical stress underneath loading centre atfirst interface (for H=0.125) 
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K2 = 2 

K2 = 20 
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Figure 11.3 – Vertical stress underneath loading centre atsecond interface (for H=0.125) 

K2 = 0.2, 2, 20, 200 

 

 
 

     

 

 

 
 

    

 

   

   

   

   

      

Figure 11.4 – Vertical stress underneath loading centre atfirst interface (for H=0.25) 
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K2 = 0.2 

K2 = 2 

K2 = 20 

K2 = 200 

Figure 11.5 – Vertical stress underneath loading centre atsecond interface (for H=0.25) 
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Figure 11.6 – Vertical stress underneath loading centre atfirst interface (for H=0.5) 
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Figure 11.7 – Vertical stress underneath loading centre atsecond interface (for H=0.5) 
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Figure 11.8 – Vertical stress underneath loading centre atfirst interface (for H=1.0) 
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Figure 11.9 – Vertical stress underneath loading centre atsecond interface (for H=1.0) 
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Figure 11.10 – Vertical stress underneath loading centre at first interface (for H=2.0) 
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Figure 11.11 – Vertical stress underneath loading centre at second interface (for H=2.0) 
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Figure 11.12 – Vertical stress underneath loading centre at first interface (for H=4.0) 
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K2 = 0.2 
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K2 = 20 

K2 = 200 

Figure 11.13 – Vertical stress underneath loading centre at second interface (for H=4.0) 

11.2.2 Part 2 
Part 2 of the verification considers the case in which H = 1.0. It assumes a1 = 1.0 and 

evaluates vertical stresses for the two interfaces at the following K1 and K2 values: 

K1 = 5, 10, 50, 100 and K2 = 5, 10, 50, 100. Vertical stresses calculated by Settle3D at the 

interfaces are compared to values given by the analytical solution of Acum and Fox (1951).  
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Figure 11.14 – Vertical stress underneath loading centre at first interface (H=1.0) 
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Figure 11.15 – Vertical stress underneath loading centre at second interface (H=1.0) 

11.3 References 

1. H. G. Poulos and E. H. Davis (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley & Sons. 

2. Jones, A. (1962). Tables of stresses in three-layer elastic systems. High. Res. Board, 

Bull. 342, pp. 128-155. 

3. W.E.A. Acum and L. Fox (1951). Computation of load stresses in a three-layer 

elastic system. Geotechnique, No. 2, pp. 293-300. 
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12 Vertical Strip Loading on Surface of Material 

Underlain by Rigid Infinite Layer 

12.1 Problem description 

This example verifies the vertical stresses beneath a strip loading with width a (m) acting 

on the surface of a two-layer system. The upper layer of height h1 (m) is underlain by a 

rigid material of infinite height. The interface between the two materials is assumed to be 

perfectly bonded (rough). The strip loading (p) is uniform with a magnitude of 1 kPa. The 

model geometry is shown on Figure 12.1. On the figure, the horizontal direction is 

labeled x while the vertical axis (that passes through the centre of the strip loading) is 

labeled z. The elastic constants – Young’s modulus E1 and Poisson’s ratio v1 – of the 

upper material layer are also indicated. 

a 

h1E1, v1 

p 

x 

Rough, rigid 

z 

Figure 12.1 – Model Geometry 

12.2 Results and Discussion 

Vertical stresses are calculated along a vertical axis passing through the edge of the strip 

loading, i.e. along the axis x = a. In the example the ratio h1/a is assumed equal to 4.0. 

The following two Poisson’s ratio cases are studied: 

- Case 1: v= 0.2 

- Case 2: v= 0.5 

The vertical stresses computed by the multiple-layer algorithm in Settle3D are compared 

to those of Poulos (1967) and the Boussinesq method in Settle3D . 
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Figure 12.2 shows the normalized vertical stresses on the axis beneath the edge of the 

strip loading for the two cases of Poisson’s ratio. 

ν = 0.5 

ν = 0.2 
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Fig. 12.2 Normalized vertical interface stress along axis beneath edge of strip loading 

12.3 References 

1. H. G. Poulos (1967), Stresses and displacements in an elastic layer underlain by a 

rough rigid base, Geotechnique, 17, pp. 378-410. 

