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Abstract

Three-dimensional Analysis of Lenticular Orebodies Using

Displacment Discontinuity Elements

Doctor of Philosophy, 1998
Thamer Y acoub

Department of Civil Engineering, University of Toronto

The most appropriate numerical techniques for the analysis and design of
excavations, pillars and mining sequences in lenticular orebodies is the displacement
discontinuity method (DDM). This thesis examines three important facets of the DDM
and makes improvements in these areas that affect the efficiency of the method in its
application to the crack-type problems, arising in the mining of lenticular or seam
deposits.

The introduction of the concept of node sharing between adjacent elements into
the DDM, is the first aspect covered in the thesis. The node-sharing formulation of the
DDM was made possible after the introduction of a new and unified framework for
evaluating the singular boundary integrals that exist in the Green’s functions of the
displacement discontinuity method. The new integration method is based on the
continuation approach.

The formulation of a new displacement discontinuity element — the enhanced
displacement discontinuity (EDD) element — was the second major undertaking of the
thesis. This new formulation provides information on the in-plane (confinement) stresses

in an element, something the conventional DDM does not consider. The EDD element



creates an automated and more flexible way of modelling different degrees of
confinement, expected to occur in unmined orebody zones (i.e. pillars and abutments).
With the inclusion of confinement into the formulation of the enhanced DD element, it
can be readily used to analyse yielding pillars, since all components of the stress tensor at
apoint in amaterial are explicitly taken into account.

Finally, the thesis looked at the development of a methodology in the EDDM for
modelling the post-peak behaviour of pillars. The progressive failure procedure was
incorporated into the EDDM to create a program for simulating post-failure pillar
response. The progressive failure procedure relies on a smple quasi-elastic constitutive

relationship, and uncomplicated failure criteriato model failed pillar material.
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The research performed for this thesis has led to the following contributions to the
body of engineering knowledge
1. A node-centric formulation to the displacement discontinuity method. The
development of this thesis contributed in the following issues
i) Establishing unified integration methodology for solving singular integrals through
the use of boundary functions.
ii) Deriving the required boundary functions for the two- and three-dimensional node-
centric displacement discontinuity method
iii) Implementing and testing the boundary functions for practical engineering
problems
2. An enhanced displacement discontinuity element for lenticular orebodies analysis.
Through the understanding of the original formulation of the displacement
discontinuity method, a new displacement discontinuity element was derived in this
thesis. The enhanced formulation introduces an additional displacement discontinuity
variation to the traditional DD approach. This new formulation provides information
on the confinement stresses in an element.
3. A post-peak response of pillars using the enhanced displacement discontinuity
element. The development of the enhanced DD element in finding the complete stress
tensor widens the applicability of the method to analyse the yielding pillars. The

progressive failure procedure is chosen to simulate rock failure in this thesis.
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Chapter 1

Introduction

1.1 Geomechanical Mine Design and Analysis

The analysis and design of mine structures (shafts, drifts, entries, pillars and other
forms of support, etc.) is important for the safe and economic extraction of ore from
underground mines, a fact which cannot be overemphasised [1,2]. The rock mechanics
design and analysis of mine structures involves the establishment of parameters such as
stope and pillar dimensions, pillar layout, stope mining sequence, pillar extraction
sequence and type of rock support [3]. The purpose is to ensure that the local stability of
stopes and the general control of rock response in regions close to stope activity are
ensured while maintaining the maximum extraction of ore.

The design and analysis of underground structures poses many difficult problems
to the rock mechanics expert or rock engineer. For many of these problems, analytical
solutions either do not exist, or are extremely difficult to determine. This is often due to
factors such as complex problem geometry, non-homogeneous material properties or
their combination. More general design tools rely on numerical or empirical techniques
[4,5].

Additional source of considerable difficulty in mine design is the uncertainty
inherent in data collected on rock strata properties. The properties of geological domains,
exhibit a very wide range of variability. In certain regions, the properties of rock masses

may vary considerably over small volumes, making it very hard to extrapolate or even



interpolate rock properties. Aside of the great variability in properties of rock masses,
there is al'so uncertainty associated with the determination of their properties in localised
zones, because the determination of the geomechanical properties of rock samples is not
aways simple or straightforward. In addition, the behaviour of rock masses differs from
that of the small samples tested in lab or field as a result of which the geomechanical
properties determined from samples may not be representative of those of the rock mass
from which the samples were taken.

The difficulties associated with the uncertainty in the geomechanical properties of
rock masses indicate that the design of mining stopes and excavations calls more for a
gualitative, rather than purely quantitative, evaluation of the performance of rock in the
vicinity of excavations and that in the far-field. The magjor aim of analyses of thistypeis
therefore to gain physical insight into a problem, and to better understand the influence of
the various factors that govern the overal stability of mine structure [6]. Numerical
methods are very useful in performing parametric studies under such circumstances. They
can be used to evaluate a number of feasible of mining options. These methods are not
only appropriate for parametric studies, but can aso be used to identify and explore
appropriate mine layouts and sequences. The knowledge gained from such analyses can

be used to develop detailed ore production schemes.

1.2 Numerical Methods

Numerical methods have undergone maor development during the last three
decades. Their application in engineering design has seen considerable increase, because

of the increasing computing power and falling costs of computers. With numerical



methods, problems that involve complex geometry, non-linear materia behaviour,
multiple material types, and combinations of these factors, can be solved. Because of
their abilities to model a very broad spectrum of engineering problems and handle the
modelling difficulties described above, they have made it possible to solve problems that
previously could not be attempted with analytical methods.

Based on the form of approximation involved, numerical methods can be
classified into two categories. domain methods and boundary methods [7]. In domain
methods, boundary conditions are exactly satisfied, while governing differential
eguations in a material domain are satisfied approximately. On the other hand, boundary
methods satisfy governing equations throughout a problem domain, but approximate
boundary conditions. The two most popular domain numerical methods are the finite
element method (FEM) and the finite difference method (FDM). The FEM is the most
versatile, and powerful and common of all the different numerical techniques currently
available. The boundary element method (BEM) is a boundary method.

Numerical methods do not have the same range of applicability for all classes of
problems. Particular numerical methods may be advantageous in some situations and
disadvantageous in others. The selection of a numerical technique for a problem depends
on the ability of the technique to satisfy the objectives and requirements of the problem.
In the following sections, brief descriptions and range of applications for the two most

commonly used numerical methods, the FEM and BEM, are provided.

1.2.1 Finite element method (FEM)

As stated earlier, the FEM is the most popular numerical method and is used in a



wide variety of engineering fields. In the method, a material domain or body is divided
into elements of various shapes. Each element is connected to others at nodes, which are
the corners of elements [8]. Boundary conditions are specified for the problem, and the
governing differential equations approximated by developing approximations of the
connectivity between elements, and the continuity of displacements and stresses between
elements. A system of equations is then assembled for the problem and solved for the
unknown nodal stresses and displacements.

The FEM can be used to model mining excavations by replacing the rock
continuum around an excavation with a number of individual elements. It can model the
enlargement of mining openings or stopes, as well as model the build-up of material
(back-fill) in existing stopes. The strength of the FEM in mine design liesin its generality
and ability to handle problems involving non-homogeneous material domains (different
types of material) or geometric non-linearity.

The true boundary conditions on the surfaces of excavations can be easily and
correctly represented in the FEM. However, the method cannot explicitly simulate far-
field conditions in problems with infinite or semi-infinite domains. To simulate far-field
conditions, the FEM requires the definition of an arbitrary outer boundary with boundary
conditions that approximate far-field conditions. For cases, in which more than one
excavation is to be anaysed, the outer boundary has to be located at a considerable
distance from the excavations (beyond the zone of influence of the excavations). Errors

due to discretisation occur throughout a problem domain as a result.



1.2.2 Boundary element methods

Boundary element methods, are particularly attractive for solving the class of
problems involving large domains and linear material response. It can also be used for
non-linear problems[9].

In the BEM, only the boundaries of a problem domain are discretised. This
produces a reduction of one in the dimensionality of problems. Unlike the FEM,
discretisation errors in the BEM occur only on problem boundaries and it correctly
models far-field conditions. The BEM uses fundamental solutions that satisfy the
governing differential equations of a problem to determine the influence of elements on
one another. When the integral equations for all elements are assembled, the resulting
system of equations can be solved for unknowns. Once all boundary unknowns have been
solved for, field quantities, such as stresses and displacements, at any point in the

problem can be obtained [10].

1.3 Requirements of a Mining Analysis Tool

Problems involving analysis of temporary mine excavations such as stopes and
drifts, possess characteristics that restrict the choice of numerical methods for their
solution. The following are some of the attributes of numerical techniques that are
essential and desirable for practical stress analysisin underground mining design:

(i) The numerica method selected for the design of stopes should be capable of
efficiently handling the large domains, typically encountered in problems of
underground mining [11]. If a method that requires extensive discretisation of

domains is used, large numbers of elements and nodes have to be employed to



(i)

(iii)

(iv)

(v)

(vi)

sufficiently represent the problem. This in turn leads to huge systems of equations
that demand considerable computational resources and time to solve. In view of the
fact that there is a substantial uncertainty associated with mine data, analyses have
to be performed severa times in order to obtain a proper understanding of the
possible consequences of stope activity. Consequently, methods involving extensive
discretisation are not desirable for such analysis.

The computational technique used for the analyses of underground mine
excavations should be able to accurately model far-field conditions.

When analysing underground excavations, not all zones require the calculation of
very accurate displacements and stresses. For zones that demand high accuracy,
finer discretization or meshes have to be used. Away from these areas coarser
meshes can be employed to reduce the time required for calculations. This means
that numerical methods for such analysis must allow meshes with different sized
elements to be used in problems.

Pillars in underground mine excavations usually have material properties different
from that of the host rock. The properties of the pillars are that of the orebody.
Therefore, numerical methods for modelling such excavations should have the
capability to handle the different material properties.

Pillars are usualy subjected to loads, which induce stresses exceeding the elastic
limits of the pillar material. Therefore, numerical models for their analysis should
be able to capture post-failure material behaviour.

Mine layouts for flat-lying lenticular orebodies involve parallel-sided openings that

are characterised by plan dimensions much greater than opening heights. Stresses



around such openings vary greatly over small distances and therefore require either
extensive discretisation around the openings, or elements that can account for this
rapid stress variation.

(vii) For most mining excavations, the assumption of two-dimensional plane strain
analysis is violated due to the complex three-dimensional layout of excavations. As
a result, three-dimensional analysis has to be performed to determine the states of
stress induced in rock material in the vicinity of excavation surfaces (near-field).
The difficulties mentioned above, concerning the sizes of equation systems and
meshing, are more challenging in three-dimensional numerical analysis than in two-

dimensional analysis by an order of magnitude.

1.4 Choice of Numerical Model for the Analysis of Lenticular

Orebodies

Although the finite element method is a very powerful and flexible technique, and
has been used to analyse a wide range of geomechanics problems, its usefulness for the
mining stope problems is restricted by many of the above-enumerated practical
considerations [11]. Because the FEM requires surface and volume discretisation of
problem domains, it uses a relatively large number of elements and presents meshing
problems, especially in three-dimensional analysis. Even with efficient automated
facilities, mesh generation and the checking of meshes for problems involving complex
three-dimensional layouts is difficult. Also the FEM does not simulate far-field
conditions accurately unless an extensive region around excavations is discretised. When

the computing resources and time needed to determine solutions of problems is combined



with the need for multiple and parametric analyses of the same problem, it becomes
evident that the method is not the most suitable for mine analysis.

In contrast, the boundary element method requires only the discretisation of
surfaces, and thus uses much smaller numbers of elements than the FEM. This leads to
smaller systems of equations in the BEM, easier mesh generation, faster computing
times, and a reduction in the need for significant computing resources. The BEM
inherently deals with the infinite and semi-infinite domains of mining problems and
matches far-field conditions exactly.

An additional attraction of the BEM is its ability to evauate stresses and
displacements at specific points of interest in a problem domain, without re-meshing or
calculating values for the entire domain. For example, if the stresses and displacements
along the lengths of extensometers are needed from a model in order to check them with

field measurements, those specific values can be readily calculated in the BEM.

1.4.1 Variations of the boundary element method

Generdly, for stress analysis, there are two distinct types of boundary element
formulations. These are the direct BEM and the indirect BEM. The displacement
discontinuity method (DDM), a method commonly used in the analysis of dlit-like
openings in rock masses, is atype of indirect BEM. Because the DDM is very suitable for
the analysis of thin crack-type excavations, the focus of this research, it shall also be

described in detail below.



