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Abstract 

This paper demonstrates the ability of Shear Strength Reduction (SSR) analysis based on the Finite Element Method 
(FEM) to model the scale effects of discontinuity networks on the stability and failure mechanisms of slopes in 
blocky rock masses. Through three examples, it shows how these mechanisms depend on joint network geometry 
and change with increasing slope height.  
 
Introduction - Scale Effects and the Stability of Slopes in Rock Masses 
It has been long recognized in rock mechanics that discontinuities (geological structures) significantly 
influence the response of rock masses to loadings and excavation (Goodman et al, 1968, Manfredini et al, 
1975, Cundall et al, 1975, Bandis et al, 1983). It has also been long observed from slope and other 
failures that this influence is not the same at different scales (excavations sizes). Generally, at smaller 
scales discontinuities exert greater influence on behaviour than do intact rock properties.  In small slopes, 
failure mechanisms such as planar wedges, which are controlled by joints, are common. As the scale 
increases more complex mechanisms such as step-path failures and rotational shear failure, which 
combine failure along discontinuities with shearing through intact rock bridges, begin to occur. These 
complex mechanisms can follow overall curved paths that can be similar to those encountered in soils. 
Toppling and columnar flexural bending or buckling are other failure mechanisms that can occur with 
increasing slope scale.   
 
At intermediate and large scales, anticipation or prediction of the stability of rock slopes and the manner 
in which they can fail can be very difficult. This is because at such scales stability is affected by the 
strength and deformation properties of both intact rock and joints, the geometry and distribution of joints 
throughout a rock mass, and stress and groundwater conditions.  
 
Of the numerical methods used for the stress analysis today, the family of Discrete Element Methods 
(DEMs) and Discontinuous Deformation Analysis (DDA) have been considered to be the most well-
suited to the problems of blocky rock masses. Recently however, it has been demonstrated that the Finite 
Element Method (FEM) with explicit representation of discontinuities with joint elements is a credible 
alternative  (Hammah et al, 2009, 2008 and 2007). This paper examines the ability of the FEM to capture 
the variation of factor of safety and failure mechanism of blocky rock mass slopes with scale. The paper 
will show that such modelling can help engineers to understand the behaviour of blocky rock slopes at 
different scales much better, and to more accurately predict failure mechanisms and factors of safety. 
 
Application of the Finite Element Method (FEM) to Problems of Blocky Rock Masses 
Due to the widespread availability of powerful desktop and laptop computers, the FEM with explicit 
modelling of the behaviour of individual joints can be used for practical engineering in blocky rock 
masses. This has also been facilitated by the development of techniques for generating networks of 
discrete fractures,  and the development of the Shear Strength Reduction (SSR) method. SSR analysis 
(Dawson et al, 1999, Griffiths and Lane, 1999, Matsui and San, 1992) allows factors of safety of slopes to 
be calculated with numerical methods. Studies have confirmed the accuracy of the FEM-SSR technique in 
general and for the variety of failure mechanisms encountered in rock slope engineering (Dawson et al, 
1999, Griffiths and Lane, 1999, Hammah et al, 2005 and 2007).  
 



Although FEM-based SSR analysis is an alternative to conventional limit equilibrium methods in many 
cases, its ability to readily combine slip along joints with failure through intact material offers several 
advantages in the modelling of blocky rock mass problems. The method can model the broad range of 
behaviours of slopes at different scales, from wedge sliding to toppling and rotational failures (Hammah 
et al, 2007). As well it can easily handle cases in which fractures intersect in a manner such that discrete 
blocks may not necessarily be formed, i.e. cases in which joints may terminate within intact rock and not 
only at intersections with other joints (Hammah et al, 2008). Perhaps, the greatest benefit of FEM-based 
SSR analysis is that it can automatically determine the broad variety of failure mechanisms with no prior 
assumptions regarding the type, shape or location of these mechanisms. These advantages will be 
demonstrated on simple slope examples to be described next. 
  
Three Test Examples 
The ability of FEM-SSR to capture the effects of scale on stability (factor of safety) and mode of failure 
of slopes in blocky rock masses was tested on three simple examples. The strength and deformation 
properties of intact rock and joints are provided in Table 1. Phase2, a two-dimensional finite element 
program for modelling geotechnical excavations, was the numerical analysis tool used. Factors of safety 
were determined within a tolerance of 0.05. This degree of accuracy facilitated a good balance between 
reasonably fast computation and accurate factor of safety values. 
 
