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1 Natural Period of One-Dimensional Column 

1.1 Problem Description 

This problem involves wave propagation in a plane-strain soil column with width 1 m and 

height 10 m subjected to gravity. The mesh is divided into 3-node elements as presented in 

Figure 1-1.  

 

Figure 1-1: Jointed rock column as constructed in RS2 

Table 1.1: Input parameters for one-dimensional column model 

Parameter Value 

Material type Elastic 

Young’s modulus (E) 50000 kPa 

Poisson’s ratio (v) 0 

Unit weight ( ) 20 kN/m3 

Height (L) 10.0 m 

Width (w) 1.0 m 

 

1.2 Analytical Solution 

Natural period of an elastic column with one end open and one end close is: 
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4T L
E


=            (1.1) 

where L is the height of the column, E is the elastic modulus of the column and   is the 

soil mass.   

Analytical natural period: T = 0.255 s. 

1.3 Results  

Figure 1-2 shows the vertical displacement at top of the soil column with time as produced 

by RS2. The natural period calculated in RS2 is 0.256 s, which agrees well with the 

analytical solution. 

 

Figure 1-2: RS2 Solution. Vertical Displacements-Time 

1.4 References 

Itasca Consulting Group (2005). FLAC – Fast Langrangian Analysis of Continua, Version 

5, User’s Manual. Itasca Consulting Group, Inc, Minneapolis, Minnesota. 

1.5 Data Files 

The input data file Dynamic #001.fez can be downloaded from the RS2 Online Help page 

for Verification Manuals.  
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2 Forced Vibration of an Elastic Solid in Plane Strain 

2.1 Problem Description 

In this problem, an elastic rod with length 10.5 m and height 0.5 m is constrained to vibrate 

in the axial direction only. The rod is fixed at the right end. The mesh is divided into 3-

node elements (see Figure 2-1). A uniform unit velocity at t = 0 is initially applied to all 

freedoms in the mesh. Displacements close to the support are analyzed. 

 

Figure 2-1: RS2 model of an elastic rod 

Table 2.1: Model parameters 

Parameter Value 

Material type Elastic 

Young’s modulus (E) 10000 kPa 

Poisson’s ratio (v) 0.0 

Unit weight ( ) 9.81 kN/m3 

Length (L) 10.5 m 

Height (w) 0.5 m 

 

2.2 Analytical Solution 

Analytical solution for natural period of the rod according to [1] is 0.4 s. The maximum 

displacement close to the support is 0.005 m. The analytical displacement-time relationship 

is shown in Figure 2-2. 

2.3 Results 

The result of RS2 computation is shown in Figure 2-2.  RS2 is in close agreement with both 

the analytical solution and the results obtained from FEM modeling in [1]. 
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Figure 2-2: Displacements close to the support 

2.4 References 

Smith, I. M., and Griffiths, D. V. (2004). Programming the finite element method, 4th Ed., 

Wiley, Chichester, U.K. 

2.5 Data Files 

The input data file Dynamic #002.fez can be downloaded from the RS2 Online Help page 

for Verification Manuals.  
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3 Simply Supported Beam with Constant Uniform Loading 

3.1 Problem Description 

This problem concerns the dynamic behavior of a simply supported beam. The natural 

period of the beam is determined and compared with analytical solution. In order to obtain 

the natural period, a distributed load of 10 kN/m/m is applied on the beam. The geometry 

of the problem is shown in Figure 3-1. Material properties of the beam are shown in Table 

3.1.  

  

Figure 3-1: Simply supported beam modeled in RS2  

Table 3.1: Model parameters 

Parameter Value 

Material type Elastic 

Young’s modulus (E) 300000 kPa 

Unit weight ( ) 9.81 kN/m3 

Length (L) 1.0 m 

Thickness (h) 0.1 m 

 

3.2 Analytical Solution 

The natural frequency of the first mode of vibration is given by: 

2

4n

EI

mL
 =   (3.1) 

where E is the elastic modulus of the beam, I is the moment of inertia, m is the mass per 

unit of length and L is the length of the beam. 

According to equation (3.1), the natural frequency and period of the beam are respectively: 

156.05n =  (rad/s)  and 𝑇𝑛 =
2𝜋

𝜔𝑛
= 0.0403𝑠 

Though a continuous beam will have many modes contributing to its dynamic motion, a 

simply supported beam undergoing a constant uniform load will respond primarily in the 

fundament period. Consequently, the system will behave similar to a single degree of 

freedom system under a constant load, even though the beam in reality has a distributed 

mass along the entirety of the beam. Therefore, the vertical displacement at the center beam 

is described by the following formula: 
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𝑢𝑣 =
𝑃

𝐾
(1 − cos⁡(𝜔𝑛𝑡))  (3.2) 

3.3 Results 

Figure 3-2 shows the time-dependent vertical displacement of the beam calculated using 

RS2. The natural period calculated in RS2 is 0.040 s, and along with the general vertical 

motion of the beam agrees well with the analytical solution. 

 

Figure 3-2: RS2 solution of the vertical displacement-time relationship 

3.4 References 

Brinkgreve, R. B. (2002) Plaxis 2D Version 8.4: Reference, Scientific and Dynamic 

Manuals, Lisse, Balkema.  

3.5 Data Files 

The input data file Dynamic #003.fez can be downloaded from the RS2 Online Help page 

for Verification Manuals.  
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4 Timoshenko Beams Subjected to a Harmonic Point Load 

4.1 Problem Description 

This problem involves loading a beam model identical to the one in the previous chapter 

with a point load at midspan that changes amplitude harmonically. Whereas the previous 

example allowed for the model to behave as a single degree of freedom system, the 

harmonic load now will excite the beam’s higher mode responses. An analytical solution 

does exist for a simply supported beam for which to compare the results of the RS2 model. 

 

Figure 4-1: Simply supported beam modeled in RS2  

Table 4.1: Model parameters 

Parameter Value 

Material type Elastic 

Young’s modulus (E) 300000 kPa 

Unit weight (γ) 9.81 kN/m3 

Poisson’s Ratio  0 

Length (L) 1.0 m 

Thickness (h) 0.1 m 

 

The beam is loaded with a harmonic load at the midspan of the beam with an amplitude of 

1 kN and a forcing frequency,⁡𝜔̅, of 40 Hz. 

4.2 Analytical Solution 

Any number of natural frequencies of the beam may be calculated using Eq. (4.1), where 

n is the number of the mode number.  

𝜔𝑛 =
𝑛2𝜋2

𝐿2
√
𝐸𝐼

𝑚
 (4.1) 

Each of these frequencies corresponds to a unique modal response that contributes to the 

overall response of the beam that is being subjected to the harmonic point load. The 

analytical solution may be determined by calculating the modal responses of the beam and 

the sum of these responses will be the overall response of the beam since the beam is 

modelled linear-elastically. Eq. (4.2) is the analytical solution to the simply supported 

beam. 
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Each mode’s dynamic response can be described by the response of an equivalent 

undamped single degree of freedom system’s response to a harmonic load, with parameters 

determined from the mode’s natural frequency. The expression within the square brackets 

of Eq. (4.2) contains the response function of the equivalent single degree of freedom 

system. 

𝑢(𝑥, 𝑡) =
2𝑃𝐿3

𝜋4𝐸𝐼
∑

𝜙(
𝐿

2
)

𝑛4
∞
𝑛=0 [𝑅𝑛 sin(𝜔̅𝑡 − 𝜃) −

𝛽𝑛

1−𝛽𝑛
2 sin𝜔𝑛𝑡] sin (

𝑛𝜋𝑥

𝐿
) (4.2) 

Where: 

𝛽𝑛 =
𝜔̅
𝜔𝑛
⁄  

𝑅𝑛 =
𝛽𝑛

|1 − 𝛽𝑛
2|

 

𝜃 = {
0, 𝛽𝑛 < 0
𝜋, 𝛽𝑛 > 0

 

The 𝜙 function describes the shape of the beam for each mode. The mode shapes of the 

beam correspond to sinusoidal curves with half-periods that are fractions of the length of 

the total beam. The shape function is included in Eq. (4.2) as the final sinusoid expression 

that is dependent on x, distance along the beam, rather than time. At the midspan there 

exists only three options for the value of this function as described below: 

𝜙(𝐿/2) = {
0 𝑛 = 2,4,6,…
1 𝑛 = 1,5,9,…
−1 𝑛 = 3,7,11,…

 

The contribution of each mode needs to be determined and then summed together to 

determine the overall response of the system analytically. 

