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Abstract Block-flexure is the most common type of

toppling failure in rock slopes. In this case, some rock

blocks fail due to tensile bending stresses and some over-

turn under their own weights. In this paper, first, a literature

review of toppling failures is summarized. Then, a theo-

retical model is proposed for rock slopes with a potential

for block-flexure toppling instability. Next, a new analyti-

cal approach is presented for the stability analysis of such

slopes. Finally, a special computer code is developed for a

quick stability assessment of the failures based on the

proposed method. This code receives the rock slope

parameters from the user as the input data and predicts its

stability, along with the corresponding factor of safety

against the failure, as the output. In addition, two case

studies are used for practical verification of the proposed

approach and the corresponding computer code as well.

Keywords Rock slope � Block-flexure toppling �
Computer code � Case study

List of Symbols

Parameters

d Angle of rock mass stratification with respect to the

horizon

a Angle of total failure plane with respect to the horizon

h Angle of face slope with respect to the horizon

H Slope height

t Thickness of rock columns

n Number of rock columns, numbered from bottom to top

P Inter-column normal force acting at the common

boundary of rock columns

Q Inter-column shear force acting at the common

boundary of rock columns

x Point of application of the inter-column normal force

(P)

h Length of the rock column

W Weight of the rock column

N Normal force acting at the base of the rock column

S Shear force acting at the base of the rock column

e Point of application of the base normal force (N)

M Bending moment

u1 Frictional angle at the common boundary of rock

columns

u2 Frictional angle at the base of rock columns

u3 Frictional angle of intact rock samples

c Cohesive strength of intact rock samples

rt Uniaxial tensile strength of rock columns

rt
y Tensile stress of rock columns

Indexes

f Flexure toppling failure

b Block toppling failure

sh Shearing failure

t Toppling failure

s Sliding failure

1 Introduction

Toppling failure is a serious and frequent instability in

natural and manmade rock slopes. From the mechanism

point of view, the main toppling failures are classified as
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flexural, blocky, and block-flexure (Goodman and Bray

1976). If a rock mass is composed of a set of parallel

discontinuities, dipping steeply against the face slope, then

it will act like some rock columns that are placed on top of

each other. In such a case, rock columns are under tensile

and compressive bending stresses due to their own weights.

If the maximum tensile stress in each rock column exceeds

its tensile strength, then it fails and topples. Such instability

is categorized as flexural toppling failure (Fig. 1a). If one

cross-joint set is added to the aforementioned rock mass

(Fig. 1b), then the system cannot bear the tensile bending

stress and, therefore, the columns may overturn due to their

own weights. This type of failure is considered as a typical

blocky toppling failure. In real case histories, the afore-

mentioned perfect cases are rarely encountered and top-

pling failures are mostly of block-flexure nature (Fig. 1c).

The latter instability is a combination of blocky and flex-

ural toppling failure modes. Many research papers are

available on flexural and blocky toppling failures, and

some methods have also been given for their stability

analyses, which will be briefly outlined in Sect. 2 of this

paper. However, no suitable analytical solution has been

presented for the assessment of block-flexure toppling

failure as yet. In this paper, the mechanism of such a failure

has been studied and a new analytical approach is proposed

for its analysis.

2 Literature Review

Müller (1968) was the first who mentioned the overturning

of natural rock blocks after studying the instabilities near

the famous Vaiont dam lake. In 1971, based on theoretical

and experimental modeling, Ashby (1971) presented a

simple criterion for the evaluation of such failures. He was

the one who, for the first time, proposed the term ‘‘top-

pling’’ for such instabilities. From 1970 to 1976, some

scattered researches on known cases (numerical and

experimental modeling of such failures) were published

(Erguvanli and Goodman 1970; Cundall 1971; de Freitas

and Watters 1973; Hoffmann 1974; Bukovansky et al.

