
XFEM Theory 
Extended finite element method (XFEM) is a new numerical approach developed in the early 2000’s for 

modelling joints and cracks in domain, without conforming the mesh [1-4]. As it is shown in Figure 1, the 

joint would cross the element and the effect of the joint would be captured implicitly. 

    

Fig 1, Enrichments in a discretized domain crossed by joints 

XFEM can model such geometries by enriching the element, i.e. it adds a set of degrees of freedom 

(DOF) to any node that its support element is crossed by a crack. An example of this enrichment can be 

seen in Figure 1. To capture the discontinuity in the element, Heaviside function is used, where it 

separates each side of the joint and is defined by: 

 

𝐻(𝑥, 𝑦) =  {

+1 𝑦 > 0
0 𝑦 = 0

−1 𝑦 < 0
 

 

Fig 2.  Heaviside function calculation for a joint 
 

Here, (x, y) is the position of any point in domain, defined in the local coordinates of the crack. Using this 

function, the displacement can be described as a combination of standard and enriched DOFs by: 

                𝑢(𝑥) =  ∑ 𝑁𝑖(𝑥) 𝑢𝑖̅𝑖∈𝐼 + ∑ 𝑁𝑗(𝑥) (𝐻(𝑥) − 𝐻(𝑥𝑗))𝑢𝑗̂𝑗∈𝐽      (1) 

Here, 𝑁𝑖  is the shape function for the ith node, 𝐼 is the set of all the nodes in domain, and 𝐽 is a set of 

enriched nodes. 𝑢𝑖̅ and 𝑢𝑗̂ are the set of standard and enriched DOFs respectively. 

This methodology can be expanded when there are multiple joints in the domain. Each node of the 

support element that is intersected with a joint would be enriched. However, if the joints crossed each 

other, an additional enhancement is required to produce the correct behaviour of jointed rock mass. 

This enhancement is employed by using junction functions [5-6]. In general, there are three cases that 

each pair of joints can cross and they are presented in the following figure. 

 









     

Fig 3. Three cases of junction functions for (a) Fully crossed (b) semi-crossed (c) end crossed 

If two joints cross each other completely (Fig3-a) the junction function would be defined as 

multiplication of the Heaviside functions of each crack, i.e. 𝐽(𝑥) = 𝐻1(𝑥). 𝐻2(𝑥). As it can be seen, this 

junction, creates 4 zones in the crossed element. Noting that in this case, all nodes in the element would 

keep their Heaviside enrichments and junction is an additional enrichment for nodes. In contrast with 

the first case, in the second one, the joint that is crossing the element would be assumed as a major 

joint, and the other pair would be labeled as the minor joint. Here, the Heaviside enrichments of the 

major joint would be kept and the Heaviside enrichment of the minor joint would be removed. And 

finally, for the third case, both Heaviside enrichments would be removed and only junction enrichment 

is included. Taking that into account, eq(1) would be updated as:  

           𝑢(𝑥) =  ∑ 𝑁𝑖(𝑥)𝑢𝑖̅𝑖∈𝐼 + ∑ 𝑁𝑗(𝑥)(𝐻(𝑥) − 𝐻(𝑥𝑗))𝑢𝑗̂𝑗∈𝐽 +  ∑ 𝑁𝑘(𝑥)(𝐽(𝑥) − 𝐽(𝑥𝑗))𝑢̃𝑘𝑘∈𝐾                 (2) 

In which 𝐾 is a set of nodes whoes support elements contain crossed joints. By knowing the 

displacement distribution in a domain, rate of strain (𝝐̇) and stress (𝝈̇) can be find similar to traditional 

finite element method by: 

       𝝐̇ =  ∇𝑠𝒖̇;    𝝈̇ = 𝔻 ∶  𝝐̇                                                                            (3) 

Here 𝔻 is the tangential stiffness operator that is defined based on the constitutive model assigned to 

the rock. As the deformation in each element is known by equation (2) the behaviour of joints can be 

described, where the opening at any point along any joint can be calculated by: 

⟦𝑢(𝑥)⟧ =  ∑ 2𝑁𝑖(𝑥) 𝑢̂𝑖
𝑒

𝑖∈𝐼𝑒 +  ∑ 𝑁𝑘(𝑥)(⟦𝐽(𝑥)⟧)𝑢̃𝑘
𝑒

𝑘∈𝐾𝑒                                          (4) 

In which 𝐼𝑒 is the set of nodes of each element crossed by the joint and ⟦𝐽(𝑥)⟧ is the difference of 

junction functions on each side of the joint. By obtaining the displacement along the joint, the 

calculation of stiffness matrix and forces inside the joint is possible [7-8].  

In order to take integration along the crossed elements, it is required to sub-divide each element into 

sub- triangles and take integration over each of them. This process is taking place automatically in RS2 

and for each sub-elements, three gauss points is assigned. In the following figure, a sample of this sub-

triangulation and gauss point position is shown. 

(a) (b) (c) 



 

Fig 4. Sub-Triangulations and gauss point position in enriched elements 

The XFEM is implemented in the code in a general way so user can define any number of joints in the 

domain. In addition, XFEM is also capable of handling seepage analysis, dynamic analysis and is fully 

compatible to interact with support elements, such as bolts, structural interface and composite liners. 
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