4.3 Results 

Figure 4-2 shows the time-dependent vertical displacement of the beam calculated using 

RS2. The initial response of the model corresponds well with the analytical solution but 

beyond the 0.1 s mark there is visible amplitude reduction occurring. This is most likely 

due to integration scheme’s propensity to reduce a response’s amplitude.  
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Figure 4-2: RS2 solution of the vertical displacement-time relationship 

4.4 References 

Chopra, A. K. (1995). Dynamics of Structures.  New Jersey: Prentice Hall. 

4.5 Data Files 

The input data file Dynamic #004.fez can be downloaded from the RS2 Online Help page 

for Verification Manuals.  
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5 Simply Supported Beam Subjected to a Harmonic Point Load 

5.1 Problem Description 

This problem will model the same problem system as Chapter 4 by using plane strain 

quadrilateral elements rather than linear beam elements using Timoshenko beam theory. 

The results of this analysis should be similar if not even more accurate than the previous 

analysis.  

 

Figure 5-1 Simply Supported Beam Modeled in RS2 

The problem is using the same parameters that are listed in Table 4.1. 

5.2 Analytical Solution 

The analytical solution provided in Section 4.2 accounts solely for deflection in the beam 

arising from bending and ignores shear deformations. The majority of the displacement 

may be contributed by the beam bending in static analysis, however in dynamic analysis 

accounting for shear deformation will lower the natural frequencies of the system and alter 

the response. Using a greater number of elements in the RS2 model will presumably 

capture the effect of shear deformation on the beam’s dynamic response better. 

The shortening of the frequency is described in Eq. (5.1). 

𝜔′
𝑛 = 𝜔𝑛 [1 + (

𝑛𝜋𝑟

𝐿
)
2
(1 +

𝐸

𝜅𝐺
)]

−0.5

 (5.1) 

Where r denotes the modulus of gyration is equal to the square root of the ratio between a 

cross section’s second moment of area and its area. 

𝑟 = √
𝐼

𝐴
 (5.2) 

𝐺 is the shear modulus of the beam and 𝜅 is the Timoshenko shear coefficient, a correction 

parameter introduced to account for non-uniform shear stress distribution along the cross 

section. For rectangular cross sections this coefficient is given a value of 5/6. From Eq. 

(5.1) it becomes evident that the reduction in natural frequency becomes more prominent 

with higher modes due to the presence of the 𝑛 value. 
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The increase in displacement will also decrease the modal stiffness of the system. This 

diminished stiffness can be calculated by following Eq. (5.3) which uses the new reduced 

frequency. 

𝐾′𝑛 = 𝑀𝑛(𝜔
′
𝑛)

2 =
𝑚𝐿

2
(𝜔′

𝑛)
2 (5.3) 

The analytical solution may now be calculated using Eq. (4.2) from the previous section 

but with reduced values for the stiffness and natural frequencies to calculate the modal 

response parameters. 

5.3 Results 

The accuracy of the model will depend on how many elements the beam contains. With 

fewer number of elements, the response of the system will resemble more the response of 

the simply supported beam without considering shear deformation.  

 

Figure 5-2: Vertical Displacement Response of the Midspan of the Beam 

The results of two analyses is presented in Figure 5-2 that considered 640 and 1440 finite 

elements. The model with a greater number of elements exhibited a displacement response 

similar to that of the analytical solution that considered shear deformations. The coarser 

model was unable to capture that phenomenon as predicted. 

The results demonstrate RS2’s ability to capture complex material behavior during 

dynamic analysis provided that a sufficient number of elements have been used in the 

model. 

5.4 References 

Chopra, A. K. (1995). Dynamics of Structures.  New Jersey: Prentice Hall. 
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5.5 Data Files 

The input data files Dynamic #005.fez, Dynamic #005_640.fez, and Dynamic 

#005_1440.fez can be downloaded from the RS2 Online Help page for Verification 

Manuals.  
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6 Cantilever Beam Under Harmonic Load 

6.1 Problem Description 

This problem demonstrates behavior of a cantilever beam under harmonic load. 

 

Figure 6-1: Cantilever beam modeled in RS2  

Harmonic load is as below: 

P(t)=3.1941sin(πt/2)     if     0<t 2

P(t)=0                           if      t>2  


       (6.1) 

 

Figure 6-2: Harmonic load acting on the beam  

Table 6.1: Model parameters 

Parameter Value 

Material type Elastic 

Young’s modulus (E) 38329.2 kPa 

Poisson’s ratio (v) 0.3 

Unit weight ( ) 9.81 kN/m3 
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Parameter Value 

Length (L) 1.0 m 

Thickness (h) 0.1 m 

 

6.2 Results 

The beam displacement obtained using RS2 is compared with the solution obtained using 

MIDAS GTS. It can be seen that the two numerical tools provide a good agreement. 

 

Figure 6-3: Midspan Displacement Response 

6.3 References 

J. M. Duncan and C. Y. Chang (1970), “Nonlinear analysis of stress and strain in soils”, J. 

of Soil Mech. and Foundation Division, ASCE, 96 (SM5), pp. 1629-1653. 

6.4 Data Files 

The input data file Dynamic #006.fez can be downloaded from the RS2 Online Help page 

for Verification Manuals.  
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7 Cantilever Beam Subjected to a Constant Point Load 

7.1 Problem Description 

This problem demonstrates behavior of a cantilever beam under a constant load. The 

properties of the cantilever are identical to the previous section’s problem statement except 

that the Poisson’s ratio here is zero, and that the beam is subjected to a constant load of 

0.319 kN. Loading the cantilever with a constant load the fundamental period may be 

ascertained from the deflection response and compared to the theoretical first mode period. 

The mode shapes of the cantilever beam are not simple and described using hyperbolic 

cosine functions which does not allow for a concise analytical response function to be 

generated. 

 

Figure 7-1: Cantilever beam modeled in RS2  

Table 7.1: Model parameters 

Parameter Value 

Material type Elastic 

Young’s modulus (E) 38329.2 kPa 

Poisson’s ratio (v) 0 

Unit weight ( ) 9.81 kN/m3 

Length (L) 1.0 m 

Thickness (h) 0.1 m 

 

7.2 Analytical Solution 

The stiffness of a cantilever beam will be needed to determine the static stiffness of the 

system and it is presented below in Eq. (7.1).  

𝐾 =
3𝐸𝐼

𝐿3
 (7.1) 

The stiffness for this problem was determined to be 9.582 kN/m/m. Dividing the amplitude 

of the load by this stiffness produces a value of 0.0333 m for the static stiffness. 

The first natural period of a cantilever is defined by Eq. (7.2). Evaluation that expression a 

fundamental period of 1.000 s was determined for this cantilever system. 
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𝜔𝑖 =
3.516

𝐿2
√
𝐸𝐼

𝑚
  (7.2) 

The analytical solution is going to idealize the system as a single degree of freedom system 

and the higher mode response of the cantilever is ignored. This is an imprecise idealization, 

but it will allow one to evaluate the general shape of the cantilever response. The response 

of a single degree of freedom system to a constant load is described below in Eq. (7.3). 

𝑢(𝑡) = 𝑢𝑠𝑡𝑎𝑡𝑖𝑐[1 − cos(𝜔𝑡)] (7.3) 

The maximum amplitude of the displacement will be twice that of the static displacement. 

7.3 Results 

The beam displacement obtained using RS2 is compared with the idealized response of a 

cantilever containing only response from the first mode.  