2. J. C. Small, J.R. Booker (1984), Finite layer analysis of layered elastic materials 

using a flexibility approach Part I – Strip loadings, International Journal for 

Numerical Methods in Engineering, Vol.20 pp. 1025-1037. 
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13 Uniform Vertical Loading on Circular Surface Area 

of Material Underlain by Rigid Infinite Layer 

13.1 Problem description 

This example verifies the vertical stresses in a two-layer system under a uniform vertical 

loading applied over a circular surface area. The upper layer of height h1 (m) is underlain 

by a rigid material of infinite height. The interface between the two materials is assumed 

to be perfectly bonded (rough). The uniform vertical loading (p) of 1 kPa magnitude is 

applied over a circular area of radius a (m). The model geometry is shown on Figure 

13.1. On the figure, the radial (horizontal) direction is labeled r while the vertical axis 

(that passes through the centre of the loading area) is labeled z. The elastic constants – 

Young’s modulus E1 and Poisson’s ratio v1 – of the upper material layer are also 

indicated. 

The following four cases of the height of the upper layer are considered: h1 = 1.0, 2.0, 

4.0, 6.0 m. In each of the cases v1 = 0.3 and a = 1.0 m 

a 

h1E1, v1 

p 

r 

 

z 

Figure 13.1 – Model Geometry 

13.2 Results and Discussion 

The vertical stresses computed by Settle3D in the upper layer along the z axis, and a 

second vertical axis (r = a) that passes through the edge of the loading area, are compared 

to those of Milovic given in Poulos and Davis (1974). Figures 13.2 and 13.3 show the 

normalized vertical stresses through the central and edge axes, respectively. 
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Figure 13.2 – Normalized vertical stresses along axis passing through centre of 

circular loading area 
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Figure 13.3 – Normalized vertical stresses along axis passing through edge of circular 

loading area 

13.3 References 

1. H. G. Poulos and E. H. Davis (1974), Elastic Solutions for Soil and Rock 

Mechanics, New York: John Wiley & Sons. 

48 



 

       

    

 

            

               

                 

           

 

     
     

  

 

   

 

                

              
                   

                   

 

     

 

              

 

                            

          

 

 

 

  

 

 

14 Immediate Settlement beneath a Rigid Circular 

Footing 

14.1 Problem Description 

This problem verifies the immediate settlement beneath a rigid circular footing. The 

notation with regards to the co-ordinate system is shown in Figure 14.1. In the figure, 

the origin of the coordinate system is taken as the point of application of the total load 

P. The distance from the origin is then given by r. 

a 

y 

xz 
r 

z 

P 

a 

(a) (b) 

Figure 14.1 – The notation with regard to the co-ordinate system. 

The circular footing is subjected to a total load of 10 kN. The vertical displacement of 

a circle due to symmetric loading was analyzed. Seven cases of varying radii were 
considered. The cases include radii a of values 1, 1.25, 1.75, 3, 5, 7 and 10 m. In all 

cases, the soil modulus E was equal to 100 kPa and Poisson’s ratio ν was equal to 0.2. 

14.2 Closed Form Solutions 

The vertical surface displacement of the circle shown in Figure 14.1 is given by: 

π 2 Pava
δ = (1−ν ) [1] z 

2 E 

P 
where: P = which is the average pressure across the surface. av πa 2 
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14.3  Results and Discussion 

 

The resulting displacements obtained from Settle3D are compared to the analytical 

solution given by equation [1]. The Boussinesq method was selected for the stress 

calculation of Settle3D. Figure 14.2 shows the vertical displacement of the origin as a 

function of the radius. 
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Figure 14.2 – Vertical displacement for varying radii. 

 

14.4  References 

 

Poulos, H. G. and Davis, E. H. (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley and Sons. 
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15 Rotation of a Rigid Circular Footing 

15.1 Problem Description 

This problem verifies the rotation of a rigid circular footing due an applied moment 

loading. The notation with regards to the co-ordinate system is shown in Figure 15.1. 

a 

y 

xz 

M 

r 
a 

φ 

z 

(a) (b) 

Figure 15.1 – The notation with regard to the co-ordinate system. 