1.4.1.1 The direct boundary element formulation

Direct boundary element methods use fundamental theorems, which relate
differential equations over a domain to integrals over the boundaries of the domain, to
obtain integral equations. The variables in the direct formulation of the BEM are
meaningful physical attributes of a problem, such as tractions and displacements.
Solution of the integral equations for the elements into which a boundary is discretised

directly yields the desired values of the unknown variables on the boundary.

1.4.1.2 The indirect boundary element formulation

The indirect formulation uses singular solutions, which satisfy the governing
differential equations of the problem, with specified unknown densities on the boundaries
in a problem. These unknown densities (known as fictitious stresses, for example, in the
fictitious stress method) generally have no physical meaning. They can be determined
from the boundary integral equations for a set of prescribed boundary conditions.
Displacements and stresses on the boundaries, as well as in the domain, can then be

obtained indirectly from the fictitious variables.

1.4.1.3 The displacement discontinuity method

For thin dlit-like openings or crack-type elements, the boundaries of the two
opposing surfaces are very close to each other, thereby practically coinciding. Such
conditions create numerical instabilities for both the direct and fictitious stress method. It
follows therefore that special techniques are needed for modelling the mining of seam or

lenticular orebodies.



The displacement discontinuity method is ideally suited for solving problems
involving crack-type excavations. Although the DDM is technically a type of indirect
BEM, the unknown variables in it represent physically meaningful aspects of the
problem. The relative movement between the roof and floor of an excavation is treated as
a displacement discontinuity. The norma component of the displacement discontinuity
vector is called the closure and the transverse components are called the ride components
(Fig. 1.2). Since both the top and floor in the mine excavation are included in one
element, numerical instability is eliminated. As well, the inclusion of two surfaces in the
elements brings about a reduction in the number of elements required for the

discretisation of problems.

Dn
Dn
l DS DSl
——
De
(a) two-dimensional DD element (b) three-dimensional DD element

Figure 1.1: Displacement discontinuity components

Although both the direct and indirect boundary element methods can be applied to
non-linear and non-homogeneous problems, they are more readily applied to linear
homogeneous problems. In order to handle non-homogeneous material, however, the

boundary integral equations have to be augmented by volume integrals, a process that

10



requires internal discretisations of the domain. Such problems are encountered in cases
where the strength and deformational properties of an orebody differ from that of the host
rock. The presence of volume and surface integrals gerenrates an additional source of
difficulty. The displacement discontinuity method, as an exception, is however able to

model bimaterial problems very efficiently [12].

1.5 Shortcomings of the Traditional DDM

Several advancements have been made to the original DDM, first proposed by
Salamon [13]. These include improvements to the method’'s accuracy through the
formulation of higher-order elements, and enhancements for overcoming difficulties
arising in its application to practical problems. Despite al these efforts, the traditional
DDM till has some shortcomings. These include the following:

(i) For a constant element in the traditional DDM, unknown parameters are determined
at the node of the element, which is located at the element centre. This means that
nodes cannot be shared between elements. As aresult, the variation of displacements
and stresses over adjacent is discontinuous [14, 15]. Even when higher-order linear
and quadratic DD elements, which increase the number of unknowns for each
element, are implemented in the method, the lack of node-sharing means that inter-
element continuity cannot be enforced or ensured [16, 17]. Another consequence of
the absence of node-sharing in the traditional DDM is that huge influence matrices
have to be solved in large-scale mining problems, because large numbers of nodes are

used for problem formulation.
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(if) The conventional DDM provides no information on the in-plane in the displacement
discontinuity element. As will be seen further on, the in-plane stress is particularly
important in the modelling of unmined orebody structures, such as pillars and
longwalls, since it induces confinement. To overcome this deficiency, ad hoc
processes are used to estimate the confining stresses in these zones. One such
common procedure is the use of a family of stress-strain curves. The stress-strain
curves are assigned to elements based on their location within an unmined structure
[18]. This procedure is, however, manual, cumbersome, and requires considerable
experience from the analyst in order to assign reasonable curves to elements.

(iii)In practical mining situations, pillars regularly experience some yielding or local
failure. It therefore becomes important to model the post-peak performance of
orebody material, a problem that involves plastic deformations. Generally, plasticity
problems require constitutive models that describe non-linear material behaviour. The
traditional DDM cannot use plasticity constitutive models, because it does not
provide information on al stress tensor components needed for such analysis. It can,
however, be adapted to solve elasto-plastic problems using a method of incremental
linear approximations [19] and stress redistribution [20], although the technique still

requires cumbersome ad hoc means of estimating missing stress tensor components.

1.6 Objective of Research

The primary objective of the research for this thesis was to develop formulations
of the displacement discontinuity method for practical mining purposes that would retain

the strengths of the method, and surmount its disadvantages. To achieve this goal, the

12



research was divided into three maor aspects. Each of these aspects tackled a
shortcoming described in the previous section. Attempts were also made to compare
results obtained from existing techniques with those from new methods proposed.

The first of the magjor issues in the DDM considered in this study involved the
introduction of node-sharing (node-centric) between DD elements. For node-sharing to
work, it was foremost to establish an efficient and accurate method for evaluating
integrals of the DDM, especialy those associated with singular points in three-
dimensional analysis. The problem of ensuring continuous variation of the singularities
between elements could then be tackled in order to develop a general framework for the
node-sharing procedure.

The absence of confinement effects in elements within unmined regions, it was
mentioned earlier, resulted in a magjor drawback of the traditional DDM. Therefore, the
principal focus of the second part of the thesis was on the development of a new DD
element that explicitly included confining stress components. This, it was envisaged,
would facilitate the use of the DDM for pillar analysis, by overcoming the difficulties of
the ad hoc approaches.

Finally, the thesis comprehensively looked at the analysis of yielding pillars, and
the modelling of post-peak pillar behaviour, using the new formulation of the DDM. The

new DDM is used to simulate the progressive failure of rock.
1.7 Scope and Contents of the Thesis
Apart from this opening chapter, there are five other chapters in the thesis. A

genera framework for implementing node-sharing in indirect boundary element methods,
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which imposes continuity of field quantities between the elements, is described in
Chapter 2. Difficulties in evaluating the singular integrals of the indirect boundary
element formulation are discussed in the chapter, and a method for solving them also
provided.

Chapter 3 provides insight into a specific implementation of the node-centric
method for the displacement discontinuity method. It also includes examples of the
comparison of node-centric results with closed-form solutions.

In Chapter 4, the formulation for a new displacement discontinuity element is
presented. The new DD element does away with one of the shortcomings of the
conventional DDM. By introducing a lateral discontinuity that considers in-plane
(confinement) stresses.

The post-failure behaviour of pillars is discussed in Chapter 5. The analysis of
yielding pillars with the simple, yet powerful, progressive failure technique, implemented
in the new DDM, is also presented.

A summary of this research, together with its benefits is outlined in Chapter 6.
Recommendations for future research and development are in addition discussed.

Four papers, which were written during the work of this thesis and are related to

the material in Chapter 2 to 5, are presented in the Appendices.
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Chapter 2

Node-Centric Indirect Boundary Element Method

2.1 Elements in the BEM

In the boundary element method, as stated in the previous chapter, only the
boundaries of a problem are discretised into elements. The governing differential
equations of the problem are satisfied throughout the solution domain by the results
obtained from the boundary element method. However, the actual boundary conditions of
the problem are only approximated. This gives rise to errors on the boundaries.
Consequently, the accuracy of BEM results in regions close to boundaries is dependent
on the accuracy of the approximations of the boundary conditions of a problem. It is of
vital importance, therefore, to use methods that minimise the errors of boundary

approximations.

One way to attain good agreement between the real boundary conditions of a
problem and their representation in the BEM is to represent a boundary with a large
number of elements. With increasing discretisation, the elements used get smaller, as a
result of which the expected approximation of the boundary conditions improves.
However, this approach demands a lot of computations and therefore requires significant
computer resources for most practical problems. A more reasonable approach is to
formulate elements that would permit optimal representation of problem boundaries and

boundary conditions.

There are two main types of elements that have been formulated for the BEM.

These major classes of elements are discontinuous elements and continuous elements.
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The nodes of discontinuous elements are located within the interior bounds of
elements. They require very simple procedures in determining the element coefficients of
the influence matrix. Because the nodes of such elements are in the interior of the
elements, their contributions to the influence matrix occupy distinct locations. In contrast,
continuous elements have at least some of their nodes situated at the element ends or
corners. The end nodes of continuous elements, therefore, can be shared with adjacent

elements[21].

Both discontinuous and continuous elements have advantages and disadvantages
in application. Discontinuous elements are widely used in BEMs mainly because of their
simplicity in formulation. Because there is no node sharing (adjacent elements do not
have common nodes) in their formulation, the computation of the contributions of point
sources at nodes is relatively straightforward. However, the lack of node sharing in
methods with discontinuous elements means that for the same number of nodes a mesh
with discontinuous elements is coarser than a boundary discretisation with continuous
elements. In addition, there are jumps in values of computed field quantities, such as
stress and displacement, at the end nodes. I nter-element continuity between discontinuous
elements cannot be attained even with higher order element formulations that use more

unknowns.

Typically in the boundary element method, the collection of elements into which
a boundary has been discretised is taken to be the approximation of the boundary. The
nodes of discontinuous elements are placed at points on an element so that they facilitate
convenient integration and interpolation. Since these nodes are chosen to lie in interior

nodes of elements, they generally, do not exactly coincide with actual problem
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boundaries (Fig. 2.1a). The points at which the boundary conditions are approximated,

therefore, do not coincide with points of the boundary.

The node-centric formulation of continuous elements in the BEM allows the
nodes of such elements to be chosen such that they lie exactly on a problem boundary
(Fig. 2.1b). This feature consequently limits boundary approximations to only the
discretisation of boundaries into elements, as a result of which boundary approximations
no longer include errors due to nodes not being placed on physical problem boundaries.
The end nodes of adjacent elements are shared in the node-centric approach. For the same
number of nodes as in a problem discretisation with discontinuous elements, continuous
elements provide a finer mesh, resulting in greater accuracy. At the extreme nodes of
continuous elements, there are no jumps in computed values of field quantities such as
stresses and displacements. It is expected that a continuous variation of field quantities
would more accurately model real behaviour than a discontinuous variation. All this,
however, comes at the price of additional mathematical effort in the formulating of the

system of equations.

a) Element-centric linear DD element

b) Node-centric linear DD element

Figure 2.1: Two and three-dimensional node- and element-centric elements
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2.2 Continuous Elements in the Indirect BEM
Continuous elements are used more often than discontinuous elementsin the

direct BEM, because of the advantages the former offer. The direct BEM requires that

implicit integral equations be formulated for a problem. This leads to substantial

difficultiesin its applications to a number of problems [22], and therefore limiting
the use of direct methods. The indirect BEM was developed to overcome these
difficulties. For awider variety of problems, it is easier to implement the indirect than the

direct BEM.

Degspite this advantage of the indirect BEM, researchers have been unable to
extensively use the node-centric formulation of elements with the method, owing to some
problems with the evaluation of integrals. Integral equations in the node-centric
formulation of the direct BEM have lower singularity at the nodes and their integration is
therefore not problematic. In the indirect method, however, thisis not so, integral
functions are highly singular (hyper-singular) owing to the superposition of fundamental
solutions, making them difficult to evaluate. Unlike discontinuous elements, which have
all nodes always lying on smooth parts of boundaries, continuous elements, by sharing
nodes, require that some functions be integrated at the end nodes of elements. The
computation of jump terms at the end nodes of elementsin the indirect BEM (nodes that
lie on the edges or corners of a boundary) presents significant challenges, due to the
meeting of multiple element vertices at such nodes.

2.3 Methods for Integrating Singular Functions
The essence of the boundary element method lies in the transformation of a

problem involving a continuum field to an equivalent boundary problem. This
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transformation is made possible through the use of fundamental solutions or Green's
functions. These functions are generaly unbounded at one point, i.e. each of the
functions has an infinite value at a specific point. Such functions are thus termed as

singular functions. The order of singularity can vary from function to function.

The fundamental solutions of the BEM serve as kernels in integrations that
provide the transformation from domain problems to boundary problems. To make
solutions of the boundary problems feasible and obtainable at reasonable computational
cost, boundaries are discretised into elements. The principal idea behind thisis that each
element can be assigned a prescribed continuous variation of field quantities based on the
effects of point loads (values) acting at selected points of the problem domain. The
variation of field quantities at elements is chosen so that it approximates the actual

variation.