 

Figure 7-2: Cantilever Free End Vertical Displacement Response  

Two models with differing number of elements were created and simulated to model the 

stated problem. The purpose of this was to determine the extent using larger element sizes 

alters the total model response. It is apparent from Figure 7-2 that two RS2 models visibly 

differ in amplitude and slightly in response period, with the model with a finer mesh 

exhibiting a period closer to the calculated fundamental period.  
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Though the two responses display discrepancies with the idealized response, especially a 

reduction in amplitude, the difference is likely due to the influence of higher mode 

responses. The deviation from a smooth sin curve is likely due to destructive interference 

of the higher modes. The response nevertheless exhibits a predominant period of 1s as 

predicted analytically and revealing the influence of the fundamental period on the total 

response. 

7.4 References 

Chopra, A. K. (1995). Dynamics of Structures.  New Jersey: Prentice Hall. 

7.5 Data Files 

The input data file Dynamic #007.fez can be downloaded from the RS2 Online Help page 

for Verification Manuals.  
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8 Single Element with Spring and Damping 

8.1 Problem Description 

This section attempts to validate the spring and dashpot elements as well as the mass-

proportional damping that is presently implemented in the dynamic module of RS2. In 

order to create a verifiable model, the problem had to be reduced to one that could be 

readily determined analytically, and for this reason the problem described here within is 

that of a single degree of freedom system. 

The model consists of a single quadrilateral element with near rigid stiffness that provides 

mass to the dynamic system. The element is restrained in the horizontal direction and is 

only supported vertically by springs that provide the system’s effective stiffness. The 

element’s rigidity is supposed to refrain it from deforming and allow the springs to solely 

combat the imposed loads. The configuration of the system is presented below in Figure 

8-1. 

 

Figure 8-1: RS2 Model of the Problem Statement System 

Table 8.1: Model Parameters 

Parameter Value 

Material type Elastic 

Spring Stiffness (K) 100 kN/m/m 

Unit weight ( ) 9.81 kN/m3 

Width & Height 0.5 m 


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The bottom nodes of the element where the springs are attached will both be subjected to 

an identical harmonic force with an amplitude of 10 kN and a frequency of 10 Hz or 62.8 

rad/s. Therefore, the effective stiffness of the system is 200 kN/m/m and the amplitude of 

the total load is 20 kN. 

The system will be modeled without damping, with damping provided by dashpot dampers 

and with damping provided by mass-proportioned Rayleigh damping. For this problem the 

damping level that is to be obtained is that of 10% of critical damping. 

8.2 Damping Parameters 

The coefficient of damper that is given to the dashpot damper is merely a fraction of the 

critical damping of the system and it is determined using Eq. (8.1). 

𝐶 = 𝜉 × 2√𝑀𝐾 (8.1) 

The mass of the system is 0.25 tons and the stiffness has been provided. Using these values 

10% for the damping ratio, the damping coefficient was determined to be 1.414 kNs/m/m.  

To ensure that the mass-proportional Rayleigh damping provided equivalent damping, the 

damping parameter was determined by simply dividing the damping coefficient by the 

value of the mass. This results in a Rayleigh damping parameter of 5.657. 

8.3 Analytical Solution 

Since the system is effectively a single degree of freedom system the analytical solutions 

are readily available. The natural frequency was determined to be 28.28 rad/s by using 

Equation (8.2). 

𝜔𝑛 = √
𝐾

𝑀
  (8.2) 

For an undamped single degree of freedom system with no initial displacement or velocity 

the displacement response function is defined by Equation (8.3). The first sinusoidal 

function represents the particular solution which oscillates at the forcing frequency whereas 

the second sinusoidal function is the complimentary solution that oscillates at the natural 

frequency. Typically, in a damped system the complimentary solution is the transient 

response of the system that dissipates over time, however in an undamped system it is ever 

present  

𝑢(𝑡) = ⁡
𝑃𝑜

𝐾
𝑅 sin(𝜔̅𝑡 − 𝜃) −

𝛽

1−𝛽2 sin𝜔𝑛𝑡 (8.3) 

Where 𝛽 is the ratio between the forcing and natural frequencies, 𝑅𝑑 is the amplitude 

reduction factor of the particular solution and 𝜃 is the phase angle. These variables are 

defined below. 
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𝛽 = 𝜔̅
𝜔𝑛
⁄  

𝑅 =
𝛽

|1 − 𝛽2|
 

𝜃 = {
0, 𝛽 < 0
𝜋, 𝛽 > 0

 

For this system 𝛽 was found to be 2.221, the reduction factor 𝑅 had a value of 0.254 and 

the phase angle had the value of π. 

A damped system possesses a similar response function except that the particular solution 

decays exponentially and there is some period elongation due to the damping. The steady-

state solution retains the same form, but the reduction factor and phase angle definitions 

are modified to account for damping in the system. The damped response function of this 

system with no initial velocity or displacement is presented in Eq. (8.4). 

𝑢(𝑡) = ⁡
𝑃0

𝐾
𝑅𝑑 sin(𝜔̅𝑡 − 𝜃𝑑) + 𝑒−𝜉𝜔𝑡[𝐴 cos(𝜔𝑑𝑡) + 𝐵 sin(𝜔𝑑𝑡)]  (8.4) 

Where the variables A and B are determined based on the initial conditions of the system. 

For a system that is initially stationary, the variables are defined below. 

𝐴 = −
𝑃0
𝐾

𝑅𝑑 sin(−𝜃𝑑) 

𝐵 =
𝜉𝜔𝐴 −

𝑃0
𝐾 𝑅𝑑𝜔̅ cos(−𝜃𝑑)

𝜔𝑑
 

The new damped parameters are defined below. 

𝑅𝑑 =
1

√(1 − 𝛽2)2 + (2𝜉𝛽)2
 

𝜃𝑑 = tan−1 (
2𝜉𝛽

1 − 𝛽2
) 

𝜔𝑑 = 𝜔𝑛√1− 𝜉2 

For the damped problem the reduction factor 𝑅𝑑 has a value of 0.254, the phase angle is    

-0.1124 rad and the damped natural frequency is 28.14 rad/s. The initial condition variables 

A and B were determined to be -0.002851 and -0.05667 respectively. 
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8.4 Results 

 

Figure 8-2: Undamped Displacement Response 

 
Figure 8-3: Damped Displacement Response using Dashpot Dampers 
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Figure 8-4: Damped Displacement Response using Mass Proportional Damping 

The response of the both the damped and undamped models presented in Figure 8-2 and 

Figure 8-3 show great agreement with the analytical solution. This demonstrates that the 

springs and dashpot dampers have been implemented correctly in RS2. 

The results of the RS2 model using mass proportional damping rather than dashpot 

dampers is presented in Figure 8-4.The results of this model was similarly in agreement 

with the analytical solution, demonstrating that the mass proportional Rayleigh damping 

has been effectively implemented. 

8.5 Data Files 

The input data files Dynamic #008.fez, Dynamic #008_Damped.fez, and Dynamic 

#008_NoDamped.fez can be downloaded from the RS2 Online Help page for 

Verification Manuals.  
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9 Two Element Model with Imposed Motion  

9.1 Problem Description 

This section attempts to validate the RS2 functionality that allows users to impose 

displacement, velocities and accelerations rather than an external force. These functions 

are important for users to be able to apply the seismic loads effectively. 

 

Figure 9-1: RS2 model of the problem statement system 

The model, as depicted in Figure 9-1, consists of two quadrilateral elements with a shared 

an edge that is free to move vertically and all other nodes being restrained. One element is 

massless and contributes all of the stiffness to the system. The other element possesses 

negligible stiffness and contributes the mass to the system. The properties of the system 

are defined below. 

Table 9.1: Model Parameters 

Parameter Value 

Stiff Element 

Material type Elastic 

Young’s modulus (E) 20 000 kPa 

Unit weight (γ) 0.01 kN/m3 

Poisson’s ratio (v) 0 

Width & Height 0.5 m 
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Parameter Value 

Mass Bearing Element 

Material type Elastic 

Young’s modulus (E) 1 kPa 

Unit weight (γ) 27 kN/m3 

Poisson’s ratio (v) 0 

Width & Height 0.5 m 

 

The model will be subjected to a half-period sine load of a total 10 kN amplitude acting on 

the free edge that the two elements share. The load will be delayed by 0.05s from the start 

of the simulation. The load that node 6 and 9 is subjected to is displayed in Figure 9-2. 