Table 1: Strength and deformation properties of intact rock and joints. 
Material Properties 
Intact Rock Unit weight = 0.027 MN/m3 

Young’s Modulus = 20000 MPa 
Poisson’s ratio = 0.3 
Tensile strength = 0 MPa 
Cohesion = 1 MPa 
Friction angle = 30 degrees 
Dilation angle = 0 degrees 

Joints Dip (of Joint Set 1) = 0 degrees 
Dip (of Joint Set 2) = 45 degrees 
Spacing = 3m 
Normal stiffness = 100000 MPa/m 
Shear stiffness = 10000 MPa/m 
Tensile strength = 0 MPa 
Cohesion = 0.5 MPa 
Friction angle = 20 degrees 

 
In all three examples, a slope with a face angle of  1:3 (ratio of one horizontal to three vertical)  was 
assumed. Each example had a different discrete fracture (joint) networks. Example I  involved a rock 
mass with two sets of infinite, parallel joints. One joint set dipped at an angle of 36 degrees (measured 
clockwise from the horizontal axis), while the other dipped at -45 degrees, i.e. at 45 degrees anticlockwise 
from the horizontal. The spacing of each joint set was assumed to follow a normal distribution with a 
mean of 2.5m and standard deviation of 0.5m. Lastly, the Example I joints were assumed infinitely long, 
leading to the formation of discrete blocks throughout the rock mass. The resulting joint network is shown 
on Figure 1a. 
 
Example II involved a similar joint network except that this time the joints were assigned finite lengths 
that were normally distributed with a mean length of 10m and standard deviation of 1m. Each of the two 
joint set was assumed to have a constant length persistence of 0.8. The Example II joint network pattern is 
shown on Figure 1b. 
 



The third example modelled a rock mass comprising irregularly-shaped polygonal blocks, which can be 
represented by a Voronoi tessellation. It was assumed in this example that the Voronoi polygons had a 
density (number of polygons per unit area) of 0.2 /m2. The joint network pattern for this example is 
provided on Figure 1c. 
 
For each of the three examples two conditions were examined for joint ends exposed at the surface (slope 
face, and upper and lower slope surfaces). In the first scenario, joints ends were assumed 'open' at the 
surface, meaning that the two opposing faces of a joint were free to slip relative to each other at exposed 
faces. Under the second scenario, joint end conditions were assumed 'closed' - this  opposing joint faces at 
exposed faces from slipping relative to each other.  
 
Six different slope heights - 10m, 20m, 30m, 60m, 90m and 120m - were considered in each joint 
network example. A factor of safety was calculated for every slope and the failure mechanism noted. 
Table 2 lists all the calculated factors of safety. Due constraints on paper length, images of the failure 
mechanisms are provided in only a few instances.  
 

      
 
 

   
 
 
 
Figure 1: Geometry of joint networks used in the three examples in the paper. 

Figure 1a: Joint network pattern comprising two 
sets of infinitely long joints used in Example I 

Figure 1b: Joint network pattern comprising two 
sets of finite joints used in Example II 

Figure 1c: Joint network pattern comprising 
Voronoi polygons used in Example III 



Table 2: Factors of Safety 
Slope Height 
(m) 

Example I Example II Example III 
'Open' at 
Slope Face 

'Closed' at 
Slope Face 

'Open' at 
Slope Face 

'Closed' at 
Slope Face 

'Open' at 
Slope Face 

'Closed' at 
Slope Face 

10 2.8 4.4 5.6 9.35 6.85 15.55 
20 1.3 1.75 2.4 3.1 4.6 5.45 
30 1.05 1.3 1.35 1.85 2.4 2.9 
60 0.7 0.75 0.9 1.05 1.5 1.6 
90 0.6 0.6 0.8 0.85 1.15 1.2 
120 0.55 0.55 0.7 0.65 1.15 1.2 
 
Discussion 
From the factor of safety values given in Table 2, it can be seen that FEM-SSR analysis captures scale 
effects induced by the presence of fractures in rock masses. For each slope condition, factor of safety 
reduced with increasing slope height, and failure mechanism varied with slope height.  
 
The results showed that at small slope heights factors of safety differed significantly between the two 
joint end condition scenarios. Consistently, 'closed' joint end conditions yielded factors of safety 
considerably higher than those calculated for 'open' conditions. However with increasing slope height 
these differences tailed off and just about disappeared at slope heights of (around) 90m and beyond for 
the three examples in this paper. At slope heights of about 90m and higher, the factors of safety for the 
two joints end conditions became near identical.  
 
Although this influence of joint end conditions is not unanticipated, the fact that it is well modelled by 
FEM-SSR indicates the usefulness of the technique. The technique correctly captures the increase in 
stability when exposed joint ends are pinned and therefore force the mobilization of more blocks in order 
for failure to occur. The nature of this effect, captured by FEM-SSR, becomes more evident when the 
failure mechanisms of the slopes are examined. 
 