1976). Goodman and Bray (1976) classified toppling fail-

ures as ‘‘main’’ and ‘‘secondary’’, based on case study

observations and experimental modeling. In main toppling

failures (flexural, blocky, and block-flexure), the rock mass

weight is the most important factor affecting instability,

whereas in secondary ones, other external factors cause the

failure. Although some other classifications have been

proposed for toppling failures (Cruden 1989), the one sta-

ted above has received a better acceptance by rock

mechanics researchers. Goodman and Bray presented a

step-by-step analytical method for the analysis of the

blocky toppling failure in their abovementioned paper. This

approach has been presented many times for the analysis of

cba

Fig. 1 Possible main toppling failures in rock slopes. a Flexural. b Blocky. c Block-flexure
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such failures in the form of design charts and computer

codes (Hoek and Bray 1977; Zanbak 1983; Choquet and

Tanon 1985; Keith Turner and Schuster 1996). After 1986,

based on Goodman and Bray’s classification, a lot of

research was carried out on blocky and flexural toppling

failures (Wyllie 1980; Aydan et al. 1989; Aydan and Ka-

wamoto 1992; Adhikary et al. 1997; Bobet 1999; Sageseta

et al. 2001; Adhikary and Guo 2002; Amini 2009; Amini el

al. 2009; Aydan and Amini 2009; Brideau and Stead 2009;

Majdi and Amini 2011). As mentioned earlier in this paper,

the research on toppling failures concentrates mostly on

blocky and flexural types. But, most failures occurring in

nature are of block-flexure mode, for which no suitable

analytical method has yet been proposed. It is, therefore, of

utmost importance to study the mechanism of such failures

and to analyze them rationally. Effort has been made to

study them in this paper.

3 Mechanism of Block-Flexure Toppling Failure

Rock is a natural mass and its discontinuities are generally

irregular and discontinuous; so, pure toppling failures

(flexural and blocky) are rare and most of such failures

occurring in nature are of the block-flexure type. Although

the real behavior of a rock mass with a potential for block-

flexure toppling failure is complicated, it is possible to

simplify the problem and propose a theoretical model to

achieve an appropriate analytical solution for the failure. In

this paper, the following assumptions have been made to

simplify the analysis of block-flexure toppling failure:

• Of two adjacent blocks, one has the potential for blocky

failure and the other may fail flexurally. In other words,

two blocks of the same failure potential do not stand

together.

• Blocky and columnar toppling failures are similar.

• All blocks in a rock mass with potential for block-

flexure toppling failures have a similar factor of safety

equal to that of the whole slope against the failure.

• The total failure plane of the instability lies 10�–20�
above the normal line of main discontinuities.

As stated earlier in this paper, in block-flexure toppling

failure, some blocks fail due to tensile bending stress and

some separate from the cross-joint surface and then all of

them topple together. Considering the above assumptions,

Fig. 2 has been suggested as a theoretical model to assess

the failure. Here, rock columns with natural cross-joints at

their pivots having the potential for toppling, sliding, or

toppling–sliding exert a special force on their adjacent rock

column. The latter rock column that has been subjected to

the special force has a potential foe flexural toppling failure

and carries a tensile stress at its pivot. This rock column, in

turn, exerts a force on its adjacent one that has a potential

for blocky toppling failure. If the maximum resultant ten-

sile stress produced at the pivot of the column is greater

than the tensile strength of the rock, the rock column cracks

and the slope becomes unstable. Therefore, block-flexure

toppling failure is a combination of block toppling failure,

flexural toppling failure, and the sliding of the rock blocks.

The most important parameter in a toppling failure is the

point where the inter-column forces act. Some researchers

suggested the following assumptions in regards to the

determination of the point of action of the inter-column

forces (Goodman and Bray 1976; Aydan et al. 1989; Aydan

and Kawamoto 1992):

• If block n has the potential for pure block toppling

failure, then xn-1 = hn.

• If block n has the potential for pure sliding failure, then

xn�1 ¼ hn

2
:

• If block n has the potential for pure flexural toppling

failure, then xn-1 = (0.75 - 1)hn.

The most critical issue with the limit equilibrium anal-

ysis of toppling failures is how to assign the inclination of

the total failure plane above which blocks are subjected to

overturning. Base friction experiments, carried out by

Aydan and Kawamoto (1992), show that the total failure plane

of a flexural toppling is perpendicular to the discontinuities.