 

Figure 9-2: Half Sine Nodal External Force 

The response of system to this external force will be compared to that to a model that has 

an equivalent acceleration history applied at the boundaries. The imposed acceleration 

required is determined by dividing the external force function by the mass of the system. 

This vertical acceleration will then be applied at nodes 7 and 8 which will be allowed to 

move vertical. The displacement response from the previous model will be compared to 

the displacement of the edge shared by the elements relative to the now moving boundary. 

If these two results are equal, then the acceleration history has been properly implemented. 

𝑎(𝑡) = {

0 𝑡 < 0.5
1

𝑚
sin[𝜔̅(𝑡 − 0.05)] 0.5 ≤ 𝑡 < 0.55

0 𝑡 ≥ 0.55

  (9.1) 
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Figure 9-3: Half Sine Nodal Acceleration at the Boundary 

9.2 Analytical Solution 

The exact solution for the system’s response to the sinusoidal load may be calculated using 

Duhamel’s integral or another analysis tool however it is not necessary for this validation 

example. Different loading approaches are being evaluated and provided both produce the 

same response function, then it shows that they have been adequately implemented. 

The reason that two loading conditions must produce the same response is because of the 

differential equation that is being solved by the integration scheme. For a single degree of 

freedom system, the spring force is calculated from a relative displacement whereas the 

inertial force is dependent on the absolute or total acceleration of the node as presented in 

Equation (9.2). 

𝑚𝑢̈𝑡𝑜𝑡𝑎𝑙 + 𝑘𝑢𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 0 (9.2) 

Decomposing the acceleration into the contribution of the ground and the relative 

acceleration a new equation of motion may be determined that is presented in Eq. (9.2). 

This equation of motion represents the system that is being analyzed in the external force 

loading case. Eq. (9.2b) represents the system with acceleration imposed on the boundary 

which has been shown to be an identical system. 

𝑚(𝑢̈𝑔 + 𝑢̈𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) + 𝑘𝑢𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 0 (9.2b) 

𝑚𝑢̈𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 + 𝑘𝑢𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = −𝑚𝑢̈𝑔 = 𝐹(𝑡)  (9.3) 

The mass of the system in the system is only provided by the mass bearing element at two 

free nodes. Given the weight and size of the element the mass at each node able to move 

vertically is 0.172 tons. The stiffness the stiff element provides to each node is 10000 

kN/m/m. Given the expression for natural frequency in Eq. (9.4) the system’s natural 

frequency is 241.1 rad/s corresponding to a fundamental period of 0.02606 s. 

𝜔𝑛 = √
𝐾

𝑀
  (9.4) 
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In order to impose a velocity or displacement on the boundary, the integral and double 

integral of the acceleration must be calculated to determine the boundary velocity and 

acceleration. The results of the integration are presented below in Eq. (9.5) and (9.6) and 

they will be used in the displacement and velocity-imposed segment of the analysis. 

𝑣(𝑡) = {

0 𝑡 < 0.5

−
1

𝑚𝜔̅
cos[𝜔̅(𝑡 − 0.5)] +

1

𝑚𝜔̅
0.5 ≤ 𝑡 < 0.55

2

𝑚𝜔̅
𝑡 ≥ 0.55

  (9.5) 

𝑢(𝑡) = {

0 𝑡 < 0.5

−
1

𝑚𝜔̅2 sin[𝜔̅(𝑡 − 0.5)] +
(𝑡−0.5)

𝑚𝜔̅
0.5 ≤ 𝑡 < 0.55

2(𝑡−0.55)

𝑚𝜔̅
+

0.05

𝑚𝜔̅
𝑡 ≥ 0.55

  (9.6) 

9.3 Results 

The response of the model system with a fixed top boundary and force applied at the center 

nodes is presented in Figure 9-4. The response is being compared to that of a similar system 

with an equivalent acceleration applied at the boundary. The two responses are identical 

which confirms that the imposed acceleration function has been implemented correctly. 

 

Figure 9-4: Vertical Displacement of the Center Nodes 

An equivalent may be analyzed if the displacement that had been calculated previous and 

presented in Eq. (9.6) is imposed on the boundary rather than the acceleration. The absolute 

displacement of the boundary node is presented below in Figure 9-5 and is shown to be 

identical to that of the displacement produced from the model with imposed acceleration.  
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Figure 9-5: Absolute Displacement of the Support Node 

Figure 9-6 demonstrates that the displacement response of the center nodes due to imposing 

displacement is identical to that of imposed acceleration loading which was shown to 

reproduce the force loading example. The three system’s identical response demonstrates 

that the imposing displacement and acceleration functions are implemented correctly in 

RS2. 

 

Figure 9-6: Relative Displacement of the Center Nodes 
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9.4 Data Files 

The input data files Dynamic #009-1.fez and Dynamic #009-2.fez can be downloaded 

from the RS2 Online Help page for Verification Manuals.  
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10 One-Dimensional S-Wave Propagation 

10.1 Problem Description 

This problem addresses S-wave propagation in a one-dimensional soil column. The model 

is allowed to move only in the horizontal direction. A prescribed horizontal displacement 

of 0.01m is applied to the bottom of the column. In order to test viscous dashpot, the 

dashpots are applied to the top of the soil column to replace the fixed boundary. The 

geometry of the problem is shown in Figure 10-1. The material properties used in the model 

are summarized in Table 10.1. 

  

Figure 10-1: RS2 model of a soil column 

Table 10.1: Model parameters 

Parameter Value 

Material type Elastic 

Young’s modulus (E) 20000 MPa 

Poisson’s ratio (v) 0.25 
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10.2 Analytical Solution 

Velocity of S-wave in the column is: 

G



=            (10.1) 

Where, G is the shear modulus: 

2(1 )

E
G


=

+
           (10.2) 

In this problem, the analytical S-wave velocity is 62.64 m/s. 

The time necessary for a middle point to start moving is: 

/ 2
0.16

L
t s


= =           (10.3) 

The shear wave is induced by moving the bottom edge of the mode by 0.01 m and 

maintaining that imposed displacement for the entirety of the simulation. For the fixed top 

boundary case it is expected that the shear wave will reflect from the fixed boundary and 

repeatedly influence the midspan horizontal deflection. The viscous boundary should 

absorb the incoming shear wave and eliminate any reflection waves. 

10.3 Results 

Displacements of a point at the middle of the column are analyzed in two cases: no damping 

and with dashpots applied to the top of the column. The results are shown in Figure 10-2 

and Figure 10-3. It can be seen that the middle point starts to move just before at 0.16s 

which agrees well with the analytical solution. The displacement at the point is dropped to 

zero at a 0.48s when the S-wave comes back due to lack of viscous boundaries. If viscous 

dashpots are used, a constant displacement of 0.01 m is observed after 0.16s. Results of a 

similar problem calculated from Plaxis are given in Figure 10-4 and Figure 10-5 for 

reference. 
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Figure 10-2: Displacement at the middle of the soil column-undamped fixed boundary 

 

Figure 10-3: Displacement at the middle of the soil column-viscous boundary 
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Figure 10-4: Displacements-undamped (from Plaxis) 

 

Figure 10-5: Displacements-viscous boundary (from Plaxis) 
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10.4 References 

Brinkgreve, R. B. (2002) Plaxis 2D Version 8.4: Reference, Scientific and Dynamic 

Manuals, Lisse, Balkema.  

10.5 Data Files 

The input data files Dynamic #010-1.fez and Dynamic #010-2.fez can be downloaded 

from the RS2 Online Help page for Verification Manuals.  
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11 Lamb’s Problem: S-Wave and P-Wave Propagation 

11.1 Problem Description 

This problem addresses Lamb’s problem [1] which is wave propagation in a semi-infinite 

elastic medium subjected to an impulsive force applied at the surface. In RS2, the field 

problem is simulated using a symmetric model extending to 100 m in the horizontal 

direction and 30 m in the vertical direction. Viscous boundaries are introduced at the 

bottom of the model as well as the maximum horizontal boundaries. The geometry of the 

problem is shown in Figure 11-1. The point load acting on the top left of the model is 

approximated by a triangle load with the duration of 0.025 and the load started after 0.05s. 

