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11. Softening-Hardening Material Model 
Experimental evidence indicates that the plastic deformation in soils starts from the early stages of loading. 
To capture such behavior in a constitutive model the typical elasto-perfect plastic models are not adequate. 
It requires constitutive models that utilize a hardening law after initial yielding.  

The Softening-Hardening Model in RS2 and RS3 has been developed to meet the abovementioned need. 
The model can utilize up to three yield surfaces that includes deviatoric (shear), volumetric (cap) and 
tension cut off. The yield surfaces and hardening characteristics of this model are illustrated in Figure 11.1 
in p-q plane and Figures 11.2 and11.3 show the yield surfaces in 3D stress space. Based on the 
formulations of this model it is apt to say that this model has three different mechanisms, i.e., deviatoric, 
volumetric and tension cutoff. The model is designed to be very flexible with its numerous options and 
formulations. It can take advantage of the various options of elastic behavior that were presented in the 
Chapter 2.  In its simplest form this model can be equivalent to Mohr-Coulomb model, with activation of a 
few options can replace the Duncan-Chang model or the ChSoil model, and by taking advantage of more 
options, including nonlinear elasticity, it can be equivalent to the Hardening Soil, Double yield and CySoil 
model. 

The formulations of these three mechanisms, definition of yield surfaces and their corresponding plastic 
potential and hardening law are presented in the following sections (Pietruszczak 2010). 

 

Figure 11.1. The yield surfaces of the Softening-Hardening model; a) Deviatoric yield surface (red) and 
the vertical cap (green); b) Deviatoric yield surface (red) and elliptical cap (blue) 
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Figure 11.2. Yield surface of Softening-Hardening model with vertical cap in 3D stress space 

 

 

Figure 11.3. Yield surface of Softening-Hardening model with elliptical cap in 3D stress space 
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11.1 Deviatoric Hardening Mechanism  
The deviatoric mechanism is the core of this model and its yield surface is very similar to the yield surface 
of the Mohr-Coulomb model. 

The equation for the Mohr-Coulomb yield surface using the (𝑝𝑝, 𝑞𝑞,𝜃𝜃) invariants is given by  

 

𝐹𝐹𝑠𝑠 = 𝑞𝑞 + 𝑀𝑀�𝑝𝑝 − 𝑐𝑐
tan𝜑𝜑

� = 0  (11.1) 

 

where 

𝑀𝑀 =  3 sin𝜑𝜑
√3cos𝜃𝜃−sin𝜃𝜃 sin𝜑𝜑

  (11.2) 

 

The hardening for this yield surface is considered for the mobilized friction angle (and cohesion) and it is 
attributed to plastic distortion. The equations above are rewritten as: 

 

𝐹𝐹𝑠𝑠 = 𝑞𝑞 + 𝑀𝑀�𝑝𝑝 − 𝑐𝑐
tan𝜑𝜑𝑓𝑓

� = 0        ,      𝑀𝑀 = 3 sin𝜑𝜑
√3cos𝜃𝜃−sin𝜃𝜃 sin𝜑𝜑

 (11.3) 

 

In above 𝜑𝜑𝑓𝑓 is the ultimate/failure friction angle and 𝑐𝑐 and 𝜑𝜑 are the mobilized cohesion and friction angle 
respectively. 

There are two types of hardening law considered for this model. The first one uses a relationship between 
tan𝜑𝜑 and the deviatoric plastic strain presented in equation 11.4. 

 

tan𝜑𝜑 =  tan𝜑𝜑𝑓𝑓
𝜀𝜀𝑞𝑞
𝑝𝑝

𝜀𝜀𝑞𝑞
𝑝𝑝+𝐴𝐴

   (11.4) 

 

where 𝜀𝜀𝑞𝑞
𝑝𝑝 is the deviatoric plastic strain that is generated by the deviatoric mechanism only, and 𝐴𝐴 is a 

positive and constant hardening parameter. 

The second hardening law uses custom tabular piecewise linear values for the mobilized friction angle and 
cohesion with deviatoric plastic strain �𝜀𝜀𝑞𝑞

𝑝𝑝,𝜑𝜑� & �𝜀𝜀𝑞𝑞
𝑝𝑝, 𝑐𝑐� . 