The integrands in boundary element methods are Green’s functions multiplied by
some weighting functions. The behaviour of these integrands is strongly influenced by
the order of singularity of a Green's function, and the position of the singular point.
Mathematically, integrals involving the fundamental solutions and Green functions fall
into three main classes. non-singular or regular integrals, near-singular integrals, and
singular integrals.

Regular or non-singular integrals:

When the distance of a load point (a point at which a load is applied) from an
element is far, the integrals are bounded and straightforward to evaluate using any
classical numerical quadrature routine or method. Most boundary element integrations

fall in this category. The accuracy of such integrals does not significantly affect results.
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Near-singular integrals:
In cases where aload point is close to an element, the value of the integrand over

the domain of integration varies rapidly. The values of such integrals can be determined
with classical quadrature methods to reasonable degrees of accuracy, only if excessively
large numbers of collocation points are used. Accuracy in the evaluation of such integrals

has greater influence on results than accuracy for regular integrals.

Singular integrals:
Singular integrals are the most difficult to evaluate, but at the same time the most

important to calculate accurately in the BEM. They occur when a load point lies on an
element, and represent the influence of elements on themselves (self-influence). Self-
influence coefficients form the diagonal terms of coefficient matrices that most strongly
affect the overall accuracy of BEM solutions. Classical numerical quadrature methods
cannot be applied directly to singular integrals, because of their unbounded nature at
singular points. They thus require special treatment [23]. The difference between near-
singular and singular integrals is not as sharp as that between near-singular and regular

integrals.

The integrals of the DDM are highly singular than those of the direct method.
This greater degree of singularity of integralsin the DDM has been one of the factors that

has constrained the widespread use of continuous elements in the method.
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2.4 Techniques for improving boundary approximations in Node-
Centric Methods
It was mentioned earlier in the chapter that node-sharing methods reduce the

errors of approximation a the boundaries of a problem. However, the boundary
approximation errors in the approach can be further reduced through the use of special
techniques. These special treatments can be classified into two main categories based on
the manner in which errors are minimised. The methods for reducing boundary errors are

outlined as follow:

(i) Values of the error function (the difference between exact boundary values and
approximated values) can be forced to be zero at the nodes of elements. This method
is called nodal collocation.

(i) Errors can be minimised by distributing them over elements in an averaged sense.
Minimisation of the averaged error can be accomplished through the multiplication of
the error function with an interpolation function that approximates boundary
conditions, and equating the resulting integral of the product of the two functions to

zero. This approach is called the Galerkin technique.

2.4.1 The Galerkin Technique
An interpolation function commonly used in the Galerkin technique is the

Gaussian quadrature weighting function [24]. An important attribute of the Galerkin
method is that it avoids difficulties associated with the evaluation of singular integrals by

shifting points of interest from nodal |ocations to Gaussian quadrature points.

Previous attempts at creating continuous elements in the indirect BEM have used

the Galerkin method to reduce boundary approximation errors. An example of such a
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work is the application of the Galerkin technique to the displacement discontinuity
method by Vandamme and Curran [25]. The number of integrations in the indirect BEM
increases by an order of magnitude (i.e., O(n%)) in the Galerkin technique, leading to a
rapid growth in the computational effort needed to generate matrices of influence
coefficient. For large three-dimensional problems this computational expense gets

prohibitive.

2.4.2 Nodal Collocation Method
In the nodal collocation method, boundary integral equations are satisfied at a

number of discrete source points on a problem boundary, the nodes of elements. In
contrast, the Galerkin technique, described above, satisfies the governing boundary

integralsin an integral or weighted residual sense.

The nodal collocation method is attractive because it exactly satisfies boundary
integrals at nodal points, and is more economical than the Galerkin method due to the
lesser number of integrations in the method. Despite its advantages in speed however,
there were compelling reasons, in the past, why the nodal collocation method was not
applied to the indirect BEM. Primary reasons for using the nodal collocation approach
stemmed from the difficulties associated with the evaluation of the hyper-singular

integrals of the indirect BEM [26].

Tremendous effort has been devoted in recent years to the development of
efficient techniques for the evaluation of singular and near-singular integrals. These
techniques employ methods such as analytical integration, modified Gaussian methods,

non-linear transformation of the integration domains, series expansion and row sum
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methods, to tackle the class of hyper-singular integrals [23]. Although, these methods
have been successfully applied to a wide variety of problems, they have their own
drawbacks. For example, most of these techniques evaluate singular and non-singular
integrals with separate methodologies. In this thesis, an integration technique based on
the continuation approach [27-28], originaly formulated by Vijayakumar and Cormack
[29-30], that makes it possible to uniformly treat the evaluation of singular and near-

singular integrals, was used.

The continuation approach provides elegant means for treating singular and near-
singular integrals. This leads to a unified methodology for evaluating integrals of all
kinds. In the continuation approach integration over the domain of the element is
converted to integration along the sides (edges) or boundary of the element. Integration
along the edges eliminates the need to use a mix of analytical and numerical methods to
compute the different types of integrals, thereby providing a uniform way for computing
al integrals. Exhaustive details of the continuation approach can be found in the
references [27-30], with only an overview of the mathematical derivation of the boundary

functions of the method provided further below.

The continuation approach offers robustness, in addition to uniformity in the
evaluation of singular and near-singular integrals. Because in the approach, integration is
performed along element boundaries, the evaluation of integrands at singular or near-
singular pointsis avoided. Avoidance of the evaluation of integrals at these pointsis what
provides robustness. When a singular point coincides with a node, the values of

integration aong the element sides that form the node automatically reduce to zero.

Another aspect of the continuation approach is that values of integrals are
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obtained either as conventional integrals, Cauchy Principal Values or finite-part integrals
[31], depending on the type of integrands involved. The computation of integrals is
performed more efficiently in the approach, since the number of collocation points
required for integration along the boundary of an element is considerably less than the

number required if the collocation points were to be selected over the area of the element.

2.5 Adaptive Integration
The new integration formulation described so far simplifies a number of

difficulties associated with the evaluation of singular and near-singular integrals.
However, numerical difficulties in implementation still arise when a singular point liesin
the vicinity of a boundary, because of the steep variation of integrands in the vicinity of
singular points. For such a case, closely spaced collocation points are required for the
regions of high variation, while sparse collocation points are needed for the rest of the
guadrature domain (Fig. 2.2). The traditional approach has been to develop empirical
relationships, which roughly indicate the number of uniformly spaced collocation points
required for Gaussian quadrature in different parts of an integration domain [26]. Often
this number is very large for small sub-regions of extreme variation of an integrand, if the
integrand is to be adequately sampled. The empirical approach is very useful, but has the
following drawbacks:

(i) Using such a large number of collocation points for a small part of an integration

region is grossly inefficient.

(i1) The empirical relationship developed for one type of singularity may be invalid for
another. For example, an empirical relationship that works well for the fictitious stress

method may not be applicable to the displacement discontinuity method.
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These drawbacks are overcome in this thesis through the use of an adaptive
integration scheme that automatically samples different sub-regions of an integration
domain with required numbers of collocation points. Quadrature in aregion is assumed to
be sufficiently accurate, if the computed value of an integral in that region falls within a
specified percentage of the sum of the values obtained from the subdivision of the same
region into two equal sections. This process of subdivision continues until any subdivided
region satisfies the accuracy criterion. The adaptive method therefore ensures that
integrals are computed with pre-specified accuracy. Schematically, the subdivision of an
integrand (shown in Fig. 2.2a) with collocation points, based on the degree of variation of

the integrand in different parts of the domain of quadrature, isillustrated in Fig. 2.2b.

(b)

Figure 2.2: Subdivision of side of element
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2.6 Mathematical Formulation of Boundary Functions

As stated earlier, the maor difficulty associated with the formulation of node-
centric elements in the indirect BEM lies in the evaluation of singular integrals. In this
section, a brief outline of the mathematical technique, underlying the continuation
approach, is discussed. More detailed information on the approach is presented in
PAPERS I and I1.

Generaly, the surface element integrals that appear in BEM formulation are of

theform

1(a) = [ 9(p,a) p(p) de2, (21)

where 2 is an n-flat finite domain of dimension n, bounded by a piecewise continuous
boundary 042. When n=2, this domain is equivaent to a planar region. g is a Green’s
function. It is a continuous differentiable function when p = q, and is infinite when
p=(q. The field point p is a point in the continuum at which field quantities, such as
displacements or stresses, due to a source applied at load point g, are calculated. ¢(p)is

an interpolation function. The surface integrals become singular in the limit as the field
point p approaches the surface of the integration domain (element).

In the continuation limiting process, the singular integral of egn. (2.1) is obtained
by simply taking the singularity to the surface [27]. An attempt is then made to either
integrate the integrand analytically, or to map the integral to one performed on the
boundary of the integration domain 0£2 . When the integral is mapped to the boundary of

the integration domain, it isreferred to as a continuation integral [27].
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We can consider more general forms of integrals arising in the BEM by placing
the origin of a loca coordinate system at a point e 2 (Fig. 2.3). §, caled the
proximate singular point (PSP), is the point on the surface of the integration domain
closest to the singular point (SP), g. In the local coordinate system, the points p and g can
be expressed as p=(X,0) and q=(0,x,,,), where X is a vector (X, X,,...,X,)in the

(n+1)-dimensional ambient space [28].

d o Singular Point
(SP)

Flat integration
domain

A

q
Proximate
Singular Point
(PSP)

Figure 2.3: Flat integration domain

The integrals encountered in the BEM can be reduced to the following genera

form

() = [ 5 (%0 X000 X0, %0,2) 002, (2.2)

for any fixed value of x,.,. f, is ahomogeneous function of degree g if and only if it

satisfies the condition

f(AX ey AX ) = A7 T (X X ) (2.3)
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where 1 is an arbitrary constant, or the Euler’s condition

of of
Z —fBf-x .— 2.4

+1
Although f is homogeneous in the ambient space, it is not homogeneous in the integration
domain x,....,X,.,. Without loss of generality, it is sufficient to consider the prototypical
function f to be of the form

X X2 ... X XL

f(x,X,.,) = n_ni (2.5)

where the exponents |I,1,...1,1

1in+l

and k are positive integers. The general distance
function r is given by the relationship

F= (¢ 4+ +2E,)? (2.6)
When both sides of egn. (2.4) are integrated on the domain 2, and Green’'s theorem is

applied to the left-hand side, the continuation formulafor f(X,x,,) isobtained in terms

Of I(Xn+1) as

xml%xnﬂﬂ)—al (%) =] F(X,%,2) X -, 27)

where dS is the directed surface area of the element on the boundary 02 of the
integration domain. « isthe degree of singularity, i.e. « = f+n, Vviz
o=+, +..+l,,+d=-K

=d-k+>|,

where d is the dimension of the integration domain. In two-dimensiona Euclidean space,

X -dS = x,dx, — x,dx, . Solving equation (2.7) produces the result
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o Xn+1 1 X:.T_'_
I (Xn+1) =—Xhq o {F J. f (X 177)X : dS}dT]"‘n—all (770) ) (28)

a0 0
where 1 (7,) istheinitial condition used for integration, corresponding to theinitial value
of n,. The value of the integral | (Xx,.,) should be independent of 7,. One way to satisfy
this requirement is to choose the initial condition far away from the integration domain.
Under such a condition, 7, = too, causing the second term of egn. (2.8) to vanish for all

values of « . 1(x,.,) can then be computed with regular quadrature. Equation (2.8) can

n+1

therefore be rearranged to yield
. Xn+1 1
I (Xn+1) =X { I a+l f (X ’ 77) dﬂ}x -dS (29)
ool n 1

Equation (2.9) suggests the existence of a function F, known as a boundary function,

which is represented by the formula

F (X ’ Xn+1) = I%f (X ’ Xn+1)dxn+l (210)

n+1

Rosen and Cormack first introduced the boundary function F, in [27], where it was
referred to as the primitive boundary function (PBF). Note from egn. (2.10) that the
primitive boundary function is independent of the geometry of the integration domain.

Using this function, expression (2.2) can be integrated along the boundary as

| (%,.2) = e [{F (X) = F (X, %,,)}X - dS (211)

where F_ represents the limit of the primitive boundary function F(X,7,) as n, - «.