The circular footing is subjected to a moment of 10 kN m. The rotation due to the 

moment M is then analyzed. Different cases of varying radii a, ranging from 1 to 10 m, 

were considered. The soil modulus E equals 100 kPa and Poisson’s ratio ν equals 0.2. 

15.2 Closed Form Solutions 

The rotation φ due to a moment M as depicted in Figure 15.1 is given by: 

23M (1 −ν )
ϕ = 

3 
[1] 

4Ea 

15.3 Results and Discussion 

The rotations due to the moment loading are shown in Figure 15.2. The Boussinesq 

method was used for stress calculation. The rotations given by equation [1] are plotted 

for comparison. Note that rotation is simply the vertical displacement at any point 

divided by the radial distance, hence it is unitless. 
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Figure 15.2 – Rotation due to moment loading for different radii. 

15.4 References 

Poulos, H. G. and Davis, E. H. (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley and Sons. 
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16 Immediate Settlement beneath a Rigid Rectangular 

Footing 

16.1 Problem Description 

This problem verifies the immediate settlement beneath a rigid rectangular footing. The 

notation with regards to the co-ordinate system is shown in Figure 16.1. In the figure, 

the origin of the coordinate system is taken as the point of application of the total load 

P. 

x 

z 

P 

Figure 16.1 – The notation with regard to the co-ordinate system. 

The footing is subjected to a total load of 10 kN. Let L and B designate the dimensions 

of a rectangular footing being considered (refer to Figure 16.2). The following ratios 

Lof were considered: 1.25, 1.75, 3, 5, 7 and 9. In all cases, the soil modulus E was 
B 

set at 100 kPa, the Poisson’s ratio ν was set at 0.2. 

B 

L 

Figure 16.2 – Model geometry for both square and rectangular rigid loading. 
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16.2 Closed Form Solutions 

The approximate vertical displacement of the rectangular footing shown in Figure 16.2 

is given by: 

2P(1−ν )
δ z = [1] 

β BLE z 

Lwhere: β z is a factor dependent on the ratio 
B 

(refer to Figure 16.3) 

LFigure 16.3 shows the coefficient β z for different values of 
B

. 

Figure 16.3 – Coefficient β z for rigid rectangle. 

16.3 Results and Discussion 

The resulting displacements obtained from Settle3D are compared to the approximate 

solution given by equation [1]. The Boussinesq method was used for the stress 

calculation. Figure 16.4 shows the vertical displacement for different side lengths (L) 

of a square. Note that for all cases, = 1. Figure 16.5 shows the vertical 

Ldisplacements for different values of .
B 

B 
L 
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Figure 16.4 – Vertical displacement for different side lengths of a square. 

Figure 16.5 – Rectangular load, displacements for different L/B ratios. 
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16.4 References 

Poulos, H. G. and Davis, E. H. (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley and Sons. 

56 



 

       

    

 

              

             

              

            

 
 

   

 

 
 

    

 

                  

            

                 

                   

   

 

 

 
 

 

 

 

 

 

17 Rotation of a Rigid Rectangular Footing 

17.1 Problem Description 

This problem verifies the rotation of a rigid rectangular footing due to an applied 

moment loading. The notation with regards to the co-ordinate system is shown in 

Figure 17.1. Figure 17.2 shows the model geometry. The moment is applied along the 

direction of B and the axis of rotation is about the origin. 

M 

y
L/2 

φ 

z 

Figure 17.1 – The notation with regard to the co-ordinate system. 

 



 

Figure 17.2 – Model geometry for moment loading of a rectangle. 

