Support-Capacity Notes

<u>Liner Parameters – Rebar Properties</u>

Number of Rows – number of rows on one side of a beam, since symmetrical reinforcement is assumed for the section

Spacing – space between reinforcement (out of plane)

Diameter – rebar diameter

Clear cover depth – depth to face of reinforcement (same on both sides of the section)

Clear spacing between rows – space between rows on the same side of the section

Note: section is assumed to have symmetric reinforcement

Code Parameters - ACI 318

Phi compression and Phi tension

 $\S 9.3.2$ – Strength reduction factor ϕ for compression-controlled sections is defined in $\S 9.3.2.2$ (b) as 0.65

 $\S10.3.3$ – Compression-controlled if $\varepsilon_t < -0.002$; this factor is applied to both N and M values

 $\S 9.3.2$ – Strength reduction factor ϕ for tension-controlled sections is defined in $\S 9.3.2.1$ as 0.9

§10.3.3 – Tension-controlled if $\varepsilon_t > -0.005$; this factor is applied to both N and M values

 ϕ values in the transition region are obtained by interpolating linearly between the tensionand compression-controlled regions.

Alpha factor

§10.2.7.1 – A concrete stress of $\alpha f_c' = 0.85 f_c'$ is assumed uniformly distributed over an equivalent compression zone (α is the strength reduction factor for concrete)

Beta factor

§10.2.7.3 – adjustment factor for depth of rectangular stress block.

"For f_c' between 17 and 28 MPa, β_1 shall be taken as 0.85. For f_c' above 28MPa, β_1 shall be reduced linearly at a rate of 0.05 for each 7MPa of strength in excess of 28 MPa, but β_1 shall not be taken less than 0.65."

Maximum axial resistance factor

Used for calculating max N cutoff value only.

 $\S 10.3.6.2 - \phi = 0.8$

<u>Code Parameters – CSA A23.3</u>

Phi concrete

Strength-reduction factor for concrete $\S 8.4.2$ – concrete strength = $\phi_c f_c'$ where $\phi_c = 0.65$

Phi steel

Strength-reduction factor for steel $\S 8.4.3$ – concrete strength = $\phi_c f_s$ where $\phi_s = 0.85$ for reinforcing bars

Alpha factor

Concrete stress of $\alpha_1 \phi_c f_c'$ is uniformly distributed over an equivalent compression zone a distance β_1 from the maximum compression strain Strength-reduction factor for concrete

§10.1.7(a) and (c)

$$\alpha_1 = 0.85 - 0.0015 f_c' \ge 0.67$$

Beta factor

§10.1.7 (c)

$$\beta_1 = 0.97 - 0.0025 f_c' \ge 0.67$$

Maximum axial resistance factor

§10.10.4(b)

 $P_{r_{max}} = 0.8 P_{r_0}$ for tied columns, where

$$P_{r_o} = \alpha_1 \phi_c f_c' (A_g - A_{st}) + \phi_s f_y A_{st}$$

Code Parameters – EC2

Phi compression and Phi tension

 $\S 2.4.1.4$ – Table 2.2: Partial Factors for ULS

 $\gamma_c = 1.5$ for concrete

 $\gamma_s = 1.15$ for steel

Material strength = nominal strength / γ

Eta factor

§3.1.7(3) – factor defining effective concrete strength

$$\eta = 1 \ for \, f_{ck} \leq 50 MPa$$

$$\eta = 1 - \frac{f_{ck} - 50}{200} \text{ for } 50 < f_{ck} \le 90 \text{ MPa}$$

Lambda factor

§3.1.7(3) – factor defining effective height of concrete compression zone

$$\lambda = 0.8 \ for f_{ck} \le 50 \ MPa$$

$$\lambda = 0.8 - \frac{f_{ck} - 50}{400}$$
 for $50 < f_{ck} \le 90MPa$

Maximum axial resistance factor

Default value = 1

No mention in code

Alpha cc

Effective concrete strength = ηf_{cd} , where f_{cd} is the design compressive strength

$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$$

 γ_c = partial safety factor for concrete

 α_{cc} = coefficient for taking into account long term effects of loading on compressive strength (recommended value = 1.0; values subject to National Annex recommendations)