For Green's functions that have forms similar to expression (2.5), the function F,_ is

always bounded and can be obtained analyticaly.
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It is convenient at this stage to introduce an operator B. When B operates on an

integrand, it produces the boundary function,

1
77Mf(x,77)d77. (2.11)

B(f):xg‘T

Using this operator, the expression (2.2) for evaluating the domain integral becomes

Isz(f)X-dS. (2.12)

002

If B(f) is of the form B (f) ==X L ¢ (4 4 ) the first component of the sum

“
represents a divergent part, while the second characterises a regular part. This result
demonstrates that the boundary function clearly indicates the degree or nature of
divergence of the divergent part.

It has been known in actua physical problems that a property of Green's
functions is that the sum of the divergent components of integrals along the boundary of
an element equals zero [27]. Because of this phenomenon, the divergent component does
not play any role in the solution process for problems of this type, and it is therefore
advantageous to retain only the regular part of the integration.

In this thesis, the boundary function approach was developed for node-centric
triangular integration domains, for which singular points occupied various positions in
relation to flat 2-D triangular element (Fig. 2.4). The conversion of domain integrals to
boundary integrals helps satisfy the earlier outlined objectives of developing an efficient
integration methodology for the indirect BEM. It provides a unified integration scheme
by adopting the same approach for all integrals, regardless of the position of the singular

point in relation to the integration domain. Secondly, the boundary function method is
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robust because it is insensitive to the geometry of the integration domain. Thirdly, it is
numerically efficient due to the fact that it reduces the dimension of the quadrature
domain by one. By converting integration over a domain to one along a boundary, the

number of dimensionsis scaled back by one.

Q sP
o sp
A
PSP
A
PSP
q
(a) (b)
? s
o sp
A
PSP
A
PSP \
© (d)

Fig. 2.4 Possible cases of integral domains

A simple example of the conversion of integration from that over a domain to one
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along aboundary is provided next. Let g(x;, X,,X;) be aGreen'sfunction and @(x;,X,) a
weighting function, both of which are homogeneous in x;, X,, X,. Léet it be assumed that
the domain 2 liesinthe x, — X, plane. Then

[0 %) (%, %, %) AV = [F (%, %,,%)X.dS (2.13)
Q oQ
The boundary function F for the function «g is given by the equation
o 1
F (X, X5, %3) = X3 J.Fw(xﬂxz) 9(X,, %, 1) di7 (2.14)

If the weighting function @ is linear, i.e. if the function has the form
(X, X,) = C+ax, +bx,, it can be separated into two components:
a o(x,X,)=c,forwhich =-1, and
b) w(x,x,)=ax +bx,, for which « =0.
This separation is done, because the degree of homogeneity, «, is different for the
constant and linear components. The integration required to produce a boundary function
(egn. (2.14)) can be obtained anaytically using standard integrals provided by Dwight
[32].

As a concrete example, we shall consider a Green’s function that can be expressed

as|[33]

1 6x° 15%°
g(><1,x2.x3){r—3+r—§3— r?] (2.15)

Using the operator B on the Green’s function, the boundary function can be evaluated as

B (9(x,,X,,%3)) :[r%jLBri‘:} (2.16)
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Equation (2.16) represents a conversion to the boundary function using a weighting
function of constant variation (the degree of singularity « = -1). Similarly, the boundary

function using alinear weighting function (« = 0) is evaluated to be

1 x2 3 1 r+
B (9333) = r_3+ r3;2 +_53__3 Og( p}:|1 (217)

where p = /7 + X and H isascale function that is defined as

H ;|  for x,#0 .
Perpendicular distance from thesingular point to thesideof theelement for x, =0

2.7 Summary

The accuracy of BEM results in regions close to boundaries is dependent on the
accuracy of the approximations of the boundary conditions of a problem. Itisvery
important therefore to employ techniques that minimise the errors of boundary

approximations.

Of the two types of elements available in boundary element methods —
discontinuous and continuous elements — continuous elements more accurately model
boundary conditions. The node-centric formulation of continuous elements allows the
nodes of elements to be chosen such that they exactly coincide with the boundary of a
problem. A result of thisisthat boundary approximations are limited only to the
discretisation of a boundary into elements. They no longer include errors due to the nodes

not being placed on the physical boundary/boundaries of a problem.

For the same number of nodes continuous elements provide a somewhat finer

mesh than discontinuous elements. At the extreme nodes of continuous elements, there
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are no jumps in computed values of field quantities. It is expected that a continuous
variation of field quantities would more accurately model rea behaviour than a

discontinuous variation.

Despite the relative ease of implementation of the indirect BEM, the node-centric
formulation of elements has not found extensive use in the method, owing to the high
degree of singularity of the integrals of the indirect BEM at element nodes, making their
integration problematic. Also the computation of jump terms at the end nodes of elements
in theindirect BEM (nodes that lie on the edges or corners of a boundary) is difficult, due

to the meeting of multiple element vertices at such nodes.

Methods for reducing boundary errors at the nodes of elementsfall into two main
classes- nodal collocation methods and Galerkin techniques. Of the two methods the
nodal collocation approach is more attractive, because it exactly satisfies boundary

integrals at nodal points, and is due to the lesser number of integrations in the method.

The nodal collocation method aso has advantages in speed. However, it was not
applied to the indirect BEM in the past, because of the difficulties in evaluating the
hyper-singular integrals that occurred at element nodes. In this thesis, an integration
technique based on the continuation approach, originally formulated by Vijayakumar and
Cormack [25], was used with the nodal collocation method that made it possible to
uniformly evaluate all three main types of integralsin the BEM, namely, singular, near-

singular and regular integrals.

Because the continuation approach provides an elegant treatment of singular and
near-singular integrals, it leads to a unified methodology for evaluating integrals of all

kinds. In the continuation approach integrations over the domains of elements are



converted to integrations along the sides (edges) or boundaries of elements. Integration
along the edges of elements eliminates the need to use amix of analytical and numerical
methods to compute the different types of integrals thereby providing a uniform way for

performing all integrals.

In addition to uniformity, the continuation approach offers robustness and speed.
Its computation of integralsis performed efficiently, since the number of collocation
points required for integration along the boundary of an integration domain is
considerably less than the number required if the collocation points were to be selected
over the area of the domain. Although, the continuation approach has existed for awhile,

until now it had never been applied to the indirect BEM.

Implemented with the continuation approach is an adaptive integration scheme.
Adaptive integration overcomes drawbacks of traditional empirical methods for handling
the integration of functions that rapidly vary over certain parts of an integration domain
and slowly over others. It also makes it possible to evaluate integrals with pre-specified
accuracy.

In the next chapter the formulation of node-centric elements for a specific type of
indirect boundary element method, the displacement discontinuity method (DDM), is

provided.
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Chapter 3
Displacement Discontinuity Method (DDM)

3.1 General Scope

For thin dlit-like or crack-type openings, such as the excavations commonly
encountered in the mining of flat-lying seam or lenticular orebodies, the distance between
opposing surfaces is very small compared to the other dimensions of the openings. As a
result the two opposite faces of such excavations practically coincide. The nearness of
excavation faces to each other creates serious numerical instabilities for many of the
modelling methods available. Such problems can be best solved with a special numerical
technique, the displacement discontinuity method (DDM) [34]. The DDM is a boundary
element method founded on the analytical solution to the problem of a constant dlit-like
opening displacement, acting over a line segment of finite size in an infinite elastic
domain.

Each surface of an excavation is discretised into elementsin atypical BEM. Thus
each element lies on only one surface. A single displacement discontinuity element, on
the other hand, represents a section of the opposing surfaces of a crack-type opening.
Therefore the method is idea for the analysis of dit-like excavations [35]. This
characteristic of the DDM assumes even greater importance in three-dimensiona
problems. It produces significant economy in the number of elements used for
discretizing problem boundaries, which in turn minimizes the amount effort required of a

user during data input.
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Technically, the DDM is an indirect BEM. However, unlike other indirect
methods, the unknown variables in the DDM represent physically meaningful aspects of
a problem. Displacement discontinuities are relative displacements of the opposing
surfaces of cracks or dlit openings. The displacement discontinuity method has been used
to create well-known commercia software packages such as NFOLD [36] and MULSIM
[37]. For many years these packages have been widely used for analysis by different
institutions and companies in Australia, Canada and the Unites States, because of their
practicality for solving mining problems.

Nodes of adjacent elements in the traditional DDM are not shared. As a result of
this the number of equations and unknowns for the DDM increases rapidly with
increasing number of elements. The situation worsens when higher-order elements are
used. Because of this, the commercial packages mentioned above employ only constant
DD elements in order to reduce the number of equations, and keep computing times at
acceptable levels. Despite the use of constant elements, large numbers of elements are
needed for the discretisation of regions in which detailed knowledge of stresses (or
displacements) is required.

In the Chapter 2, it was established that when the end nodes of elements are
shared, the number of unknowns in a problem is curtailed, leading to savings in
computational time. A general framework for developing such an approach in the indirect
BEM was discussed in the same chapter. The current chapter gives an overview of the
development a node-centric formulation specifically for the DDM. This new formulation
not only preserves the simplicity of the DDM, but also improves the capabilities and

efficiency of the DDM in the solution of geomechanics problems. The node-centric

7



formulation of DD elements ensures inter-element continuity of stresses due to the
sharing of nodes, making the new DD element superior to the traditional DD element.
Basic examples that outline the capabilities and advantages of the new formulation of the

DDM are also presented in the chapter.

3.2 Node-Centric Displacement Discontinuity Element (Paper Il)
The three-dimensional displacement discontinuity method is based on the elastic

solution for the problem of a displacement discontinuity acting over a finite area in a

material domain. For a planar crack with a normal in the x, direction (Fig. 3.1), two

faces for the crack can be identified - a positive face (or surface) designated as x, =0,

and a negative face x; =0 . When one crosses from one side of the crack to the other,

displacements of the faces undergo a jump in value. This jump is known as a

displacement discontinuity, D, , that is mathematically calculated as:

D, =u, —U,. (3.1)
Xa A
Xo positive side
/ (%,=0")
|
/
/ l 4 - 2 Koyf X1>
A > \
N negativeside
(Xg = 07)

Figure 3.1: Normal and shear DD
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The displacement discontinuity of a crack can be resolved into three components along
the coordinate axes x,, k = 1, 2, or 3. These three displacement components are
comprised of a normal component (closure) that is perpendicular to the plane of the
discontinuity, and two shear components (rides) that lie in the discontinuity plane. They
areshownon Fig. 3.1.

We shall let the boundary of a problem be represented with a number of surface

patches, s, . Three displacement discontinuity density components (one normal density
and two shear densities, acting along the directions of local coordinate axes), d, , can be

distributed over the surface patches. Using the principle of superposition, the stresses and
displacements at point g in a homogeneous, isotropic, linear elastic material due to the

displacement discontinuity densities at point p can be written as

oy(a) = Y [ Gy (p,a)d (P)AS(p) (3.2)

u (@) = > [ Hy (p,a)d, (p)dS(p) (33)

s,

The Green's functions G, and H; in egns. (3.2) and (3.3) are defined in Appendix 1 of
PAPER Il. The summation is performed over the surface patches, s,. If either the

stresseso

or displacements u, , are specified for each s, , then egns. (3.2) and (3.3) can
be solved for the unknown DD densities, d, . In practice, the surface patches s, , that

form the boundaries, are discretised into planar elements, and a functional form that

approximates the variation of d, over the elements is assumed. For example, in the

simplest formulation of the DDM, the density variation over elements is assumed to be

constant. As a field point q approaches a point p on the boundary of a problem, egns.
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(3.2) and (3.3) become the standard indirect boundary element equations.

The variation of DD densities over elements can be assumed to be linear in the
solution of a problem. Thisis the basic formulation adopted in this thesis. Under such an
assumption, the variation of element DD densities can be approximated by the values of
densities at the nodes of the element. The nodal values of the displacement discontinuity
densities, ssimply known as displacement discontinuities, of an element are designated
asD,"", D)’ and D," to denote the two shear, and normal components, respectively.
The elements used in discretising boundaries can have triangular shapes, with nodes
placed only at the corners of the elements. In such acase, N;, N, and N, represent an
element’s three nodes. The nodal density values D, can be defined as the following
function of nodal coordinates:

D, =a,+aX +a,X,’, (3.4)
where x; and x, are the coordinates of nodes in the local coordinate system of an element.
For a given element, the system of equations for the three components of a nodal DD,

supplied by egn. (3.4), can be rearranged and written in the following matrix form:

a] 1t ] o
a|=|1 %% 7| o) 35
a,) |1 " x| Dk

For three-dimensional problems, generally, if a boundary is represented with p
triangular surface elements, the components of stress and displacement induced at a node

m, due to the distribution of normal and shear displacement discontinuities D, at a node

n, can be written as;

o"=A"D! , and (3.6)
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=Bi"Dy (37

where the influence coefficient matrices A, and B, are given by

Zh (Za. (e)j (3.8)

side

and

side

Blrll1n Ztll(Zﬂl (e)) ' (39)

The t;,'s are the coefficients of the direction cosine matrix. Each coefficient, t;,

defined as the dot product, X, -Y,, of the two unit vectors X; and Y,, of the axes of the

local coordinate systems at the field point and load point, respectively. o is evaluated

as
JENK (e) 1 Xg -1 I_itj)k (e) (3.10)
me+1 T N Ny Ny —1 ' '
i< (€) Xp =X =% 1| lik(e)

wherexr'fk and xg‘k“ are the local coordinates of the two nodes of each side of the element

(Fig. 3.2).