Hence, the angle between the total failure plane and the

plane normal to the discontinuities is zero. However,

Adhikary et al. (1997), using the centrifuge physical modeling,

show that this angle is around 10� above the plane normal to the

discontinuities. Also, the new physical model tests carried out

by Aydan and Amini (2009) have shown that this angle is in the

range of 0–15� for active flexural toppling failures in static and

dynamic forms.

4 Analysis of Block-Flexure Toppling Failure

A theoretical model suitable to be applied to a rock slope

having the potential for block-flexure toppling failure is

shown in Fig. 2. To study this slope, the following two

cases are considered:

• Case 1: one block with a potential for blocky toppling

failure, situated between two blocks having potential

for flexural toppling failures (Fig. 3a).

• Case 2: one block with a potential for flexural toppling

failure, situated between two blocks having potential

for blocky toppling failures (Fig. 3b).

Analyzing the above two cases and comparing the

results with the proposed theoretical model (Fig. 2), it

might be inferred that all existing blocks and rock columns
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could be analyzed and evaluated by means of one of the

two abovementioned cases. In this paper, these cases have

been studied and the general governing solutions are pro-

posed for their analyses.

• Case 1: one block with a potential for blocky toppling

failure situated between two blocks having potential for

flexural toppling failures (Fig. 3a).

According to Fig. 3a, since block n can have the

potential for toppling, sliding, and toppling–sliding or

being stable, the analysis should be divided into the fol-

lowing four categories:

a. Block n has the potential for blocky failure but is

stable against sliding. With these assumptions, the

following relations can exist (Fig. 4):

e ¼ 0

xn�1 ¼ hn

Qn�1 ¼ Pn�1tanu1

Qn ¼ Pntanu1

Sn\Nntanu2

8
>>>><

>>>>:

ð1Þ

As shown in Fig. 4, the force Pn is exerted from the rock

column with a potential for flexural toppling failure on

block n, but its point of action is unknown. Aydan and

Kawamoto (1992) suggested the following range for the

point of action of the force based on experimental

modeling of flexural toppling failure:

xn ¼ k1hnþ1; k1 ¼ ð0:75� 1Þ

Fig. 2 Block-flexure toppling

failure mechanism
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The best correlation between theoretical and experimental

results can be achieved when k1 ¼ 1 is used. On this basis,

and using the equation of moment equilibrium with respect

to point A, the magnitude of the force Pn-1 can be

computed as follows:

Pn�1;t

¼Pn k2hnþ1�tanu1 �tb=FS½ �þ0:5wn sina�hn�cosa�tb½ �
hn

ð2Þ

b. Block n has sliding potential but is stable against

blocky toppling failure. In this case, the following

conditions exist (Fig. 5):

e ¼ tb
2

xn�1 ¼ hn

2

Sn ¼ Nntanu2

xn ¼ k2hnþ1; k2 ¼ 0:75� 1ð Þ

8
>><

>>:

ð3Þ

It is also assumed that:

Qn ffi Pn � tanu1

Qn�1 ffi Pn�1 � tanu1

�

ð4Þ

a

b

Fig. 3 Two separate parts of a rock slope having the potential for

block-flexure toppling failure

Fig. 4 Analysis of three blocks having the potential for flexural and

blocky toppling failures

Fig. 5 Analysis of three blocks having the potential for flexural

toppling and sliding failures

Fig. 6 Analysis of three blocks having the potential for flexural

toppling and blocky toppling–sliding failures
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Under such conditions, the magnitude of Pn-1 can be

computed, using limit equilibrium equations as follows:

Pn�1;s ¼ Pn þ
wn sin a� cos a tan u2=FSð Þ

1� tan u1 tan u2=FS
ð5Þ

c. Block n has the potential for blocky toppling and

sliding failures (Fig. 6). Sagaseta (1986) analyzed a

single column with potential for toppling–sliding failure

on the basis of the dynamic equation of equilibrium. The

mechanism and conditions of a single column and rock

slopes having the potential for combined sliding and

toppling failures were investigated and a complete

solution for the analysis of such a case was presented

by Aydan et al. (1989). On the basis of this approach, the

failure may be classified into the following cases:

• Transition from sliding mode to combined sliding

and toppling mode; in this case, the following

conditions exist:

Sn ¼ Nn tan u2

Qn ¼ Pn tan u1

Qn�1 ¼ Pn�1 tan u1

ai
x� 0

ai
y ¼ ai

h ¼ 0

8
>>>><

>>>>:

Under the aforesaid conditions and on the basis of the

dynamic equation of equilibrium, the magnitude of inter-

column forces in such a case can be computed as follows

(Aydan et al. 1989):

• Transition from toppling mode to combined sliding and

toppling mode; in this case, the following conditions

exist:

Sn ¼ Nn tan u2

Qn ¼ Pn tan u1

Qn�1 ¼ Pn�1 tan u1

ai
h� 0

ai
x ¼ 0:5ai

hhi

ai
y ¼ �0:5ai

htb

8
>>>>>><

>>>>>>:

Similarly, on the basis of the dynamic equation of

equilibrium, the magnitude of inter-column forces in

such a case can be computed as follows (Aydan et al.

1989):

Pn�1;t;s ¼ Pi½ð4t2
b � 2h2

i � 6hitb tan u2Þ
þ tan u1ðtan u1ð2t2

b � 4h2
i Þ=FS þ 6hitbÞ=FS�K�1

þWi½sin að4t2
b þ h2

i � 3hitb tan u2Þ
� cos aðtan u2ðt2

b þ 4h2
i Þ � 3hitbÞ�K�1 ð6:2Þ

where K ¼ ½ð4ðt2
b þ h2

i Þ � 6hihi�1Þ � tan u2ð6hi�1tb þ 4 tan u1

ðt2
b þ h2

i Þ=FSÞ�

d. Block n is stable against blocky toppling and sliding

modes. Therefore, Pn-1 = 0 (Fig. 7).

After investigating all the above cases, the final value of

Pn-1 may be determined as follows:

Pn�1 ¼ Max(Pn�1;t;Pn�1;s;Pn�1;s;t;Pn�1;t;s; 0Þ

• Case 2: one block with a potential for flexural toppling

failure situated between two blocks having potential for

blocky toppling failures (Fig. 3b).

Since block n can have the potential for flexural

toppling or shearing, the case may be studied under the

following two categories:

Fig. 7 Analysis of three blocks having potential for block-flexure

toppling failures

Pn�1;s;t ¼
Pi 0:5hi 1þ tan u1 tan u2=FSð Þ � tb tan u1½ � þ 0:5Wi cos a hi tan u2=FS � tbð Þ

hi�1 � 0:5hi 1� tan u1 tan u2=FSð Þ ð6:1Þ
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a. Block n has the potential for a flexural toppling, then:

Qn ¼ Pn � tan u1

Qn�1 ¼ Pn�1 � tan u1

e ¼ tf
2

xn�1 ¼ k1hn; k1 ¼ 0:75� 1ð Þ

8
>><

>>:

ð7Þ

Writing the limit equilibrium equations for this block, the

magnitudes of the moment and the normal force at the base

of the block can be determined as follows:

RFN ¼ 0) N ¼ wn cos aþ Qn � Qn�1 ffi wn cos a ð8:1Þ

RM ¼ 0) M

¼ wn sin a
hn

2
þ Pnxn � Qn

tf
2
� Qn�1:

tf
2
� Pn�1xn�1

ð8:2Þ

On the other hand, the maximum tensile stress at the base

of this block can be computed as follows:

r
y¼t=2
t ¼ 0:5M � t

I
� N

t
ð9:1Þ

Under limit equilibrium conditions, the maximum tensile

stress is equal to the tensile strength of the rock block;

hence, Eq. 9.1, considering the factor of safety, can be

rewritten in the following form:

M ¼ 2I

t

rt

FS
þ N

t

� �

ð9:2Þ

Substituting M and N from Eqs. 8.1 and 8.2 into Eq. 9.2,

the value of Pn-1 can be determined as follows:

Pn�1 ¼
Pn xn � 1

2
tan u1 � t

� �
þ wn sin a � hn

2
� 2I

t
rt

FS
þ wn cos a

t

� �

xn�1 þ 1
2

tan u1 � t
ð10Þ

Therefore, Pn is the force that the block n ? 1 exerts on

block n. Since the latter block has the potential for top-

pling, sliding, toppling–sliding, or being stable, the force

Pn-1 can be categorized into the following four groups:

• If block n ? 1 has the potential for toppling failure

but is stable against sliding, then xn = hn?1 and Pn-1

is designated as Pn-1,t.