From FEM analysis, slope failure mechanisms can be deduced from plots of contours of total 
displacement and (exaggerated) outlines of joint deformations. As a result these plots are shown on the 
remaining figures in the paper for indicating the manner in which analyzed slopes are predicted to fail.  
 
Figures 2 to 7 show the failure mechanisms for Example I, the case of infinite joints. For both the 'open' 
and 'closed' joint end conditions, the 10m slope failed as a result of sliding of blocks. However, in the 
case of 'pinned' end conditions more blocks are involved in the sliding.  
 
At a height of 20m the slope fails (Figures 4 and 5) predominantly through sliding along the joint day 
lighting closest to the slope toe, but also involves more movement through intact rock in the upper parts 
of the sliding mass. Such movement becomes possible through failure of intact material. Figures 6 and 7 
indicate that at heights of 60m and beyond the failure surface acquires rotational-type (curved) features, 
but retains the tendency to slip along pre-existing joints near the slope toe.   
 
For Example II, because the joint pattern is such that discrete blocks are not readily formed, the slope 
mechanisms are more complex than in Example I, even for small slope heights as evident on Figures 8 to 
13. The failure mechanism for the Example II 60m slope  involves a series of local step-path failures that 
overall have a slightly curved shape. For the 120m slope with open joints (Figure 13) the failure 
mechanism was step-path at a local scale, but quite linear overall. The 'closed' joint counterpart (not 
shown) had a more curved overall shape. 
 



In Example III all the failure mechanisms had curved overall shapes. This suggests that when there are no 
dominant or preferred directions of weakness planes, rock slope failure mechanisms become quite similar 
to those encountered in soils. 
 

       
 
 
 

         
 
 
 

      
 

Figure 2: Failure mechanism for 10m slope - 
case of 'open' joint ends 

Figure 3: Failure mechanism for 10m slope - 
case of 'closed' joint ends 
 

Figure 4: Failure mechanism for 20m slope - 
case of 'open' joint ends 

Figure 5: Failure mechanism for 20m slope - 
case of 'closed' joint ends 

Figure 6: Failure mechanism for 60m slope - 
case of 'open' joint ends 

Figure 7: Failure mechanism for 90m slope - 
case of 'open' joint ends 



      
 
 

      
 
 

       
 
 

Figure 8: Failure mechanism for 10m 
Example II slope - case of 'open' joint ends 

Figure 9: Failure mechanism for 10m 
Example II slope - case of 'closed' joint ends 

Figure 10: Failure mechanism for 20m 
Example II slope - case of 'open' joint ends 

Figure 11: Failure mechanism for 20m 
Example II slope - case of 'closed' joint ends 

Figure 12: Failure mechanism for 60m 
Example II slope - case of 'open' joint ends 

Figure 13: Failure mechanism for 120m 
Example II slope - case of 'open' joint ends 



    
 
 
 

     
 
 
 
 

    
 
 
 
 

Figure 14: Failure mechanism for 10m 
Example III slope - case of 'open' joint ends 

Figure 15: Failure mechanism for 10m 
Example III slope - case of 'closed' joint ends 

Figure 16: Failure mechanism for 20m 
Example III slope - case of 'open' joint ends 

Figure 17: Failure mechanism for 20m 
Example III slope - case of 'closed' joint ends 

Figure 18: Failure mechanism for 60m 
Example III slope - case of 'open' joint ends 

Figure 19: Failure mechanism for 120m 
Example III slope - case of 'open' joint ends 



Conclusion 
Previous research had shown that numerical methods based on conventional continuum, elasto-plastic 
assumptions can model the effects of varying scale on the stability of slopes (Hammah et al, 2008). 
However, these methods still predict only simple, rotational-type failures. The examples provided in this 
paper demonstrate that the FEM with explicit representation of joints, on the other hand, captures the 
complicated variation of slope failure mechanisms with changing scale. They show that, combined with 
SSR, this type of FEM analysis has great potential to help rock slope engineers better understand and 
predict the stability of slopes in blocky rock.  
 
The increased factor of safety for 'closed' joint ends cases over their 'open' counterparts for small scale 
slopes confirms the effectiveness of support measures such as bolting and wire meshes that essentially 
force exposed joint ends to move together. The modelling in the paper also confirms the loss in efficiency 
of such support with increasing slope height, and suggests that other stabilization methods be considered 
for large slopes. 
  
Although we are confident that the predictions of the method would correspond well to real-world 
behaviour, it would be of great benefit if future research could critically examine and verify the 
performance of FEM with SSR on real examples and case studies. With increased confidence in the 
approach, engineers could use its tools to better design blocky rock slopes and regulate their behaviour. 
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