The magnitude of the load is 50kN. The value of 7.957747 kN (50kN/2) was used in the 

model because only 1 rad was model. The material properties used in the model are 

summarized in Table 11.1. No artificial damping was used in the simulation. 

 

Figure 11-1: RS2 model of the problem 

 

Table 11.1: Model parameters 

Parameter Value 

Material type Elastic 

Young’s modulus (E) 50000 MPa 

Poisson’s ratio (v) 0.25 

Unit weight ( ) 20 kN/m3 

 

11.2 Results 

Time-vertical displacement at relationship a point on the surface, 50 m away from the 

source as calculated by RS2 is shown in Figure 11-2. Results of a similar problem 

calculated from Plaxis are given in for reference. Please note that artifical damping values 

were employed in Plaxis to obtain the results. 
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Figure 11-2: Vertical Displacement at x = 50m 

11.3 References 

Brinkgreve, R. B. (2012) Plaxis 2D Dynamic Module – Version 2011: Verification, 

Scientific and Dynamic Manuals, Lisse, Balkema.  

11.4 Data Files 

The input data file Dynamic #011.fez can be downloaded from the RS2 Online Help page 

for Verification Manuals.   
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12 Hysteretic Damping 

12.1 Introduction 

The equivalent-linear method is commonly used to determine the wave propagation for 

material subjected to cyclic loading. For example, when soil and rock are subjected to 

seismic motions, the material behaviour involves a modulus reduction curve. The 

equivalent-linear method accounts for the material nonlinearity indirectly by employing a 

modulus degradation. In order to allow the users to reproduce the modulus reduction 

response calculated using the equivalent-linear method, a material model is developed to 

directly account for the strain-dependent modulus and damping function in RS2.  

In this model, we focus on the hysteretic material response under repetitive loading-

unloading cycles. As shown in the loading-unloading plot in Figure 12-1, the initial loading 

is interrupted by a complete unloading, then followed by a loading that continues up to the 

maximum magnitude of the initial loading, then repeat. This case verifies the capability of 

the RS2 model on capturing the effect of nonlinearity of elastic material.  

 

Figure 12-1: Loading-Unloading Cycle 

A model as shown in Figure 12-2 is used to assess the hysteretic damping response of the 

Mohr-Coulomb material model in RS2. Two cyclic loadings are applied at the top and 

middle of a simple square model, respectively. The amplitude of the loading applied in the 

middle of model is half of the loading applied at the top (Figure 12-2). Figure 12-1 shows 

the loading applied at the top of the model. 

The non-linear model in RS2 is developed based on the following: 

 

𝐸𝑚𝑎𝑥 =⁡𝐸0(
𝑏𝑝+𝑎

𝑝𝑟𝑒𝑓+𝑎
)𝑚                                                       (1.9) 

𝐸 = ⁡𝐸𝑚𝑎𝑥(1 + 𝛼
𝛾

𝛾𝑦
)𝑟                                                    (1.10) 
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Where E is the elastic modulus, 

𝛾 is the deviatoric strain depends on the loading history, 

𝑝𝑟𝑒𝑓 is the reference pressure, 

𝑝 is the mean pressure, 

𝑚 is usually between 0.5 and 1.0, 

𝑟 is the degradation parameter which should be less than zero, 

and a, b and 𝛼 are material parameters. 

When an increment of strain is applied to the material, each principal direction is checked 

for a possible change in the loading direction. Once the direction of loading is changed the 

stiffness regains a maximum recoverable value in the order of its initial value, Emax. 

12.2 Geometry and Properties 

The material properties and dynamic analysis parameters are shown in Table 12.1 and 

Table 12.2. Parameter m in this case is equal to zero because the maximum young’s 

modulus (Emax) is constant. 

Table 12.1 – Material Properties 

Analysis ΄ 

(deg.) 

E  

(kPa) 
 

(kN/m3) 

ʋ a b m Pref alpha gamma 

y 

r 

Martin 

et al. 

35 2.57e08 1000 0.286 0 1 0.0 100 1 0.00011 -0.475 

Table 12.2 – Rayleigh Damping Parameters 

𝛼 𝛽 

1.5 0.002 

 

 

Figure 12-2: RS2 Model Geometry 



44 

12.3 Results 

Figure 12-3 illustrates that the RS2 hysteretic response curve agrees with the response from 

FLAC default model. The x-axis contains the shear strain, while the y-axis represents the 

effective shear stress. Two curves are almost identical. The stress-strain path in Figure 12-3 

demonstrates that the stress and strain increase as the initial loading increases, then 

decreases during the unloading part, followed by another increase during the reloading. 

Since it is an elastic model, the strain path always follows the same loop. 

 

Figure 12-3: Hysteretic Damping Graph 

12.4 References 

Itasca Consulting Group Inc. (2011). FLAC version 7.0: Dynamic Analysis. 

12.5 Data Files 

The input data file Dynamic #012.fez can be downloaded from the RS2 Online Help page 

for Verification Manuals.  
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13 Harmonic Shear Wave 

13.1 Introduction 

This verification is from FLAC example 1.7.4 Slip Induced by Harmonic Shear Wave:  

Itasca Consulting Group Inc. (2011). FLAC Dynamic Analysis Version 7.0 (pp. 1.252 – 

1.261).  

This case focuses on the energy dissipation given a homogeneous media under a shear 

wave, separated by a discontinuity in the middle. Absorb boundary is assigned to the top 

and bottom boundary of the model acting as non-reflective boundary, vertical restraints are 

assigned to the two lateral boundaries. The material model is elastic. 

13.2 Problem Description 

A joint boundary is used to simulate the discontinuity in the middle of the media, four joint 

boundary cohesions are assigned to four model to simulate the non-slip surface (2.5MPa) 

and slip surface (0.02MPa, 0.1MPa and 0.5MPa). The friction angle of the joint boundaries 

is equal to zero. 

A shear wave in terms of frequency 𝑤 and time t is given as sin⁡(𝑤𝑡) and applied in the 

horizontal direction at the bottom boundary of the models. Please note that the magnitude 

of the shear wave needs to be doubled in this case, taking consideration of two non-

reflective boundary. 

The RS2 response of the four models are used to determine the coefficient of transmission 

(T), reflection (R) and absorption (A). The coefficients are then compared with the 

analytical solution derived by Miller 1978 where the coefficients are given as following: 
 

𝑅 = √
𝐸𝑅

𝐸𝐼
                                                                   (1.1) 

𝑇 = √
𝐸𝑇

𝐸𝐼
                                                                   (1.2) 

𝐴 = √1 − 𝑅2 − 𝑇2                                                          (1.3) 

 

Where 𝐸𝑅⁡, 𝐸𝐼 , 𝐸𝑇 ⁡are calculated following:  
 

𝐸 = ⁡𝜌⁡𝑐⁡ ∫ 𝑣𝑠
2𝑑𝑡

𝑡1+𝑇

𝑡1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                         (1.4) 

 

Where 𝜌 is the material density, c is the velocity of the propagating shear wave and 𝑣𝑠 is 

the particle velocity in the x direction. For 𝐸𝑅⁡, the energy flux is calculated by determining 

the difference in velocities at the top and bottom points. While for 𝐸𝐼 ⁡and 𝐸𝑇 the energy 

flux is determined by using the velocities at the bottom point and the top point, respectively. 