X2

sdet

Expk X ’

Figure 3.2: Coordinate system used to computeline integrals
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T and Tix are calculated from the formulae:

T = [@5.(x, 0080 - x, sind)dx, , and (3.11)

side

Tk = [ @)i(x, cosd - x,sing)dx,, (3.12)

side

through the use of the boundary functions @; and @;, of the continuation approach.
These boundary functions can be obtained analytically, as discussed in Chapter 2, and
they are presented in Paper |1. The integrals of egns. (3.11) and (3.12) are evaluated with
the adaptive integration scheme. @ is the angle measured between the x;-axis of the
element local coordinate system and the side of the element along which integration is
performed. S," is evaluated likewise using egns. (3.11) and (3.12), and replacing the
boundary functions @ swith I”s.

Egns. (3.8) and (3.9) represent a system of linear algebraic equations, which after

the substitution of appropriate boundary conditions, can be solved for the unknown
values of nodal displacement discontinuities D, . After calculating the displacement
discontinuities, stress, as well as displacement, components at any interior points of the
domain of a problem can then be computed by substituting values of D, into egns (3.6)

and (3.7).

3.3 Numerical Implementation

3.3.1 Penny-shaped crack

A standard problem for testing the validity of the results of the three-dimensional

DDM is the penny-shaped planar crack [38]. In this thesis, a penny-shaped crack was
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discretised into 108 elements with 61 nodes. A uniform internal unit pressure was applied
in the crack (Fig. 3.3). The boundary conditions at the nodes on the rim of the crack
demanded that DD values be zero at those nodes. This stipulation, together with node-
sharing, reduces the number of unknowns in the problem from 3x108 for the

conventional constant DDM, to 3x49 for the node-centric formulation.

(a)
0
©
£
o
=2
ke
O
N
©
£
o
2
—— Closed-form solution
0.2 1 A Constant DD elements
® Node-centric DD elements
00 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

r/a

Figure 3.4: Normal displacement variation over the crack boundary
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Values of the norma DD components, computed with node-centric elements,
were compared with results obtained from the constant DDM and the closed-form
solution in Fig. 3.4. The comparison showed that the node-centric method, although using
a significantly smaller number of unknowns, produced results comparable to that of the

conventional DDM, and that were close to the analytical solution.

3.3.2 Long cylindrical tunnel

Stresses and displacements around a long cylindrical tunnel under far-field in-situ
stresses, computed from a numerical technique such as the DDM, can be assessed for
accuracy by comparing them with those obtained from the closed-form solution. Stresses
and displacements at the central cross-section of the tunnel must be close to the results of
Kirsch’'s analytical solution to the two-dimensional problem of a circular hole subjected
to biaxial loading in an infinite elastic medium [3]. A three-dimensional form of this
problem can be formulated if the length of the tunnel is chosen to be large in relation to

its diameter so that the assumption of plane strain conditions becomes valid.

Figure 3.5: Tunnel discretiztion



Figure 3.5 shows the mesh of node-centric DD elements used for analysing a
three-dimensional cylindrical tunnel. The dimensions of the tunnel and the properties of

the rock used for the analysis are provided in Table 3.1.

Table 3.1: Details of tunnel model

Radius(a) =0.5m

Di .
mension Length (L) =8m

Young's modulus (E) =2.5MPa

Material properties . .
Poisson’sration (v) =0.25

Far-field stress Vertical in-situ stress (p) = 1.0 MPa
horizontal in-situ stress (kp) = 1.0 MPa

The Kirsch solution for radial, tangential and shear stresses around a circular excavation

with radius a, subjected to biaxial loading in an infinite elastic medium (Fig. 3.6), is

o, = g{(1+ K)(1- B%) + (1- K)(L- 48 + 38*) cos20 |
Gy = g{(1+ K)(L+ B%) + (1- k)(L+ 33*) cos26) (3.13)
Gy = g{(l— K)(1+ 2% —33*)sin26),

where o,,,0,, and o, , are thetotal radial, tangential and shear stresses at the point in the

rr?

rock mass with polar coordinates (r, 6), and S = a .
r
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0

l:l>v\a‘9<:'kp

i}

Figure 3.6: Circular excavation
Plots of the variation of radial and tangential stresses with distance, obtained analytically
from equations (3.13) and numerically from the node-centric DDM, are shown in Fig.
3.7. It is seen from the plots that the stresses predicted by the node-centric DDM are in

very close agreement with those obtained from the Kirsch solution.

2.00

1.75
—— Closed-form solution

® node-centric DD elements

1.50 ~

1.25 +

1.00 ~

stress / p

0.75

0.50 1

0.25 4

0.00 T \ \ \
1 2 3 4 5 6

Figure 3.7: Tangential and radial stressesalong horizontal line at the central cross-
section of cylindrical tunnel
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3.3.3 Spherical Excavation
On figure 3.8 is shown a spherical excavation in an infinite elastic medium. The
dimensions of this excavation, and the strength and deformational properties of the

surrounding rock mass, are summarized in Table 3.2.

X1

Figure 3.8: Spherical excavation

Table 3.2: Details of spherical cavity model

Dimension Radius (a) = 1m

Young's modulus (E) =2.5MPa

Material properties _ i
Poisson’s ration (v) =0.25

Far-field stress In-situ field stress (P) = 1.0 MPa

This spherical cavity was subjected to two different loading conditions — a hydrostatic
state of stress and a uniaxial stress field. The spherical excavation problem was then

solved with the node-centric DD elements.
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1. Hydrostatic stressfield
This was an excellent test case since the problem has a well-known closed-from
solution [39]. The externa radia and tangential stresses along the direction of 6 = 0° and
¢ = 90° can be determined from the following equations:
o, = Pli- £
(3.19)
3
Cpp =04y = P[l+%ﬂ ]
Plots, shown in Fig. 3.9, of these stresses computed with the node-centric DDM and the equationsin (3.14)

reveal that the results of the numerical method closely match the analytical solution at every point along the

direction of radius of the sphere.

1.50

—— Closed-form solution
® node-centric DD element

1.25 4

1.00 +

c/p

0.75

0.50

0.25

0.00

Figure 3.9: Thedistribution of stresses outside spherical cavity subjected to a
hydrostatic pressure at infinity
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2. Uniaxial stressfield

The case of the spherical excavation, subjected to a uniaxial in-situ field stress,
was considered in order to verify the validity of the node-centric formulation, when used
in solving problems in which different norma and shear loads are applied to element
nodes. The total stresses (radial and tangential) at any point (r, @, ¢) in the elastic

medium can be computed from the equations

o - P{ 65°(1- 5*)(3cos’ 6 -

2) a2
75 +(@-£7)sin 6’}

34%(3+78%) cos? 6 — 41+ )]
2(7—5v)

3
Cpp = P[ +(1- B%cos’ 0 +%} (3.15)

= 3ﬂ3[(9+5ﬁ2)c0529_4(1+ ﬂz)]+ 35
¢ 27 —5) -

cos® 6’}

2.20
P
1.95 A ¢ .
1.70 H
Gr ."--.--I'.
1.45 - / AYavavars’
o 1.20 b
+
o) 0.95 4 —@  J
0.70
- —— Closed-form solution
0.45 0 ® node-centric DD element
- %
-0.05 - w = *
1 2 3 4 5

Figure 3.10: Thedistribution of stressesoutside a spherical cavity subjected to a
uniaxial stressat infinity
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Stresses computed for this problem, using the new DDM, were compared with
those from the analytical solution. Plots of the variation of the different stresses with
increasing distance from the excavation are shown in Fig. 3.10. Observation of the plots
shows that for all stresses the results of the node-centric DDM were in good agreement

with the analytical solution.

3.4 Concluding Remarks

In the node-centric framework for three-dimensiona problems, the number of
nodes used in discretizaing boundaries is generally much less than the number of
elements (Table 4.3). To obtain the same degree of accuracy of analysis with constant
DD elements, the node-centric DDM requires a much smaller number of degrees of
freedom. This results in computational efficiency, attested to by the results in Table 4.4.
For example, when boundary of the penny-shaped crack described above is discretised
with 108 constant DD elements, 324 unknowns result. When 108 node-centric DD
elements are used, the number of unknowns drops to only 183. Also, the node-centric
approach allows the boundary condition of zero displacement on crack perimeters to be
satisfied exactly. The solution of the penny-shaped crack problem exemplifies this
attribute of the node-centric formulation.

Because the new formulation assumes a continuous variation of DD values, no
anomalous changes of stresses occur in neighborhoods where elements are connected to
each other. This facilitates the use of node-centric approach in practical geomechanics

problems, where great attention must be paid to regions in which two excavations
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intersect (e.g. where a tabular orebody intersects another orebody, or a joint intersects

with an excavation).

Table 4.3: Comparison of number of nodesfor constant, linear and quadratic DDM
to node-centric DDM for closed boundary and crack type problems

Constant | Linear | Quadratic | Node-centric
Closed boundary problem Ne 3N, 6N, Ne .5
2
Soherical cavity 320 960 1920 162
Ne B Nb
Crack type problem Ne 3Ne 6Ne 5 +1
Penny-shaped crack 108 324 648 49

Where N, is the number of elements and Ny, is the number of nodes on the edge of crack.

Table 4.4: Percentage error for normal DD for penny-shaped crack and spherical

cavity problems

Number of D.O.F %Error
Pressurized Constant DD [14] 3x108 3.278
penny-shaped
crack Node-centric DD 3x97 0.698
Spherical cavity | Constant DD [14] 3x120 14.32
under hydrostatic
pressure Node-centric DD 3x62 14.44
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Chapter 4

Analysis of Pillars Using
Enhanced Displacement Discontinuity Method

4.1 General Scope

Room and pillar and longwall mining techniques are regularly employed during
the mining of flat-lying lenticular orebodies. Pillars, which are ore remnants |eft standing
between the resulting excavations of the aforementioned mining methods, control both
the local performance of immediate rock roof and the global response of the host rock
medium. Pillars provide local rock support for individual excavations, and control the
extents of deformation of rock material in the zone of mining activity. The degree to
which the local and near-field stability of mining stopes are maintained to a considerable
extent depends on the dimensions of the pillars providing support, their layout, and the
strength and deformational properties of both the ore and host rock material.

A comprehensive understanding of the behaviour of pillars, and the ability to
predict this behaviour are very important for the economic and safe mining of ore. From
the economic point of view, it is desirable that the least possible amount of ore be
committed to support. On the other hand, the commitment of greater amounts of ore to
support is preferable from the perspective of safety. For an effective solution between the
competing factors to be reached, some failure of peripheral pillar material in practical
mining is permitted [1].

Stress states in pillars, and consequently pillar behaviour, are complicated. For

example, in the case of the simplest loading of a pillar, when it is compressed uniaxially,
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the stress state in the pillar is triaxial. The stress state cannot only be triaxial, but it can
also be non-homogeneous. This is due to the interaction between the ends of the pillar
and the surrounding host rock mass. The geometry of orebodies and other factors often
combine to produce irregular mine layouts that cannot be accurately analysed with simple
or analytica methods. Numerica modelling techniques are best suited for solving
problems of such degrees of complexity. The computational tool most appropriate for the
analysis of the dlit-type excavations encountered in the mining of lenticular orebodies is

the displacement discontinuity method (DDM) [40], described in the previous chapter.