The footing is subjected to a total moment of 10 kN m. Let L and B designate the 

dimensions of a rectangular footing being considered (refer to Figure 17.2). Certain 

Lratios of were considered: 0.1, 0.2, 0.5, 1, 1.5 and 2. The soil modulus E equals 
B 

100 kPa and Poisson’s ratio ν equals 0.2. In all cases, B was kept constant at 1 m only 

L was varied. 
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17.2 Closed Form Solutions 

The approximate rotation of the rectangular footing shown in Figure 17.2 is given by: 

2M (1−ν )
φ = Iθ [1] 

B 2 LE 

Lwhere: Iθ is a factor dependent on the ratio (refer to Table 17.1) 
B 

LTable 17.1. Iθ values for different ratios. 
B 

L 
B 0.1 0.2 0.5 1 1.5 2 

Iθ 1.59 2.29 3.33 3.7 4.12 4.38 

17.3 Results and Discussion 

The resulting rotations obtained from Settle3D are compared to the approximate 

solution given by equation [1]. The Boussinesq method was used for the stress 

Lcalculation. Figure 17.3 shows the calculated rotations for different values of .
B 
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Figure 17.3 – Rotation of rectangle for different L/B ratios. 

17.4 References 

Poulos, H. G. and Davis, E. H. (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley and Sons. 
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18 Immediate Settlement beneath a Rigid Circular 

Footing on a Finite Layer 

18.1 Problem Description 

This problem verifies the immediate settlement beneath a rigid circular footing on a 

finite layer. Figure 18.1 shows the notation with regards to the co-ordinate system. In 

the figure, the origin of the coordinate system is taken as the point of application of the 

total load P. 

 





 

 








(b) 

Figure 18.1 – The notation with regard to the co-ordinate system. 

For the circular footing, the radius a is taken to be 2 m. The footing is subjected to a 

total load P of 1 kN. The vertical displacement due to symmetric loading is then 

analyzed. Different layer thicknesses h were considered, ranging from 1.25 m to 20m. 

In order to model a finite layer correctly, two separate layers are used. Figure 18.2 

shows an example of the two layers. For the top layer, the soil modulus E1 is set at 100 

kPa and Poisson’s ratio ν is set at 0.2. The bottom layer has similar parameters except 

that its modulus E2 is set to 10000 kPa and its thickness is kept constant at 1 m. Note 

that the top layer’s thickness is varied with each case and that Figure 18.2 only depicts 

an arbitrary thickness of 10 m. 

60 



 

 

 
 

  

 

     

 

              

 

    

           

            

 

               

 

 
 

   

Figure 18.2 – Schematic of the Settle3D model used for the finite layer. 

18.2 Closed Form Solutions 

The vertical surface displacement of the circle shown in Figure 18.1 is given by: 

P a avδ z = I p [1] 
E 

P 
where: P = which is the average pressure across the surface av πa 2 

and I p is the influence factor for a particular ν and ratio 

Figure 18.3 plots the corresponding I p values for different values of a, h and ν . 

h 
a . 

Figure 18.3 – Values of I p for different values of a, h and ν . 
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18.3 Results and Discussion 

The resulting displacements obtained from Settle3D are compared to the approximate 

solution given by equation [1]. The Multiple Layer method was used for the stress 

calculation in Settle3D. Figure 18.4 shows the vertical displacement of the origin as a 

function of the ratio 
h 

a . 

h 
a 

Figure 18.4 –Vertical displacement of a rigid circle 

with constant radius and varying layer thickness. 

Figure 18.5 shows the vertical displacement of the origin as a function of the ratio 

for varying Poisson’s ratios. 
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Figure 18.5 – Vertical displacement of a rigid circle with constant radius and 

varying layer thickness for varying Poisson’s ratios. 

18.4 References 

Poulos, H. G. and Davis, E. H. (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley and Sons. 
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19 Rotation of a Rigid Circular Footing on a Finite 

Layer 

19.1 Problem Description 

This problem verifies the rotation of a rigid circular footing due to an applied moment 

on a finite layer. Figure 19.1 shows the notation with regards to the co-ordinate system. 

 





(a) 

 

φ 

M 

z 

(b) 

Figure 19.1 – The notation with regard to the co-ordinate system. 

The circular footing is subjected to a total moment of 10 kN m. The rotation of a circle 

due to the applied moment was then analyzed. Six cases of varying radii a were 
considered: 3, 5, 7.5, 10, 15 and 30 m. 