In order to determine the coefficients T, R and A, the interest of this case is the x-

displacement and x=velocity at the top and bottom time queries as indicated in Figure 13-2. 
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13.3 Geometry and Properties 

Table 13.1: Material Properties 

E  

(kPa) 
 

 (kN/m3) 

ʋ 

2.5e+07 26.5 0.25 

 

13.4 Results 

Figure 13-3 compares the coefficients determined from RS2 results with the analytical 

solution by Miller (1978) in terms of the dimensionless parameter: 
 

𝑤𝛾𝑈

𝜏𝑠
 

 

Where 𝜏𝑠 is the cohesion of discontinuity, U is the displacement amplitude for the bottom 

point in the case of a non-slip surface, 𝛾 equals to the square root of density and shear 

modulus and 𝑤 is the frequency of the applied wave, which is equal to 1 Hz in this case. 

Figure 13-1: RS2 Model Geometry Figure 13-2: Example Horizontal 
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It can be seen from Figure 13-3 that the coefficients from RS2 results agree well with the 

analytical solution by Miller (1978). 

 

Figure 13-3: Comparison of the coefficients calculated from RS2 output with the analytical solution from 

Miller 1978 

13.5 Data Files 

The input data files under the folder Dynamic #013 can be downloaded from the RS2 

Online Help page for Verification Manuals. 
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14 Internal Blast 

14.1 Introduction 

This verification is from FLAC example 1.7.5 Hollow Sphere Subject to an Internal Blast:  

Itasca Consulting Group Inc. (2011). FLAC Dynamic Analysis Version 7.0 (pp. 1.262 – 

1.271).  

This case demonstrates the propagation of a wave caused by a spherical internal pressure 

in a sphere and a rectangle. Absorb boundary is assigned to the outer boundary of the 

model, either circular or rectangular the simulate the isotropic and infinite medium that the 

sphere and rectangle are embedded in. Axisymmetric and plane strain are chosen as the 

analysis type for the circular and rectangular models respectively, given the nature of these 

two geometries. The material model in this problem is elastic. 

14.2 Problem Description 

The dynamic response of the two models is simulated in RS2. A pressure equals to 1kPa is 

applied at the spherical inner boundaries of both models. Figure 14-1 indicates the model 

geometry in RS2. The interest of this case is the propagation of the responsive wave 

translated by plotting the horizontal displacement at different time queries located at 

different distances from the internal pressure. The results are compared to the analytical 

solution by Blake (1052), governed by an equation of compressional wave velocity Cp, 

time t, a potential function ø and Laplacian operator V: 

 

𝜕2ø

𝜕𝑡2
= 𝐶𝑝

2V2ø                                                               (1.1) 
 

In this case, the potential function used to find the radial displacement can be expressed as 

following: 
 

𝑢𝑟 = −
𝑝0𝑎

3𝑘

𝜌𝐶𝑝
2𝑟2

[−1 + √2 − 2𝑣 exp(−𝑎0𝜏) cos (𝑤0𝜏 − 𝑡𝑎𝑛−1
1

√4𝑘 − 1
) + 

𝑝0𝑎
3𝑘

𝜌𝐶𝑝
2𝑟

[
𝑎0
𝐶𝑝

√2 − 2𝑣 exp(−𝑎0𝜏) cos (𝑤0𝜏 − 𝑡𝑎𝑛−1
1

√4𝑘 − 1
) + 

𝑤0

𝐶𝑝
√2 − 2𝑣 exp(−𝑎0𝜏) cos (𝑤0𝜏 − 𝑡𝑎𝑛−1

1

√4𝑘−1
)⁡                                 (1.2) 

 

Where  𝑝0 is the pressure applied on the model; 

a = radius of the sphere; 

𝐾= 
1−𝑣

2(1−2𝑣)
; 

𝑣 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠⁡𝑟𝑎𝑡𝑖𝑜; 
𝑟 = 𝑟𝑎𝑑𝑖𝑎𝑙⁡𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒; 
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𝑎0 =
𝐶𝑝

2𝑎𝑘
 = radiation damping constant; 

𝜏 = 𝑡 −
𝑟−𝑎

𝐶𝑝
 and  

𝑤0 =⁡
𝑐

2𝑎𝐾
√4𝐾 − 1  = natural frequency. 

 

14.3 Geometry and Properties 

Table 14.1: Material Properties 

E  

(kPa) 
 

 (kN/m3) 

ʋ 

2.4975e+07 16.75 0.25 

 

 

 

 

 

 

 

 

 

 

14.4 Results 

The response in Figure 14-2 and Figure 14-3 illustrates that farther locations transmit less 

wave. Figure 14-3 demonstrates that the resulted x-displacement from RS2 using circular 

and rectangular boundary is almost identical and both match the analytical solution 

derived by Blake (1952). 

 

 

 

 

 

 

Figure 14-1: RS2 Model Geometry 



50 

 

 

 

 

 

 

 

 

 

 

 

Figure 14-3: X-Displacement vs Time at Different Time Queries in Comparison with the Analytical 

Solution by Blake (1952) 
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Figure 14-2. Example Horizontal Displacement Results in RS2 
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14.5 References 

Itasca Consulting Group Inc. (2011). FLAC version 7.0: Dynamic Analysis.  

Blake, F.G. (1952). “Spherical Wave Propagation in Solid Media”, J.Acous. Soc. Am., 

24(2), 211-215. 

14.6 Data Files 

The input data files under the folder Dynamic #014 can be downloaded from the RS2 

Online Help page for Verification Manuals. 
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15 Machine Foundation 

15.1 Introduction 

This verification is from FLAC example 1.7.6 Vertical Vibration of a Machines 

Foundation:  

Itasca Consulting Group Inc. (2011). FLAC Dynamic Analysis Version 7.0 (pp. 1.272 – 1.278).  

 

This case concerns the vertical response of the soil directly underneath a rigid strip footing, 

under the cyclic loading applying on the footing. Half of the model is simulated taken 

advantage of the symmetry and therefore fix in x-direction is assigned to the left boundary. 

Absorb boundary is assigned to the right and bottom boundary of the model. Five different 

frequency ratio a0 (0.5, 1, 1.5, 2, 2.5) is used in five models. The stiff footing is modelled 

as beam element with a very large young’s modulus to result in uniform vertical response 

and limit the horizontal and rotational movement of the soil directly underneath the footing. 

The material model in this problem is elastic. 

15.2 Problem Description 

The dynamic response of the five models is simulated in RS2. The cyclic loading applied on the 

footing is in terms of a0 and therefore different in five models.  

The cyclic loading P is expressed as P = 𝑃0 sin⁡(𝑤𝑡), where 𝑃0 is the force amplitude, w is the 

operational frequency and t is the run time for each model as shown in Table 15.2. 

Figure 15-1 indicates the model geometry in RS2. A compliance function of operational frequency 

and phase angle is proposed by Gazetas and Roesset (1979). The interest of this case is the 

compliance function calculated from vertical displacement of the upper left corner in comparison 

with the theoretical one by Gazetas and Roesset (1979). The compliance function expresses the 

amplitude of motion 𝛿0 in terms of the machine force 𝑃0 as following: 

 

𝛿0 = 
𝛿0𝐺

𝑃0
[

𝑓1,𝑣
2 +⁡𝑓2,𝑣

2

(1−𝑏𝑎0
2𝑓1,𝑣

2 )2+(𝑏𝑎0
2𝑓2,𝑣

2 )2
]1/2                                    (1.1) 

 

Where G is the shear modulus of material,  𝑓𝑣,1 represents the recoverable part of the deformation 

while 𝑓𝑣,2 represents the non-recoverable part.  