• If block n ? 1 has sliding potential but is stable

against toppling, then xn = 0.5hn?1 and Pn-1 is

designated as pn-1,s.

• If block n ? 1 has the potential for toppling and

sliding failures, then xn = (0.5 - 1) hn?1 and Pn-1 is

designated as Pn-1,s,t.

• If block n ? 1 is stable against toppling and sliding

failures, then Pn-1 = 0.

Fig. 9 Stereonet diagrams of discontinuities and face slope of the Chalus Road rock mass

Fig. 8 Rock slope with a potential for block-flexure toppling failure

facing Chalus Road
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b. If block n has shearing potential, then:

e ¼ tf
2

Sn ¼ Nn tan u3 þ ctf

�

ð11Þ

It is also assumed that:

Qn ffi Pn � tan u1

Qn�1 ffi Pn�1 � tan u1

�

ð12Þ

With regards to Eqs. 11 and 12 along with taking the limit

equilibrium equations into account, the resulting expres-

sion is used to determine the inter-column force Pn-1:

Pn�1;sh ¼ Pn þ
wn sin a� cos a tan u3=FSð Þ � ctf =FS

1� tan u1 tan u3=FS

ð13Þ

It must be borne in mind that the real magnitude of Pn-1 is

computed using the following relation:

Pn�1 ¼ Max(Pn�1;t;Pn�1;s;Pn�1;t;s;Pn�1;sh; 0Þ

Under limit equilibrium conditions, Fs = 1, the inter-col-

umn forces can be computed for all rock columns by using

the above relations. Knowing the sign of P0 (the assumed

force required for the stability of block 1), the stability of

the rock slope against block-flexure toppling failure can be

evaluated as follows:

1. If P0 [ 0, then the slope is unstable.

2. If P0 \ 0, then the slope is stable.

3. If P0 = 0, then the slope is in the limit equilibrium

condition.

To determine the factor of safety of the slope against

block-flexural toppling failure, P0 is assumed to be 0 and

then Fs can be computed by trial and error.

As it can be seen, the above approach needs a lot of

calculations, which is time consuming if the calculations

are carried out manually. Thus, based on the method

Fig. 11 Kinematic stability analysis of the rock slope facing Chalus

Road

Fig. 10 Direct shear test results of the samples taken from the rock

mass facing Chalus Road. a Sandstone joints. b Shale. c Intact rock
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proposed in this paper, a FORTRAN computer program

was developed to simplify the stability analysis of rock

slopes against block-flexure toppling failure. This program

receives the rock slope parameters from the users and

calculates the magnitude of the inter-column forces and the

corresponding factor of safety.

5 Case Studies

To verify the results of the proposed analytical method, two

real case studies were selected and have been analyzed

using the corresponding computer code. The first case is the

rock slope facing Tehran-Chalus Road near the Amir-Kabir

Dam Lake and the second is the Galandrood mine slope,

which is located in the north of Iran. The first case has

always been stable against toppling failure and no local or

total failures have ever been reported. The second case,

although stable and there were no signs of total or even local

failure, presently, there is an obvious indication of local

failure. The two real cases, as practical examples, have been

analyzed by using the theoretical method proposed in this

paper with the aid of corresponding computer codes. The

results were compared with the in situ observations.

Table 1 Results of the stability analysis of the rock slope facing Chalus Road
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5.1 Case Study 1 (the Rock Slope Facing

Tehran-Chalus Road)

The rock slope of Tehran-Chalus Road illustrated in Fig. 8

has been used as one of the practical examples. The rock

mass consists of thick sandstone with thin inter-bedded

shale layers. The data about the geometry of the slope and

the rock mass discontinuities were gathered through site

investigations and have been analyzed by using DIPS

software. The results are shown in Fig. 9. As can be seen

from Fig. 9, there is one dominating bedding plane plus

one cross-joint set (two sets of discontinuities altogether) in

the rock mass. Persistence of the bedding plane is such that

it can be seen throughout the total rock slope regularly, but

persistence of the cross-joint set is, approximately, equal to

the thickness of sandstone layers and does not cover the

whole rock mass continuously. To obtain the geomechan-

ical properties of the rock mass, some block samples were

taken from the sandstone and shale layers. The samples

were transferred to the laboratory for the required testing.