In order to model a finite layer correctly, two separate layers are used. Figure 19.2 

shows an example of the two layers. For the top layer, the soil modulus E1 is set at 100 

kPa and Poisson’s ratio ν is set at 0.2. The bottom layer has similar parameters except 

that its modulus E2 is set to 10000 kPa and its thickness is set to 1 m. 
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Figure 19.2 – Schematic of the Settle3D model used for the finite layer. 

19.2 Closed Form Solutions 

The rotation of the circle shown in Figure 19.1 (b) is given by: 

2(1 −ν )M
φ = [1] 

4a 3 BE 

1 1 
where: B = a1 + a3

3 5 

and a1 and a3 are factors that depend on the ratio 

The factors a1 and a3 are tabulated in Table 19.1. 

Table 19.1. Values of a1 and a3 for different ratios of 

a 
h . 

a 
h . 

h 
a a1 a3 

0.3 4.23 -2.33 

0.5 2.14 -0.70 

1.0 1.25 -0.10 

1.5 1.10 -0.03 

2.0 1.04 0.00 

3.0 1.01 0.00 
≥ 5.0 1.00 0.00 
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19.3 Results and Discussion 

The resulting rotations obtained from Settle3D are compared to the approximate 

solution given by equation [1]. The Multiple Layer method was used for the stress 

calculation in Settle3D. Figure 19.3 shows the rotations of a circle due to a rigid load 

on a finite layer. 

Figure 19.3 – Rotations of a circle for varying radii on a finite layer. 

19.4 References 

Poulos, H. G. and Davis, E. H. (1974), Elastic Solutions for Soil and Rock Mechanics, 

New York: John Wiley and Sons. 
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20 Vertical Stress beneath Uniform Circular load 

based on Westergaard’s Theory 

20.1 Problem Description 

This problem verifies the vertical stresses beneath a uniform circular load, using the 

Westergaard stress computation method. The notation with regards to the co-ordinate 

system is shown in Figure 20.1. In the figure, the origin of the coordinate system is 

taken as the point of application of load Q. 

 

        

   

    

 

             

           

                

         

 
   

   

 

               

          

 

    
      

 

   

 

 

Figure 20.1 – The notation with regard to the

    coordinate system and the stress component. 

Figure 20.2 shows the model geometry for the problem at hand. The circular footing is 

subjected to a uniform loading (q) of 10 kPa. 

    (a)          (b) 

Figure 20.2 – Model geometry for a circular load. 
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20.2 Closed Form Solution 

For a soil medium with Poisson’s ratio ν , the vertical stress σ due to a point load Qz 

as obtained by Westergaard is given by [1]: 

1 1− 2 

2 2νπ 
ν 

−Q 
z 2 3 

2 

2 =σ [1] 
z  2 

2 

2 

For large lateral restraint, ν may be taken as zero. The vertical stress below the center 

of a circular footing can be obtained analytically by integrating [1]. The solution of 

which is given by: 

ν
ν1− 


 



 



 

r

 


 

+ 
2 − z 

 

1 

 
 
 

 




 

1
−=σ z q [2] 






+ 

2 

1 
z 

a 
η  

ν
ν2 

2 

q is a uniform load. 

20.3 Results and Discussion 

The resulting vertical stresses are compared to the Westergaard analytical solution. 

Figure 20.3 shows the vertical stress profiles underneath the center of a circle, given by 

Settle3D for ν = 0.2 with a = 1 m. The analytical solution from Westergaard is also 

plotted for comparison. 

Figure 20.4 plots the Westergaard stress profile of a uniformly loaded circular footing 

with a = 1 m and varying Poisson’s ratios (ν = 0.01, 0.2, 0.4 and 0.49). The Boussinesq 

solution is plotted for comparison. 