The dimensionless mass b and frequency ratio 𝑎0 are defined as: 

 

𝑏 = ⁡
𝑀

𝜌𝐵2
     𝑎0 =⁡

𝑤𝐵

𝑉𝑠
                                                   (1.2) 

 

Where ρ = density, 𝑉𝑠 = s-wave velocity of the soil, B = half-width of the strip foundation, which 

is 10ft in this case, M = total foundation mass per unit length and w is the operational frequency. 
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15.3 Geometry and Properties 

Table 15.1: Material Properties 

E  

(kPa) 
 

 (pcf) 

ʋ 

1.12e+07 128.8 0.4 

 

Table 15.2: Dynamic Properties 

a0 W β α Time (s) 

0.5 50.00 0.001000 2.50 1.2566 

1 100.00 0.000500 5.00 0.6283 

1.5 150.00 0.000333 7.50 0.4189 

2 200.00 0.000250 10.00 0.3142 

2.5 250.00 0.000200 12.50 0.2513 

 

Figure 15-1: RS2 Model Geometry 

15.4 Results 

Figure 15-3 illustrates that the compliance function calculated from RS2 response compare 

with the theoretical values well. It should be noted that the agreement is better at higher a0 

because the boundary is supposed to be located at several wavelengths away, otherwise the 

Rayleigh waves do not damp as efficiently.  
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Figure 15-2: Example Vertical Displacement Results in RS2 

 

Figure 15-3: Compliance function comparison between calculated output from RS2 and theoretical values 

by Gazetas and Roesset (1979) 
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15.5 References 

Itasca Consulting Group Inc. (2011). FLAC version 7.0: Dynamic Analysis.  

Gazetas, G., and J. M. Roesset. (1979). “Vertical Vibration of Machine Foundations”, J, 

Geotech., Div. ASCE. 105(GT12), 1435-1454. 

15.6 Data Files 

The input data files under the folder Dynamic #015 can be downloaded from the RS2 

Online Help page for Verification Manuals. 
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16 Seismic Response Case 

16.1 Introduction 

This verification concerns the deconvolution analysis in RS2.  

This model consists of a 300mm tall column, a dynamic velocity is applied at the base of 

the model. Two models with different dynamic boundary conditions are compared. During 

the initial stage, the boundary conditions are the same for both models, fix in x-

displacement is assigned all around the model and fully fixed is assigned to the bottom. 

During the dynamic stage, two different boundary conditions (transmit and tie) are 

assigned all around the model in two models respectively and absorb is assigned to the 

bottom in both models. The models are run with two damping ratios of 3% and 5%. The 

material model in this problem is elastic. 

16.2 Problem Description 

The dynamic response of the two models is simulated in RS2. A compliant base with 

absorbing boundary is used at the base of both models. Figure 16-1 indicates the model 

geometry in RS2. The interest of this problem is the velocity and acceleration at the surface 

of the column under ground motion. An outcrop signal generated in DEEPSOIL with a 

damping ratio of 3% and 5% is inputted in RS2 at the base of the column, the output 

velocity and spectral acceleration at the top of the column are compared to the DEEPSOIL 

results. 

16.3 Geometry and Properties 

Table 16.1: Material Properties 

E  

(kPa) 
 

 (kN/m3) 

ʋ 

2.6e+07 24 0.4 
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16.4 Results 

Figure 16-2 illustrates that the RS2 output ground motions compares well with the outcrop 

signal from DEEPSOIL either with a damping ratio of 5% or 3%. The insignificant 

difference between the two curves is due to the difference in material damping. 

 

 

Figure 16-1: RS2 Model Geometry 
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16.5 References 

Itasca Consulting Group Inc. (2011). FLAC version 7.0: Dynamic Analysis.  

Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Groholski, D.R., Phillips, C.A., and 

Park, D. (2016) “DEEPSOIL 6.1, User Manual”. 

16.6 Data Files 

The input data files Dynamic #016.fez and Dynamic #016_Transmit.fez can be 

downloaded from the RS2 Online Help page for Verification Manuals. 

  

Figure 16-2: Ground Motion Velocity and Spectral Acceleration from RS2 Compared with DEEPSOIL 
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17 Free Field 

17.1 Introduction 

This verification is from FLAC example 1.4.1.4 Free-Field Boundaries:  

Itasca Consulting Group Inc. (2011). FLAC Dynamic Analysis Version 7.0 (pp. 1.23 – 1.29).  

In dynamic analysis, the material damping will absorb most of the energy in the waves 

reflected from distant boundaries. Therefore, absorb boundary is assigned to the base of 

the model and transmit boundary is assigned to the sides of the model to simulate the “leak 

out” effect of the wave energy of the sides. By applying these specific boundary conditions, 

free-field conditions are achieved. 

17.2 Problem Description 

The dynamic response of a model is simulated in RS2. A shear-stress wave is applied at 

the base and free-field boundaries are applied to the lateral boundary. The interest of this 

case is the horizontal displacement and velocity at different time queries. Figure 17-1 

indicates the model geometry in RS2 and the numbers and locations of three different time 

queries. Figure 17-3 illustrates that the x-velocity results from RS2 and FLAC are almost 

identical. 

17.3 Geometry and Properties 

Table 17.1: Material Properties 

΄ (deg.) E  

(kPa) 
 

 (kN/m3) 

ʋ 

11 100000 0.025 0.25 
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Figure 17-1: RS2 Model Geometry 

17.4 Results 

 

Figure 17-2: Example Horizontal Displacement Results in RS2 
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Figure 17-3: X-Velocity vs. Time at Different Time Queries 

17.5 References 

Itasca Consulting Group Inc. (2011). FLAC version 7.0: Dynamic Analysis.  

17.6 Data Files 

The input data file Dynamic #017.fez can be downloaded from the RS2 Online Help page 

for Verification Manuals. 

 

  

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.005 0.01 0.015 0.02 0.025

X
-V

el
o

ci
ty

 (
m

/s
)

Time (s)

X Velocity

Point 1 FLAC Point 1 Flac Point 2 Point 2 Flac Point 3 Point 3



62 

18 Dynamic Pore-Pressure Generation 

18.1 Introduction 

This verification is from FLAC example 1.4.4 Dynamic Pore-Pressure Generation: 

Itasca Consulting Group Inc. (2011). FLAC Dynamic Analysis Version 7.0 (pp. 105-120).  

18.2 Background 

Under rapid loading such as earthquake shaking, the pore pressure is increased and 

therefore the soil particles can readily move with respect to each other in saturated soil, 

causing a loss in the strength and stiffness of the soil. This phenomenon is defined as 

liquefaction. Particularly, when a saturated cohesionless soil is under rapid loading, the soil 

tends to densify, causing a reduce in the effective stress, which leads to liquefaction. 

 

Although liquefaction is induced by the buildup in pore pressure under rapid loading, the 

direct cause of liquefaction is indeed the reduce in effective stress due to the decrease in 

contact forces between soil particles (Dinesh et al. 2004). Under repeated shear cycle, the 

soil grains are forced to rearranged continuously, which then may be forced to move up 

against the adjacent soil particles, leading to dilation of the soil. Therefore, dilation is an 

important element in the liquefaction process.  

 

Liquefaction is expected where induced stresses exceed the soil resistance. In standard 

practice, a liquefaction analysis is performed on soil based on a total stress analysis in the 

following three steps to access the potential for liquefaction of the soils, assuming the 

liquefiable soil remains undrained at the in-situ void ratio (Byrne and Wijewickreme 2006). 

1. Triggering of liquefaction: The cyclic stress ratio (CSR) determined from 

numerical simulation is compared to the cyclic resistance ratio (CRR) derived 

from empirical curves and the factor of safety against triggering liquefaction is 

determined. 

2. Flow Slide Assessment: After the triggering analysis, zones that are predicted to 

liquefy are assigned with post-liquefaction (undrained) strengths, which can be 

analyzed from penetration resistance using empirical charts. A standard limit-

equilibrium analysis is then performed to determine the factor of safety against a 

flow slide. 

3. Seismic Displacements: In this step, the displacement of the potential sliding 

block of soil is predicted using the Newmark approach. The potential sliding 

block of soil is simulated as a rigid mass resting on an inclined plane. An 

acceleration is applied at the base to determine the displacement of the block 

caused by shaking. 

The main concerns of this three-step approach are that the three steps are considered as 

separate steps even though there might be interaction locally in some zones of the soil 
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structure, changing the overall behaviour of the soil mass. Moreover, the changes in pore 

pressure is not considered by this assessment. 

In order to evaluate the pore pressure redistribution, four methods: total-stress synthesized 

procedure, loosely coupled effective-stress procedure, fully coupled effective-stress 

procedure and fully coupled effective-stress bounding-surface procedures can be used, 

depending on the material models of the soils.  