The first hardening law is quite simple and uses only one additional parameter on top of what is required 
for a simple Mohr-Coulomb material model. The second one gives the user the flexibility to define any kind 
of hardening/softening rule that meets their material modelling needs. 

Two options are considered for the plastic potential of the deviatoric hardening yield surface. The first one 
is very similar to that of the Mohr-Coulomb model where a dilation angle (𝜓𝜓𝑓𝑓) is defined and controls the 
dilation tendency of the material. The only difference here is that the defined dilation angle is the dilation 
angle at failure, where the mobilized friction angle reaches its ultimate value (𝜑𝜑 = 𝜑𝜑𝑓𝑓). The actual dilation 
angle used during plastic flow is proportional to the ratio of the mobilized friction angle to its failure value. 
The plastic potential function for this option is given in equation 11.6. 
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𝜓𝜓 =  𝜓𝜓𝑓𝑓
𝜑𝜑
𝜑𝜑𝑓𝑓

  (11.5) 

 

𝑄𝑄𝑠𝑠 = 𝑞𝑞 + 𝑀𝑀𝜓𝜓𝑝𝑝 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐        ,     𝑀𝑀𝜓𝜓 = 3 sin𝜓𝜓
√3cos𝜃𝜃−sin𝜃𝜃 sin𝜓𝜓

     (11.6) 

 

The other option for plastic potential is to define a compaction-dilation angle in such a way that where the 
mobilized friction angle (𝜑𝜑) is less than this angle (𝜓𝜓) the volumetric plastic strain is positive (compaction) 
and when the mobilized friction angle is greater than 𝜓𝜓 the volumetric plastic strain is negative (dilation). 
The plastic potential function for this case is: 

 

𝑄𝑄𝑠𝑠 = 𝑞𝑞 −𝑀𝑀𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝 �
−𝑝𝑝
𝑝𝑝𝑐𝑐
� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐       ,      𝑀𝑀 = 3 sin𝜓𝜓

√3cos𝜃𝜃−sin𝜃𝜃 sin𝜓𝜓
 (11.7) 

 

When used solely, this mechanism, can be a good alternative to the Duncan-Chang model and does not 
have its short fallings. This is also a good alternative for the ChSoil model, and using the various options 
for nonlinear elasticity and the flexibility of the tabular hardening rule gives flexibilities to the behaviors this 
mechanism can simulate. The tabular hardening option can also be used to simulate a softening behavior. 
Note that simulating the softening behavior as a material behavior is not recommended since it will make 
the finite element solution results unreliable and mesh dependent. The apparent softening behavior that is 
observed in laboratory tests is to be simulated, for example, by taking advantage of more complex 
formulations that can deal with strain localization shear banding.  

 

11.2 Volumetric Hardening Mechanism  
The main role of the volumetric mechanism (cap) is to close the elastic domain in space (𝑝𝑝 − 𝑞𝑞) on the 
hydrostatic (𝑝𝑝) axis and simulate the densification/compaction of the material. Addition of the cap yield is 
optional in this model but when activated there are two options for the it, vertical cap and elliptical cap. 

The yield surface of the vertical cap is defined as follows. 

 

𝐹𝐹𝑐𝑐 = 𝑝𝑝 + 𝑝𝑝𝑐𝑐 = 0 (11.8) 
 

where 𝑝𝑝𝑐𝑐 is the location of the intersection of this yield surface with the 𝑝𝑝 axis. With activation of the vertical 
cap this model is equivalent to Double-Yield model.   

The elliptical cap is very similar to the yield surface of the modified Cam-Clay model with an offset to 
consider the cohesion that was defined in the deviatoric mechanism. 

 

𝐹𝐹𝑐𝑐 =  � 𝑞𝑞
𝑀𝑀𝑓𝑓
�
2

+ �𝑝𝑝 − 𝑐𝑐
𝑡𝑡𝑡𝑡𝑡𝑡𝜑𝜑𝑓𝑓

� (𝑝𝑝 + 𝑝𝑝𝑐𝑐) = 0      ,        𝑀𝑀𝑓𝑓 =  
3 sin𝜑𝜑𝑓𝑓

√3cos𝜃𝜃−sin𝜃𝜃 sin𝜑𝜑𝑓𝑓
 (11.9) 
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Activation of the elliptical cap makes this model similar to the Hardening Soil and CySoil models. The 
difference between the cap in this model with the cap in the Hardening Soil and CySoil is that the apex of 
this cap tracks the ultimate shear yield surface. This cap is similar to the yield surface of modified Cam Clay 
model in that at ultimate shear failure the cap will be at critical state condition and will not generate any 
compaction.  