1− 
=ηwhere: and 

2 − 
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Figure 20.3 – Vertical stress under the center of uniform circular load 

Westergaard 
Boussinesq 

v = 0.2 

v = 0.01 

v = 0.49 

v = 0.4 

Figure 20.4 – Westergaard stress profiles with varying 

Poisson’s ratios compared to a Boussinesq stress profile 

69 



 

   

 

          

 

 

20.4 References 

Venkatramaiah, C. (2006). Geotechnical Engineering, Revised 3rd Edition, New Age 

International. 
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21 Vertical Stress beneath Uniform Square load based 

on Westergaard’s Theory 

21.1 Problem Description 

This problem verifies the vertical stresses beneath a uniform square load, using the 

Westergaard stress computation method. The notation with regards to the co-ordinate 

system is shown in Figure 21.1. In the same figure, the origin of the coordinate system 

is taken as the point of application of load Q. 

Figure 21.1 – The notation with regard to the

    coordinate system and the stress component. 

Figure 21.2 shows the model geometry for the problem at hand. The square footing is 

subjected to a uniform loading (q) of 10 kPa. 

Y 

XL 

L 
Figure 21.2 – Model geometry for asquare load. 
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21.2 Closed Form Solution 

For a soil medium with Poisson’s ratio ν , the vertical stress σ z due to a point load Q 

as obtained by Westergaard is given by [1]: 

σ z = [1] 
2 

3 
2 

2 

21

222

 
−

z 

211 

 







+



 

− 
− 

r

Q 

ν 

ν 
ν 

π 

 2 − 2ν   z    

For large lateral restraint, ν may be taken as zero. The vertical stress below the corner 

of a rectangular footing can be obtained analytically by integrating [1]. The solution of 

which is given by: 

q −1  1 − 2ν  1 1   1 − 2ν 
2 

 1 σ z = cot   +  +     [2] 
2 2 2 22π  2 − 2ν  m n   2 − 2ν   m n  

where: m = L / z n = W / z 

L and W are the respective lengths and widths of the rectangle 

z is the depth 

and q is a uniform load. 

For the case of a square, L = B. Hence, m = n. 

To obtain the stress at the center of a rectangular or square footing, the quadrilateral 

may be divided into four equal pieces. The intersecting corner of these pieces then will 

coincide with the center of the quadrilateral. Figure 21.3 shows this situation. Using 

the principle of superposition, the contributions of each of the four pieces (using [2] to 

calculate the stress for each piece’s corner) sum up to the total stress experienced at the 

center. Note that the side lengths (L and B) used for equation [2] for the new smaller 

quadrilateral must be that of the new smaller piece (i.e. L/2). More details are contained 

in reference [1] (Venkatramaiah, 2006). 
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Figure 21.3 – Calculation of the stress at the center of a square. 

21.3 Results and Discussion 

The resulting vertical stresses are compared to the Westergaard analytical solution. 

Figure 21.4 shows the vertical stress underneath the center of a square given by 

Settle3D for ν = 0.2 with S = 1 m. The analytical solution from Westergaard is also 

plotted for comparison. 

Figure 21.4 –Vertical stress under the center of uniformly loaded square 
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Figure 21.5 plots the Westergaard stress profile of a uniformly loaded square footing 

with S = 1 m with varying Poisson’s ratios (ν = 0.01, 0.2, 0.4 and 0.49) as compared 

to the stress profile obtained from the Boussinesq solution. 

Westergaard 
Boussinesq 

v = 0.01 

v = 0.49 

v = 0.4 

v = 0.2 

Figure 21.5 – Westergaard stress profiles with varying 

Poisson’s ratios compared to a Boussinesq stress profile. 

21.4 References 

Venkatramaiah, C. (2006). Geotechnical Engineering, Revised 3rd Edition, New Age 

International. 
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22 Vertical Stress due to Uniform Loading on an 

Irregular Shaped Footing using Westergaard’s Theory 

22.1 Problem Description 

This problem verifies the vertical stresses underneath one of the corners of an 

irregularly shaped footing, using the Westergaard stress computation method. The 

notation with regards to the co-ordinate system is shown in Figure 22.1. In the same 

figure, the origin of the coordinate system is taken as the point of application of load 

Q. 

Figure 22.1 – The notation with regard to the

    coordinate system and the stress component. 

Figure 22.2 shows the model geometry for the problem at hand. The footing is “L-

shaped” and subjected to a uniform loading (q) of 10 kPa. The point A is the current 

point of interest for the analysis. 