The shear test results obtained from the samples are shown

in Fig. 10. In this slope, the inter-bedded shale layers do

not show much effect on toppling failure due to their high

flexibility and low thickness. However, they show a sig-

nificant reduction of the friction between the sandstone and

shale layers’ contacts, which simplifies the sliding of the

layers over each other. Therefore, the shale samples were

used to determine the shear strength parameters of the

bedding plane contacts, whereas the sandstone samples

were used to determine the shear strength parameters of the

cross-joints’ surfaces, density, and tensile and compressive

strengths of the rock columns. The result of the kinematic

analysis of this slope is shown in Fig. 11. As can be seen,

the poles of the rock mass cross-joints are in the sliding

plane zone and those of the rock mass beddings are in the

toppling instability zone. Since there are no continuous

cross-joints in the rock mass, the slope only has the

potential for block-flexure toppling failure. Then, stability

Fig. 13 Stereonet diagrams of discontinuities and face slope of Galandrood mine rock mass

Fig. 12 Rock slope facing Galandrood mine
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Table 2 Stability analysis results of the Galandrood mine slope
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of the slope against the failure has been studied by means

of the proposed analytical method using the corresponding

computer code. The results shown in Table 1 indicate that

the slope is stable against block-flexure toppling failure

with Fs = 2.60. It is almost 30 years since the slope was

excavated and there has been no signs of any instability.

The in situ observation confirms the results obtained by the

analytical method proposed in this paper.

5.2 Case Study 2 (the Rock Slope Facing Galandrood

Mine)

The rock slope facing Galandrood mine illustrated in

Fig. 12 has been used as the other practical example. As

can be seen from the photography, an obvious local

instability has been exhibited in the rock slope in zone II;

however, the rock mass as a whole is stable. The

Table 2 continued
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geometrical parameters of the rock mass discontinuities and

kinematic analyses of this slope are shown in Fig. 13. It

seems from these figures that the dominating failure in this

slope is flexural toppling, though there are a few cross-joints

in the rock mass too. These joints have crossed the rock

bedding planes in such a way that some rock columns

exhibit potential for blocky toppling failure. The stability of

this slope against pure flexural toppling failure was inves-

tigated and the results have already been published (Majdi

and Amini 2011). The analysis has yielded the overall factor

of safety of this slope against flexural toppling failure as

1.18–4.36. In the current paper, this case study has been

further investigated and reassessed by using the proposed

analytical method against block-flexure toppling failure.

The results illustrated in Table 2 confirm that the slope is

stable against a total block-flexure toppling failure. The

above prediction is comparable with the actual observation

as well. It should be borne in mind that some of the existing

rock columns in zone II (Fig. 12) as a block have been

sheared and show a clockwise rotation downwards move-

ment due to the vertical movement that had taken place in

the immediate underlain rock column located at the top of

zone I. The aforementioned vertical movement of the latter

rock column occurred due to the compressibility of the

underneath sheared zone shown in the same figure (Fig. 14).

6 Conclusions

Perfect toppling failures (pure blocky or flexural toppling)

are rare in nature because rocks are brittle and their

discontinuities are irregular; therefore, most real toppling

instabilities are of the block-flexure type. In this paper,

block-flexure toppling failure has been studied. The

mechanism of such failure has been investigated. Then, an

appropriate theoretical model along with an analytical

solution has been proposed to analyze and evaluate such

instabilities. Since the rock slope stability analysis against

the block-flexure toppling failure is a step-by-step proce-

dure, it will be time consuming if the calculations are

carried out manually. Thus, based on the method proposed

in this paper, a FORTRAN computer program was devel-

oped to simplify the stability analysis of rock slopes against

the failure. This code receives the rock slope parameters

from the user and predicts its stability, along with the

corresponding factor of safety against the failure. In addi-

tion, two case studies have been used for the practical

verification of the proposed approach and the correspond-

ing computer code. The results revealed that the proposed

model can be used for the analysis of such instabilities.
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