The hardening for these yield surfaces is considered for 𝑝𝑝𝑐𝑐 and it is attributed to volumetric plastic strain. 
The built in function for the hardening follows the same hardening law as in the Modified Cam-Clay model: 

 

(𝑝𝑝𝑐𝑐)𝑛𝑛+1 = (𝑝𝑝𝑐𝑐)𝑛𝑛exp �Δ𝜀𝜀𝑣𝑣
𝑝𝑝

𝜆𝜆
� (11.10) 

 

where 𝑛𝑛 is the step number, 𝜀𝜀𝑣𝑣
𝑝𝑝 is the volumetric plastic strain, and 𝜆𝜆 is the difference between the slope of 

normal consolidation line and the swelling line. This hardening rule is similar to the hardening rule of Cam 
Clay model. 

Tabular hardening law which uses custom tabular piecewise linear values for 𝑝𝑝𝑐𝑐 versus volumetric plastic 
strain �𝜀𝜀𝑣𝑣

𝑝𝑝,𝑝𝑝𝑐𝑐�  is also available for this model. This option will give the flexibility to use any other hardening 
law for the cap, e.g., the hardening rules used in Hardening Soil or CySoil models. 

The flow rule is associated for this yield surface. 

 

11.3 Tension Cut-Off  
This mechanism is to incorporate the tensile strength of the material to this model. In this mechanism the 
minor principal stress is limited to the tensile strength of the material. The flow rule is associated and the 
mechanism has no hardening. 

𝐹𝐹𝑇𝑇 = 𝜎𝜎3 − 𝑇𝑇 = 0      (11.11) 
 

In above 𝑇𝑇 is the tensile strength of the material.   

 

11.4 Examples  
Figure 11.4 and 11.5 shows the experimental and numerical results of drained triaxial tests on loose and 
dense Hostun sand respectively. The experimental results of drained triaxial test on dense and loose 
Hostun sand are depicted from Schanz and Vermeer (1996). All the triaxial tests start from an initial 
hydrostatic confinement of 300 kPa.  The numerical results are obtained by using only the deviatoric 
hardening mechanism with compaction-dilation option for the plastic flow and a linear elastic behavior. The 
hardening rule for the loose Hostun sand uses the form that is presented in Equation 11.4. The Dense sand 
is simulated once by using the same hardening rule as in Equation 11.4 and by using a tabular function to 
capture the softening behavior. The model parameters are presented next to the graphs. Stress paths of 
the drained tests include variations of axial stress and volumetric strain with increasing axial strain, variation 
of deviatoric stress with deviatoric strain and the stress path in p-q plane. The ultimate yield surface of the 
deviatoric mechanism is also shown in the p-q plane. The simulated behavior captures the hardening 
behavior and the gradual compaction of loose sand. In the case of dense sand, the initial compaction that 
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follows with dilation is fully captured with the help of the appropriate choice of plastic flow option. The 
hardening of dense sand is captured by both options of the hardening rules that are used here, but only the 
tabular hardening option can capture softening behavior.  

Figure 11.6 shows the experimental and numerical results of an undrained triaxial test on loose Banding 
sand. The experimental results of undrained triaxial test on Banding sand are depicted Castro (1969). The 
triaxial test starts at the initial confinement of 400 kPa. The generation of excess pore water pressure in 
loose sands under undrained conditions can lead to static liquefaction and total loss of strength. This 
phenomenon can be observed in Figure 6. The simulation results presented in this figure are in good 
agreement with the experimental results. 

 

Figure 11.4. Stress paths of drained triaxial tests on loose Hostun sand 
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Figure 11.5. Stress paths of drained triaxial tests on dense Hostun sand 

 

 

Figure 11.5. Stress paths of undrained triaxial tests on Banding sand 
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