1 

1 

A 

1 1 

Figure 22.2 – Model geometry for anL-shaped load. 
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22.2 Closed Form Solution 

For a soil medium with Poisson’s ratio ν , the vertical stress σ z due to a point load Q 

as obtained by Westergaard is given by [1]: 

σ z = [1] 
2 

3 
2 

2 

21

222

 
−

z 

211 

 







+



 

− 
− 

r

Q 

ν 

ν 
ν 

π 

 2 − 2ν   z    

For large lateral restraint, ν may be taken as zero. The vertical stress below the corner 

of a rectangular footing can be obtained analytically by integrating [1]. The solution of 

which is given by: 

q −1  1 − 2ν  1 1   1 − 2ν 
2 

 1 σ z = cot   +  +     [2] 
2 2 2 22π  2 − 2ν  m n   2 − 2ν   m n  

where: m = L / z n = W / z 

L and W are the respective lengths and widths of the rectangle 

z is the depth 

and q is a uniform load. 

To obtain the stress at point A for the current problem, the figure may be divided into 

three equal pieces. Figure 22.2 already demarcates the three squares of side length 1 m. 

As shown in Figure 22.2, the intersecting corner of these three squares is point A. Using 

the principle of superposition, the contributions of each of the three squares sum up to 

the total stress experienced at point A. For this particular example, equation [2] can be 

used to calculate the stress at the corner of one of the squares with L = 1. The overall 

stress at A is then the calculated stress for a square multiplied by three (3). 

This approach uses the influence factors of the smaller squares to determine the overall 

stress at point A. More details on influence factors are contained in reference [1] 

(Venkatramaiah, 2006). 

22.3 Results and Discussion 

The resulting vertical stresses are compared to the Westergaard analytical solution. 

Figure 22.3 shows the vertical stress underneath point A given by Settle3D for ν = 0.2. 

The analytical solution from Westergaard is also plotted for comparison. 
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Figure 22.3 – Stress profile at point A of irregularly shaped load. 

In addition, comparisons are made to the Boussinesq solution for different Poisson’s 

ratios. Figure 22.4 plots the Westergaard stress profile with varying Poisson’s ratios 

( ν = 0.01, 0.2, 0.4 and 0.49) compared to the stress profile obtained from the 

Boussinesq solution. 
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Westergaard 
Boussinesq 

v = 0.2 

v = 0.01 

v = 0.49 

v = 0.4 

Figure 22.4 – Westergaard stress profiles with varying 

Poisson’s ratios compared to a Boussinesq stress profile 

22.4 References 

Venkatramaiah, C. (2006). Geotechnical Engineering, Revised 3rd Edition, New Age 

International. 
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23 Horizontal Stresses due to Uniform Loading on a 

Square Footing using Boussinesq Theory 

23.1 Problem Description 

This problem verifies the horizontal stresses beneath a rectangular footing of length L 

and width B. The model geometry and the location of points of interest are shown in 

Figure 23.1. The footing is subjected to a uniform loading (q) of 1kPa. Three footings 

were considered in this verification with the different L/B ratios of: 

- Case 1: L/B = 1 

- Case 2: L/B = 2 

- Case 3: L/B = 4 

where B = 1m. 

The horizontal stress results are compared to the analytical solution for each case. 

Figure 23.1 – Model Geometry & Point of Interest Location 

23.2 Closed Form Solution 

For a � = 0.5 the horizontal stresses beneath the corner of a rectangle are calculated as 

(Poulos and Davis, 1974): 

� − 
��� � = tan�� �� �2 ��� ����� 
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� − 
��� �� = tan�� �� �2 ��� ����� 

where 

�� = ��� + ����� 

�� = ��� + ����� 

�� = ��� + �� + ����� 

23.3 Results and Discussion 

Figures 23.2 and 23.4 show the x- and y- horizontal stress profiles, respectively, given by 

Settle3D compared to the analytical solutions. 

Figure 23.2 – Horizontal (x-direction) Stress Profile atPoint 1 
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Figure 23.2 – Horizontal (y-direction) Stress Profile atPoint 1 
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