Total-stress synthesized procedure derived by Beaty and Byrne (2000) combines the above 

three steps into one single analysis, the assumption of the undrained behaviour of the soil 

holds true. This procedure uses a total stress approach to liquefaction analysis and relied 

on the adjustment of liquefied element properties at the instant of triggering liquefaction. 

Loosely coupled effective-stress procedure uses the Seed cyclic stress approach by Seed 

and Idrisis (1971) to generate pore pressure from shear stress cycles. This coupled 

effective-stress constitutive model measures the cyclic stress ratio (CSR) of each shear 

stress cycle to compute the incremental excessive pore pressure. The model counts shear 

stress cycles by tracking the shear stress acting on horizontal planes and looking for stress 

reversal and it incorporates residual strength by using a two-segment failure envelope 

consisting of a residual cohesion and zero friction angle that is extended to meet with the 

traditional Mohr-Coulomb failure envelope. The Finn model in RS2 is currently using this 

approach. 

Fully coupled effective-stress procedure focuses on predicting seismic response and 

liquefaction of cohesionless soils in plan strains. The elasto-plastic model is based on a 

hyperbolic relation between stress ratio and plastic shear strain similar to Duncan and 

Chang (1970)’s, which is applicable to the Manzari and Dafalias model in RS2. 

The last one, fully coupled effective-stress bounding-surface procedure provides the 

capability to consider cyclic stress reversal in two and three dimensions. This constitutive 

model can reproduce the behaviour of soil under cyclic loading, including the reduce in 

shear modulus, the increase of hysteretic damping with cyclic shear strain amplitude, the 

shear and volumetric strain accumulation at a decreasing rate as the numbers of cycle 

increases, and the increase in liquefaction resistance with density. This model is applicable 

to the Bounding Surface Plasticity model in RS2.  

Finn Model Formulation 

Since the primary effect of liquefaction is the irrecoverable volume contraction in the soil 

grains, meaning a change in volumetric strain, when the soil is under a strain cycle with 

constant confining stress. If the voids are filled with fluid, the pore pressure and effective 

pressure stay constant if the volume is constant; however, when there is a volume 

contraction, the pore pressure increases and the effective pressure decreases. 

This independency of the volumetric strain and cyclic shear-strain amplitude with respect 

to confining stress is noted by Martin et al. (1975) defined this mechanism as the following 

empirical equation: 
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∆𝜖𝑣𝑑 = 𝐶1(𝛾 − 𝐶2𝜖𝑣𝑑) +
𝐶3𝜖𝑣𝑑

2

𝛾+𝐶4𝜖𝑣𝑑
                                                (1.1) 

 

Where ∆𝜖𝑣𝑑 is the cyclic shear-strain amplitude, 

𝛾 is the engineering shear strain, 

𝐶1, 𝐶2⁡, 𝐶3, 𝑎𝑛𝑑⁡𝐶4⁡⁡are constants equal to 0.8, 0.79, 0.45 and 0.73 respectively. 

It should be noted that the equation takes account of the accumulated irrecoverable volume 

strain 𝜖𝑣𝑑 by decreasing the increment in volume strain as the volume strain is accumulated. 

Presumably, ∆𝜖𝑣𝑑 should be zero if 𝛾 is zero. Martins et al. also compute the change in 

pore pressure by assuming certain boundary conditions that were not clearly stated, which 

are taken care by RS2.  

Another similar formula derived by Byrne (1991) also define this mechanism, in a simpler 

way: 

∆𝜖𝑣𝑑

𝛾
= ⁡𝐶1𝑒𝑥𝑝 (−𝐶2

𝜖𝑣𝑑

𝛾𝐶1
)⁡                                                      (1.2) 

Where ∆𝜖𝑣𝑑 is the cyclic shear-strain amplitude, 

𝛾 is the engineering shear strain,  

𝐶1, 𝐶2⁡⁡are constants, 𝐶1⁡ = 7600(𝐷𝑟)
2, 𝐶2 =

0.4

𝐶1
 

Figure 18-1 illustrates the shear induced volumetric strain for constant amplitude of cyclic 

shear strain predicted by this formula. It can be shown from figure 1.1 that the formula 

predicts the volumetric strain to have an upward tendency with a decreasing rate of 

accumulation as the number of cycles grows. 
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Figure 18-1: Byrne Formula Graph 

The incremental volumetric behaviour of the Byrne model can be expressed as equation 

(1.3): 
 

∆𝜎𝑚 + ⁡𝛼∆𝑝 = 𝐾(∆𝜖 +⁡∆𝜖𝑣𝑑)                                                    (1.3) 

 

Where 𝜎𝑚 = 𝜎𝑖𝑖/3 is the mean stress, 

P is pore pressure, 

𝛼 is Biot coefficient (=1 for soil), 

K is the drained bulk modulus of the soil, 

𝜖 is the volumetric strain. 

For undrained conditions, the change in pore pressure is proportional to the change in 

volumetric strain as: 

 

∆𝑝 = −𝛼𝑀∆𝜖                                                                (1.4) 

 

Where M is Biot modulus. After substitution of Equation (1.4) into (1.3), and solving for 

∆𝜖, the following equation can be obtained: 
 

∆𝜖 = ⁡
∆𝜎𝑚−𝐾∆𝜖𝑣𝑑

𝐾+𝛼2𝑀
                                                              (1.5) 

 

If Equation (1.5) predicts no change in volume, then use ∆𝜖 = 0 in Equation (1.3) gives 

us: 
 

∆𝜎𝑚 + ⁡𝛼∆𝑝 = 𝐾∆𝜖𝑣𝑑                                                        (1.6) 
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Equation (1.6) predicts a decrease in magnitude of effective stress with cyclic shear strain 

which is produced by an increase of shear induced compaction. Under conditions of 

constant stress, ∆𝜎𝑚 = 0, an increase in pore pressure can be observed: 
 

∆𝑝 = 𝐾∆𝜖𝑣𝑑                                                                (1.7) 

 

The increase in pore pressure is proportional to the drained bulk modulus of the soil. 

While under free stress conditions, the pore pressure will remain unchanged (∆𝑝 =
0),⁡and the magnitude of the total stress will decrease according to: 
 

∆𝜎𝑚 = 𝐾∆𝜖𝑣𝑑                                                              (1.8) 

 

Please note that in both situations, the drained bulk modulus, K, is essential in 

determining the magnitude of the cyclic loading impact on effective stress. Therefore, the 

Byrne model captures the important physics of liquefaction. 

18.3 Problem Description 

A shaking table model consist of a box of sand is simulated in RS2. Periodic motion is 

applied at the base, on the two sides of the box and diminishes to zero at the top. Gravity 

is the only vertical loading in this case. The stresses and pore pressure are computed using 

the Martin et al. (1975) and the Byrne (1991) formulas. The α, β and time step are adjusted 

in RS2 to match the dynamic analysis damping parameters defined in FLAC. Figure 1.1 

indicates the model geometry in RS2 and the numbers and locations of three different time 

queries. Figures 1.3a and 1.3b illustrates that the predicted pore pressure at three different 

time queries using either Martin or Byrne formulas has similar trends, and that the pore 

pressure results from RS2 and FLAC are almost identical. 

18.4 Geometry and Properties 

Table 18.1: Material Properties 

Analysis ΄ 

(deg.) 

E  

(kPa) 
 

 (kN/m3) 

C1 C2 C3 C4 

Martin 35 491000 25.0 0.8 0.79 0.45 0.73 

Byrne 35 491000 25.0 0.463234 0.431747 NA NA 

 

 

Figure 18-2: RS2 Model Geometry 
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18.5 Results 

 

 

 

 

 

 

Figure 18-4: Pore Pressure vs. Time at Different Time Queries Using Martin Formula 
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Figure 18-3: Example Pore Pressure Results in RS2 Using Byrne Formula 
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Figure 18-5: Pore Pressure vs. Time at Different Time Queries Using Byrne Formula 
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18.7 Data Files 

The input data files Dynamic #018_Byrne.fez and Dynamic #018_Martin.fez can be 

downloaded from the RS2 Online Help page for Verification Manuals. 

 