4.1.1 The Traditional DDM for Mine Analysis

During mining activity in a stope, stresses are redistributed around the excavation
and in the pillars supporting the excavation. When the stresses in the pillars are less than
the strength of the orebody material, the pillars behave elastically. One of the principal
aims of such an analysis is to determine the load-bearing capacities of pillars. For
analysis of pillars in this category, elastic analysis such as that offered by the traditional
DDM is adequate. The formulation of displacement discontinuity elements for pillars
(unmined zones of orebodies) differs from that for elements in mined regions. To model
the behaviour of material in pillars, springs that respond to the normal and shear stresses
are included in the formulation of DD elements used in representing pillar supports. By
formulating DDs for different orebody zones it has been possible to solve a number of
practical mining problems.

Useful as the conventional DD formulation for unmined regions is, however, it

has a mgjor shortcoming. For orebodies that extend over large areas or that have low in
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situ strength, pillars necessarily have to be designed to undergo plastic deformations,
unless exceedingly large amounts of ore are to be used to provide support. The traditional
DDM for unmined material, however, cannot appropriately model plastic or yielding
pillar behaviour without considerable changes being made to its formulation, or
implementation.

An important component for modelling plastic material behaviour in pillars,
lateral confinement, is absent from the formulation of the conventional DD element for
unmined material. Plastic material behaviour involves post-peak material behaviour. The
determination of peak loads, post failure strength and the plastic behaviour of material all
require knowledge of the complete stress tensor at a point in the material. This includes
the lateral confining stresses omitted from the conventional DDM.

The degree of confinement in a pillar influences its strength. Irrespective of the
shape of a pillar, it typicaly has a confined core [41, 42] and the bearing capacity of the
pillar increases with increasing radius of this confined core. The higher the confining
stresses in the pillar are, the higher are both the peak and residual strengths of its core.
Because of this phenomenon, any mathematical formulation for solving pillar problems
that neglects confinement in the analysis, is expected to introduce significant error in the

calculated values of displacements and stressesin pillars.

4.1.2 Conventional Methods for Improving DDM for the design of
Yielding Pillars

In recognition of the inadequacies of the conventional DDM, in its practical
application to mining problems ad hoc approaches are used to account for confinement.

One such procedure acknowledges the presence of confinement in unmined zones



through the use of a family of stress strain curves. After discretisation of pillars, elements
are assigned stress-strain curves based on their locations in pillars. Those close to pillar
centres or cores are assigned the highest strength curves, while the ones adjacent to pillar
surfaces have the lowest curves. Intermediate elements are assigned intermediate curves.
This was the approach implemented in the commercial software package, MULSIM [18].
The ad hoc approaches, however, have some disadvantages. The procedure
described above, for example, is tedious and requires considerable experience in order to
determine the appropriate stress-strain curves to assign to elements in a pillar, making the
technique quite subjective. The approach used in MULSIM can be used for pillar
geometries of varying complexity. However, even dlight complications of pillar

geometries, make the technique difficult to use.

4.2 The Enhanced Displacement Discontinuity Method (EDDM)
In this thesis an enhanced displacement discontinuity method (EDDM) that

explicitly and objectively accounts for the effects of confinement is proposed. This
enhancement is achieved through the addition of a displacement discontinuity singularity
perpendicular to the normal DD, to the original formulation of DDs. With the addition of
thisnew DD, all stresses - normal, shear and confining stresses - are now accounted for in
the modelling of unmined material. The newly created DD elements can accommodate
general congtitutive relationships, ranging from elastic models to general plasticity
formulations, in the representation of pillar material behaviour, because of the inclusion

of confining stress.
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An additional advantage of the EDDM s that it accounts for confinement in a
manner more general than those advocated by ad hoc approaches such as the technique
used in MULSIM. Instead of using a discrete set of strength curves to model the effects
of confinement, the EDDM allows strengths at different locations in a material to be
calculated as functions of the stress states at the locations. It therefore offers more than
the mere automation of the procedure advocated in MULSIM (automation of the process
translates into considerable timesaving for mine design) by also modelling confinement
more realistically. A discussion of the advantages of the EDDM and its full development

isprovided in Paper 111. However the essentials of the approach are discussed next.

4.2.1 Fundamentals of the EDDM

The origina formulation of the displacement discontinuity method (DDM)
combined the idea of modelling cracks as distributions of dislocations with the method of
integral equations [43, 44]. It assumed a constant distribution of dislocations in modelling
crack problems.

Confinement can be incorporated into the DDM by deriving DDs starting from
the basic definition of discontinuities as singularities created by strain nuclei, which are

volumetric strain densities in three-dimensional problems, and surface strain densities for

two-dimensional problems. There are two fundamental types of nuclei of strain, d™ -

shear and normal strain nuclel. These strain nuclei can be distributed such that the

necessary boundary conditionsin crack problems are satisfied [43].
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4.2.2 Conceptual framework

A displacement discontinuity, as originally defined, is the relative movement
between the two surfaces of a crack [40]. This definition of a displacement discontinuity
can be generalized to cover the relative movement between two points on a crack.
Because the relative movement of opposing points on the surfaces of a crack is uniform
along the length of the crack, it becomes possible to define the displacement discontinuity

as the relative movement between surfaces. For the traditional displacement discontinuity

element (Fig. 4.1a), the shear DD is calculated as D, =u; —u, , while the DD in the

normal direction isdefined as D, = u, —u, .
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Figure 4.1: Definition of displacement discontinuity

By examining the generalised definition of a DD, a third DD, which shall be

named the lateral or confinement DD, D,, can be defined for an element. It isthe relative
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movement between the ends of a DD element as shown on Fig. 4.1b, and is defined by
the relationship D, =u; —u; .
A strain nucleus d” is the displacement discontinuity per unit volume in a

continuum [45]. The cumulative or total displacement discontinuity, £2 , in aunit volume

can be kept constant while the height of the volume is collapsed to zero. This can be

written mathematically as Q = Id*dv =jd dA, where d is a new quantity, which shall

be termed the displacement discontinuity per unit area, or surface displacement
discontinuity density.

When a two-dimensional element of height h and length 2a in a homogeneous,
linear elastic material is subjected to normal strain nuclei d,, distributed throughout the

element, stresses are induced in the medium. The stresses induced at a point q,
sufficiently far from the element, by the distribution of strain nuclei can be (closely)
replicated by replacing the element with a displacement discontinuity density, d, acting
along the centreline of the element. (It is only when q is sufficiently far from the element
that the stresses induced by strain nuclel distributed throughout the element will be well
approximated by those induced by a displacement discontinuity density acting at the

centreline of the element.)
Stresses induced by the strain nuclei distribution d, can be determined using the

following integral equation:
+h/2
o(@)= [a(p.q)-d"(p)dx,, (4.2)
-h/2

where g isaGreen’'sfunction, and p is a point in the domain of the distribution of strain

nuclei. Since the Green's function is continuous in the domain of integration
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(=h/2,h/?2), we can use the mean-value theorem to evaluate equation (4.1) as

() =9(p,, @) dz(P,)h, (4.2)
where p,is the point between —h/2 and h/2 a which the integrand takes on its
average value. p, can be approximated to be |ocated at the mid-height (centreline) of the
element in order to simplify computations. From this point forth, p, shall be simply

referred to asp.

Equivalent stresses at Q can be induced by a displacement discontinuity density d
placed along the centre line of the element. These stresses can be evaluated from the
formula

o(a) = 9(p,a)-d,(p). (4.3
Equating (4.2) to (4.3), the strain nucleus distribution can be expressed in terms of the
displacement discontinuity density as:
d,(p)=d,(p)/h (4.4)
When the displacement discontinuity density d has a constant variation in the x-
direction, it becomes equal to a displacement discontinuity D acting at the centre of the
element (see further explanation in the next section).

Similar to the above development of the normal DD, a shear displacement
discontinuity, D,, can be formulated by replacing the normal strain nuclei with nuclel
that produce shear displacementsin the element.

We shall now consider another distribution of strain nuclei d. that act on the
element. We shall label these nuclei as confinement strain nuclei. This new distribution

takes care of the effect of confinement in the element and produces lateral strain within
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the element. Analogous to the case of normal strain nuclei d,, alateral (or confinement)

displacement discontinuity density d. can be obtained from the confinement strain nuclei

d. . They are related through the equation

dc(p)=d.(p)/h (4.5)

Assuming a constant distribution of lateral displacement discontinuity density in
the x -direction, the total lateral displacement discontinuity in the element can be

evaluated as

. 2a
D.(p) = [d:(P) b =d. ()"~ (4.6)
Expression (4.6) defines the lateral (confinement) displacement discontinuity.
This new DD will be employed in the development of the enhanced DD element, which

will be presented in the next section.

4.2.3 Mathematical formulation
As mentioned earlier, distributions of shear and normal strain nuclel throughout
an element of height h and length 2a located at a point p in a homogenous, linear elastic

material, induce stresses in the continuum. The components of the stress tensor, o, and

the displacements, u,, that arise a a point g in the continuum due to the strain nuclel can

be determined from the following equations:

o (@ = [ [g5(p.a)d(P)p, (%) dx,ax (4.7)
u@=J [h(p.a)di(p)en(x,) dx,dx,, (4.8)

-a -h/2
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where the repeated indices represent the usual summation convention. For two-
dimensional problemsi, j, k=1, 2. g;, and h, are normal and shear influence functions
for stresses and displacements, respectively, due to the strain density at p. ¢,, is an
interpolation function. It can range from the simple square function, ¢,, to the Dirac

deltafunction, ¢, (or 8) (Fig. 4.2).

5 (x)
-hi2 +h/27 -2 +h/2 -2 +h/2 -h/2 2y
X X X
$o(X) ¢, (X) $,(X) $, (%)

Figure4.2: Interpolation functions

We shall select the Dirac delta function for the problem at hand, i.e. ¢,, =J, and

+h/2
shal also look to simplify the resulting expression J'g;k(p,q)d;(p) S(x,)dx, in

—h/2
equation (4.7). The Dirac delta function has an important property that for two functions

f(t) and ¢(t), both continuous at the origin, the following relationship holds [19]
[T @ ] 6 dt = £ (0)p(0) (4.9)
Using the well-known property of the Dirac function: fmf(t) o(t) dt = f(0), equation

(4.9) can be written as:
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[Tt @ o1 6@ di=[" () 5) dt [ p(t) 51 c. (4.10)
The above property, applied to the expression we are trying to simplify, leads to the

following result:

+h/2 +h/2 +h/2
[0 (P )AL (D) 5(%,) X, = [ g5 (P.A)S(,) A, [de(P)S(x,)dx, . (4.12)
~h/2 -h/2 -h/2

By letting
+h/2* +h/2*
[di(P)8(x;)dx, =d,(P) vand [ gy (PA)S(X,) A, =gy (pa),  (4.12)
—h/2 -h/2

equation (4.11) can be reduced to the form:

+h/2

[ 95 (P, A)d (P) 50x,) dx, = gy (P, A) A (P).- (4.13)

-h/2

d, is the displacement discontinuity density (where d, is the ride or shear DD density,

and d, is the closure or normal DD density). Similar operations can be performed to

simplify the corresponding expression in the equation for computing displacements.
These mathematical operations lead to the important result that for two-

dimensional problems, the stresses and displacements in equations (4.7) and (4.8) can be

caculated as:

o (@) = [ g (p.A)dy (p) A, (4.14)

u () = [ hy (p,a)d, (p)dx, (4.15)

g and h, are the normal and shear influence functions for stresses and displacements,

respectively, due to the displacement discontinuity density d, at the point p. These
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influence functions are given in [33]. The equations (4.14) and (4.15) congtitute the
formulation of the classical displacement discontinuity method.

We shall now consider the case of a crack divided into N discrete line segments or
elements. Acting over each of these elementsis a DD density. Each element is defined by
nodes at which displacement discontinuities (DDs) can be evaluated. By multiplying
values of the nodal DDs with coefficients of an interpolation function, the DD density
variation over the length of the crack can be approximated [7]. The approximation of the
DD density at a point p along the crack, coincident with the nodes of the elements, is

represented by the expression:

di(p)=> @.(p) D;, k=12. (4.16)

@ is an interpolation function identical to the shape functions of elements [7], which is
evaluated at the nodes e. Substituting egn. (4.16) into egns. (4.14) and (4.15) we obtain

the following equations:

oy (@) = [ 9y (p.A)@,(P)D; dx, (4.14)

u (@) =X [ (p. )@, (P)D; dx, (4.15)

If we assume a constant variation of the displacement discontinuity over each

element, @,(p) at node p is equal to unity and zero everywhere else, and egns. (4.17)

and (4.18) become:

o, (@) = Y D¢ [ gy (P, ) dx, (4.16)

u (@) =Y. Dehy(p.a) dx,, (4.17)
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In this case the total number of nodes is equal to the number of elements N. Equations
(4.16) and (4.17) form the classical formulation of the constant DDM.

The formulation of the enhanced displacement discontinuity (EDD) element shall
begin with strain densities. Revisiting the problem of shear and normal strain nuclel

acting at a point in a material, let an additional nucleus, d_, orthogona to the normal

strain nucleus be included in the problem. Other than direction, this new strain nucleus
behaves similarly to the normal strain density. The solution of the new problem differs
from the original only by the addition of an extra term to each of the equations (4.9) and
(4.10), that accounts for the influence of the newly introduced strain density.

A new displacement discontinuity, D., which is perpendicular to the normal DD,
can be formed from the new strain nucleus. Relying on the same approach used in the

formulation of the classical DDM, the density d. of this new lateral or confinement

displacement discontinuity can be determined from the additional strain nucleus d; using

the relationship

d.(p) = [d:(p)S(x,)dx,. (4.18)

For discretized problems, the DD density at a point p along a crack can be approximated

by nodal DD values through interpolation functions and the equation:

d.(p) =D @.(p) D¢, . (4.19)

The stresses and displacements induced at an arbitrary point g in an infinite,
homogeneous, linear elastic domain with the application of a shear, normal, and lateral

constant DD can be written as:



o (@)= D[ g (p,a) dx, + > D[V, (p, ) dx, (4.20)
u (@) = X" D¢ [hy (p,a) dx, + 3" D¢ [w (p,a) dx, . (4.21)

v; and w, are the confinement displacement discontinuity influence functions for

stresses and displacements, respectively. The definitions of the influence functions are

presented in Paper 111. Equation (4.20) and (4.21) represent the enhanced DD element.

4.2.4 System of equations for EDDM

The enhanced DD element can be applied to the problem of determining the total
stresses and mining-induced displacements in the room-and-pillar or longwall mining of
lenticular orebodies. As stated earlier, such mining involves dlit-type excavations. It is
necessary to identify the appropriate boundary conditions specific for problems of the
type described above.

As a first step in solving the problem of mining lenticular orebodies employing
room-and-pillar or longwall techniques, discrete EDD elements are placed aong the
centre lines of the excavations, pillars and panels. The next step is to determine values of
normal, shear and confinement DDs that produce total stress and displacement
components consistent with the boundary conditions of the problem. In generdl, if the

problem involves boundaries that are represented by N elements, M of which are unmined

(M<N), induced stresses o and displacements u? at element p due to the distribution of

normal, shear and confinement DDs at element g can be computed as

ol = AMD{ + 6, KDY (4.22)
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u® = BX¥DI +LMDY (4.23)
where i, j, k = 1, 2 and &, is Kronecker’s delta. The influence coefficients A}’ are
obtained from the expression

AR =t,G t, (4.24)
where G is the integra in the element local coordinate system of g, (p,q) in
equation (4.19), and t; is the rotation matrix. The other coefficients K [, B} and L

of equations (4.21) and (4.22) are determined in similar fashion through the integration
and transformation of v, (p,q), h,(p,q), and w, (p,q)in equations (4.20) and (4.21),
respectively. The system of linear algebraic equations given by equations (4.22) and
(4.23) can be solved for the unknown displacement discontinuities D and D!, after
substitution into the equations of the appropriate boundary conditions.

In underground excavation problems, it is convenient to separate total stresses o
into two stress components - initial stresses (o), and induced stresses due to excavation
(or simply induced stresses) (o ) . The separation can be expressed mathematically as:

o, = (O-ij)o + (O-ij)l . (4.25)

Crouch and Starfield [40] introduced mining-specific boundary conditions and
material relationships that accounted for the differences in the boundary conditions of
mined and unmined orebody zones into the DDM. These boundary conditions can be

used in the solution of problems with the EDDM. There is however one principa

difference. Because of the presence of a third DD, the confinement DD (D.) in the

EDDM, an additional equation and condition are needed to make the system of equations
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assembled for the EDDM fully determinate. This extra equation is supplied by the

constitutive relationship for seam material in unmined zones.

Boundary conditions and system of equationsfor elementsin mined zones
In the mined portions of a seam or orebody, if there is no contact between the roof and
the floor of excavations. Crouch and Starfield defined the boundary conditions' for the
roof and floor to be:
Oy =—(04), (4.26)
o, =—(005), s (4.27)
where (o,,), and (o,,),are theinitial normal stress and shear stress, respectively. These
same boundary conditions are applied to EDD elements in mined zones. It is important to
mention here that the lateral confinement of EDD elements in these zones is zero, since
those elements have no material. When these boundary conditions are inserted into

equations (4.20), the resulting system of equation is:

—(03), = A%D; + AL D (4.28)
—(0h), = ALD; + A5D,. (4.29)
DP =0 (4.30)

Boundary conditions and system of equations for elementsin unmined zones

For elements in unmined zones, the EDDM accounts for the effect of confinement with

the introduction of the confinement displacement discontinuity, D, (Fig. 4.3).

! 0 ,, and 0 ,, inequations (4.26) and (4.27) are equivalent to the stresses denoted in [40] asso' and o ,.

R7



pillar panel

mined element

unmined € ement

— J=—on. } o

—
T D, oy
D,

Figure 4.3: Boundary conditionsfor mined and unmined elementsin a seam

If it is assumed that the seam material is homogeneous, isotropic, and linearly elastic, its

constitutive relationship connecting stresses, o , and strains, ¢;;, can be written as:

o =4, 0; gy +2G; &; (4.31)
ij s V] “kk

s “ij »
where 1 is Lame' s constant defined by the relationship:

2v

e (4.32)

Let strain nuclei acting on thin strips of material with height equal to element

height h,, be distributed along the length of a crack [43]. The strain nuclei, d_, d, and

d,, discussed earlier in the development of the EDD element (see section 4.2.2), can be

defined as

d =g, =22 (4.33)
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. ou
d2 = 6‘22 :a—x2 (434)
2
2\ 0x, 0x

wheree,;, ¢€,,, and ¢, are the lateral, normal and shear strain, respectively. The strain
nuclel distributions ¢, and ¢,, corresponding to the displacement discontinuity densities
d, and d, for an element of finite height h,, as shown previously in egns. (4.2) and
(4.4), can be expressed as

e, =d. =d, /h, (4.36)
£, =0, =d,/h, (4.37)

The lateral strain in the element, &,,, due to the lateral displacement discontinuity density
can be defined as the total lateral deformation D, over the length of the element 2a and

thus can be represented as

R B

D, _ 1 (d éJ = 9 : (4.38)
Subsequently, the following relationship holds true for ¢, :

g,=d.=d_/h,. (4.39)

When the variation of the displacement discontinuity density over the length of an

element is considered to be constant, the values of d, and d, at anode equal D, and D,

respectively. Therefore, by replacing the strains in the constitutive relationship (4.31)

with the quantities % and % the normal, lateral and shear stresses induced on an

S S

element in an unmined zone through the application of DDs are determined to be:
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(4+2G) 5 _ 26,

- = 5 D, 4.40

(0) N N (4.40)

(0'11)‘ - = +hsz = Dot ZhC:‘S > @4
. G

n) =—D; 4.42

(01,) h (4.42)

The use of the constitutive relationship for the seam material has provided the additional
equation needed to make the system of assembled equations fully determinate.
Observation of equations (4.40) and (4.42) shows that only the confinement and the
normal discontinuities are coupled. This is consistent with the expected behaviour of
pillars under axial loads.

If it is assumed that elements in unmined zones initially have zero displacement,
and that they deform only in response to induced stresses [40], the following system of
equations can be assembled for this type of element:

(A +2G,) 2G,
== D, +—h Dl + ALD,) + ADID + KD/ (4.43)

S S

0

2 2
0= A +26) +h G.) D” +_th D) + AD; + KD (4.44)

S S

G
0=--=Df + AZD + AZD/ (4.45)

This system of equations, together with the system of equations (4.28) - (4.30), forms the
basis of the EDDM, and can be solved for the values of the unknowns DDs.
The EDDM algorithm for three-dimensional is developed along similar lines. A

detailed account of its formulation is presented in Paper I11.
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4.3 Sample Applications

In this section, two examples (one two-dimensional and the other a three-
dimensional case) that demonstrate the functionality and advantages of the enhanced
displacement discontinuity method (EDDM) are described. More examples of problems

solved with the new method are given in Paper I11.

4.3.1 Example 1: Analysis of a pillar between two stopes

The model of apillar between two stopes presented by Brady and Wassyng [46] is
analysed with the EDDM. The geometry of the problem is shown in Fig. 4.4. The pillar
and stopes were each modelled with 12 discrete EDD elements. Since there are no
analytical solutions for this problem, stresses computed in the pillar and around the stopes
by the EDDM were verified through comparison with those generated from the coupled
FEM/BEM developed by Brady and Wassyng [46]. (The Brady and Wassyng solution
was used in checking stresses in the pillar only.) They were also compared to stresses
calculated from Phase’, a FE software program developed in the Rock Engineering
Group of the University of Toronto [47]. In the finite element-boundary element coupling
technique presented by Brady and Wassyng [46], the boundaries of the stopes

(excavations) were modelled with boundary elements while a finite element mesh was

used for the pillar. Phas:e2 solely employs the finite element method.

Figure 4.5 contains plots of the major and minor stresses in the pillar computed by
the three methods. From the results, it can be seen that all three methods give similar
solutions to the problem. (The stress values at the ends of the pillar are different for the

coupled FEM/BEM technigue because a finer mesh is needed in that region for the
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technique.) These comparisons demonstrate that the EDDM, as well as its additional

capability of including confining effects (which are very important when pillar yielding is

modelled), can provide accurate results when used for elastic analysis.

Stresses

Stope

Piflar

Stope

(a) Geometry description

e e e e e e e e e e e e e e e e e e e e e e e e e e e DL
6 9 15
(b) Discretized configuration

Figure 4.4: Pillar and stope geometry description
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Figure4.5: Stressdistribution for the pillar
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4.3.2 Example 2: Three-dimensional analysis of a pillar in aroom

Confinement controls the overall behaviour of pillars. A detailed study of the
failure process in pillars [48, 49], showed that failure commenced on pillar boundaries
and migrated towards the centres of the pillar, where the cores had not reached their full
load-bearing capacities. The observed increase in the strength of material from pillar
boundaries towards the core is attributabl e to the effects of confinement.

Previous approaches for handling latera confinement in DD methods relied on
manual techniques to account for the influence of confinement. Figure 4.6 shows a
typical scheme in MUSLIM for assigning stress-strain curves to the elements of a square
pillar in a room-and-pillar mining scheme [50]. Elements used in discretizing the square
pillar are designated with letters from A to D in Fig. 4.6. These elements are assigned
strength curves (shown on the stress-strain diagram) according to the degree of
confinement they experience. The element at the core of the pillar, being in the most

confined region, is assigned the highest strength curve (curve A).

CORE (A)

CENTRAL (B)

- ooo o Do -
= olalojalo|jo|o

IR g ) e ey T Y

=oowwwolo-+
= oo/w» oo/o=+
- on(wjw/wo/o=
= onloalojlo|o=
woojo|jo|o|o|gs
o | | |k |k | |l

INTERIOR (C)

Stress, MPa

EXTERNAL (D)

I I I
0.0 0.0 0.1 02

Strain, mm/mm

Figure 4.6: Assignment of material propertiesto different elements[50]



For the three-dimensional EDDM to be considered successful it must correctly
capture the variation of the degree of confinement in pillars. The normalised confinement
DD adequately captures the degree of confinement in a pillar. An example of a single
pillar in aroom similar to the pillar of Fig. 4.6 is depicted in Fig. 4.7. Figure 4.8 shows
the contours of equal normalised confinement DDs calculated for the square pillar. Due
to the inclusion of the lateral singularity in the EDDM, it has been able to effectively

model confinement in the square pillar.

Figure 4.8: Contoursof normalised confinement DD for the pillar
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4.4 Summary

The EDDM makes use of al the components of the stress tensor and assumes a
homogeneous stress distribution along the height of pillars or panels. It has a principal
advantage over the classical DDM because of its ability to model material behaviour
effects which depend on confining stresses. Whereas the DDM is limited in its
application, the EDDM can accommodate general material constitutive equations
including plasticity and damage models. By explicitly accounting for confinement in its
formulation, the new procedure generalizes and automates the process of assigning
strength curves to elements. As a result, it simplifies data preparation by eliminating the
need for any artificial means for accounting for the effects of confining stresses.

Sample problems involving boundaries and pillars of simple geometry were
solved (mainly described in Paper 111) to validate the performance of the EDDM. The
results obtained from the EDDM compared well with analytical solutions for problems
for which they were available, and showed good agreement with the results of other
numerical techniques that have been established to perform well. Although the examples
used in validating the new formulation involved simple shapes, the procedure is by no
means limited to such cases.

The EDDM in this chapter was formulated using constant elements. However,
higher-order elements can be implemented, requiring only a few and relatively ssimple
modifications. This ability of the EDDM to accommodate a variety of constitutive
models, combined with its ability to account for confinement, makes it even more

attractive and important in the analysis of failing or yielding pillars.
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Chapter 5

Stability Analysis of Pillars Using
Enhanced Displacement Discontinuity Method

5.1 General Scope

During the simple uniaxial compression of mine pillars, frictional forces
perpendicular to the direction of compression arise in the pillars, because of the effects of
clamping at the ends of the pillars. Because these horizontal frictional forces resist the
bulging effects of uniaxial compression on pillars, the stresses they generate in pillar
material are termed confining stresses.

Due to the effects of confinement, pillars do not experience failure uniformly
across their cross-sections. Close to pillar surfaces, the degree of confinement is lesser
than for points further away from exposed faces. Under such triaxial stress conditions, the
strength of pillar material increases from the boundaries towards the core. It can therefore
be said that pillar material strength increases with increasing confinement [51, 52].
Confinement is more pronounced in the cores of short squat pillars, and reduces with
increasing pillar slenderness.

The presence of confining effects, which render pillar strength non-uniform
across pillar cross-sections, means that the practical design and analysis of pillars
yielding without the inclusion of confining stresses is inaccurate. Yielding of pillars or
plastic pillar response, as stated in Chapter 4, occurs in stoping operations in which oreis

recovered from pillars and pillars, are allowed to collapse in a controlled fashion [52].
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In some contemporary design methods, parameters and relationships used for
computing pillar sizes are obtained through the back analysis of failed and stable pillars.
The application of these techniques is however limited in range, because they can be used
to analyse and design only pillars with the same properties and operating under the same
conditions as those from which the equations and parameters were obtained. More
general approaches can be devised through theoretical considerations of the behaviour of
rock material in pillars.

The yielding behaviour of pillars can be modelled with constitutive relationships
such as elasto-plastic models. These constitutive models can be used with various
numerical techniques including the FEM and EDDM. The practical application of
elaborate models is, however, restricted due to the number of material parameters
involved, and the difficulties associated with the determination of their appropriate
values. A simpler approach involves the use of elasticity constitutive relationships,
together with failure criteria such as the Mohr-Coulomb criterion or Hoek-Brown
criterion, to model yielding in pillars. These simple approaches perform analysis through
iterative procedures. One such technique is the progressive failure method developed for
the FEM [53-56].

Although quite simple in its formulation, the progressive failure method
adequately captures the essence of the yield behaviour of materials. The parameters
needed for the failure criterion incorporated in the method are easy to determine, and
therefore make the practical application of this method very attractive. Although the
progressive failure procedure has been successfully implemented with the FEM to

analyse individual pillars, the large number of elements required to adequately model
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large-scale mine problems, and the uncertainty in mine input data do not justify the
approach for practical mine design. A progressive failure approach, implemented in the
EDDM, will be introduced in this chapter. This new method offers al the advantages of
the speed of the BEM, and produces results of enough detail to facilitate accurate

engineering decision-making on mine pillar design.

5.2 Stress-Strain Behaviour of Rock

After rock is fractured it has reduced resistance to loads. This in turn leads to
increased deformation under loads, because of the increased external energy supplied to
the rock. These observations were confirmed by experimental data obtained by
Bieniawski [51]. His results showed that the post-peak response of intact rock samples
was characterised by a progressive decrease in both load-bearing capacity and elastic
stiffness.

The stress-strain behaviour of rock material, however, depends to a great extent
on the confining stresses acting on the material. At higher confining stresses, both the
failure loads and residual strength for rock samples increasein triaxial tests. At low levels
of confinement, the post-peak strength of rock is reduced to very small fractions of the
load-bearing capacities of samples, whereas the post-peak loss of strength is not so

pronounced at high confining stresses.

5.3 Progressive Failure Procedure

In the rock mass surrounding excavations, and for rock material in pillars,

extensive redistribution of stresses occurs due to post-peak deformations. When local
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failure of material occurs at points in rock where stresses have exceeded strength, the loss
of load-bearing capacity has to be sustained by surrounding material. Stresses are
therefore redistributed, with regions in the immediate vicinity of failed material acquiring
increased stresses. Stress redistribution continues (progresses) until a stable state is
attained in which no new local failures of material occur.

Progressive failure of rock material was first included in analysis by Kidybinski
and Babcock [57], when they represented failed rock zones around longwall faces with
material of reduced elastic moduli. Kripakov [53] developed a more sophisticated
approach to simulating progressive failure. This approach, implemented in the FEM,
more redlistically modelled the process of progressive failure. The progressive failure
approach of Kripakov uses an iterative pseudo-elastic method of analysis to simulate the
progressive yield zone in pillar material. In the method, it is assumed that local failure of
an element representing a section of a material occurred, when the stress on the element
exceeded the calculated strength of the materia at that point. This strength is calculated
using afailure criterion such as Mohr-Coulomb.

If after the computation of element stresses any elements have failed, a new
iteration is begun in which stresses were recalculated, with the difference between the
calculated stress of a failed element and its admissible residual stress being distributed to
surrounding elements. Redistribution of stresses is achieved through the modification of
the element material stiffnesses. Every time the failure stress of an element is exceeded,
its elastic modulus is reduced by the ratio of the failure stress predicted by a failure
criterion to the stress computed at the element.

Since failure criteria generally do not provide any information on the post-failure
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behaviour of material, the procedure developed by Kripakov models post-peak material
constitutive behaviour by reducing the stiffness and strength of material as iterations
progressed. The amounts of reductions after failure are determined by an empirical local
material factor of safety, F. This index is not a global safety factor that indicates the
danger of collapse of excavations or mine pillars, but rather one that measures how close
material at apoint isto failure. The local factor of safety is computed from the formula:

_ maximum material strength _ o
applied stress o,

Fs , (5.2

where o, is the maximum principal stress calculated at a point in the material. The
maximum material strength, o, is calculated from afailure criterion. A factor of safety

greater than 1.0 implies that no failure has occurred, while factors of safety less than 1.0

indicate failure.

factor of safety; 1.0
\

factor of safety < 1.0

»
|

Figure5.1: Reduced post-peak elastic moduli of material

The reduced modulus of elasticity and uniaxial strength (Fig. 5.1) of failed

material are calculated from the equations:
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E(modified) = Fs ) E(original) (5-2)

Fs- O c(original) *

(5.3)

O ¢(modified) —
respectively. If an element fails in tension, that element is assumed to have yielded
completely and therefore does not retain any residual strength.

After the first iteration of the progressive failure algorithm, the degrees of failure
(factors of safety) of the elements of a discretized structure or domain are assessed for
values less than 1.0 (indications of failed elements). If all elements have factors of safety
greater than 1.0, the analysis is terminated. For elements that have factors of safety less
than 1.0, reductions are applied to their stiffness and strength and the analysis repeated.
At the end of each iteration a termination condition, which compares element factors of
safety from the previous iteration to that of the current, is checked. If the differences
between previous and current values of the factors of safety for elements are smaller than
a set tolerance, i.e. when the factors of safety practically stop changing, the algorithm is
adjudged to have converged. Results of studies by Kripakov and others [53, 56] show that
the criterion produces stable results that are not affected by the accuracy of the

convergence ratio.

5.4 Failure criteria

Failure at points of a material occurs when the stresses at these points, or in
elements used in modelling the material, exceed the material’s strength limit. Strength
limits are determined or predicted from failure criteria [58]. For isotropic material, a
failure criterion is an invariant function of the state of stress, and is commonly

represented with principal stresses as:
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f(o,,0,,05)=0, (5.9
where o,,0,,0, are, respectively, the major, intermediate and minor principal stress

components.

Failure criteriafor uniaxial stress conditions cannot be used in progressive failure,
because the stress-strain behaviour of rock material depends on the magnitude of
confining stresses. Therefore failure criteria that take into consideration other principal
stresses are required. The material parameters needed in failure criteria for rock masses
are critical to the design of underground excavations, but can be at times difficult to
estimate. As a result, it is desirable that failure criteria chosen for practica analysis
include only parameters that can be evaluated redlistically and reliably [59]. Two such
criteria, which are very widely used for predicting failure loads of rock under triaxial
stress states, and that satisfy these conditions, are the Mohr-Coulomb and the Generalised
Hoek-Brown criteria

The Mohr-Coulomb and Generalised Hoek-Brown failure models [60] have great
appeal when applied to practical problems involving progressive failure of rock material,
because of their relative simplicity. Although it is possible that more complicated models
may be able to predict failure stresses more accurately than these two criteria, the ease of
the determination of the values of their parameters, and the simplicity of their forms,

renders them very effective for routine use.

5.5 Progressive Failure Simulation Using EDDM

For progressive failure to be implemented in the EDDM, the stress tensor for each

unmined element is calculated and rotated to obtain principal stresses. The strength of
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each element is calculated using either the Mohr-Coulomb or Hoek-Brown failure
criteria. If the stress computed for an element exceeds the element materia strength, then
the factor of safety for that element is modified in the next run of the algorithm. The
strength and deformational properties of that element are reduced, thereby simulating
progressive partial failure of the element. As failed and softened elements will not
support as much load as before, extra stresses are transferred to other more competent
elements. This procedure continues until al elements reach an equilibrium state in which

the computed stresses for all elements do not exceed failure stresses.

5.6 Sample Applications

Two examples of the application of progressive failure with the EDDM are
provided in this chapter. These examples help demonstrate the applicability of the
proposed method to mine pillar analysis. The examples presented in this chapter were
selected such that the results obtained from analysing them with progressive failure in the
EDDM could be readily verified. In al the examples it is assumed that the host rock is
much stronger than the seam or orebody. Under such conditions, the host rock behavesin

alinear elastic manner. Only material in the seam undergoes yielding.

5.6.1 Two-dimensional analysis of a pillar (Example 1)

The application of progressive failure with the EDDM to the two-dimensional
analysis of a pillar is demonstrated in this example. Figs. 5.2a and 5.2b provide a
description of the problem and the discrete representation of the stopes and pillar with

EDD elements. The elastic properties for both the host rock and orebody in the problem,
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and material parameters for determining failure stresses are given in Table 5.1 [51]. This
problem was solved with progressive failure in the FEM [51]. It is assumed in the
problem that only vertical stresses due to the weight of rock overburden are applied to the

excavations. The underground excavations shown in Fig. 5.2a are at a depth of 457m.

Table5.1: Rock propertiesfor Example 1

E p C
Rock type m
P (MPa) v (degree) (MPa)
Host 11324 0.3 40 4 9
Orebody 3248 0.3 30 2 7

In the analysis, stresses in the pillars were calculated using the EDDM. The ratios
of the normal stresses to the vertical stress, p, (normalised normal stresses) at various
points across the width of the pillar are plotted in Fig. 5.4. From the plotsit is evident that
the results of the approach advocated in this paper compare very well with those obtained

from the FEM with progressive failure modelling.

(a) Geometrical description

(b) Discretized mesh

Figure 5.2: Two-dimensional model for mining problem
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In addition to verifying the stresses in the pillar, the stresses computed for the
panels were also checked. Normalised normal stresses for the panels are plotted in Fig.
5.4. Again, there is good agreement between the results of the EDDM with progressive
failure, and those computed from progressive failure in the FEM. Plots of the normalised
normal stresses in the pillar and panels produced by an elastic analysis are provided in
Figs. 5.3 and 5.4, respectively, for comparison with stresses obtained from the yield

models.

5.5.2 Three-dimensional analysis of a pillar (Example 2)

Example 2 examined the analysis of a pillar in a longwall mining scheme, in
which ore from a panel was removed in two stages. The material properties of the host
rock and orebody analysed in the example are provided in Table 5.2. The mining depth
was again assumed to be at 457m, with the primitive stress field assumed to be uniform

and equal to overburden pressure [61].

Table5.2: Rock propertiesfor Example 2

E P C

Rock type m
P (MPa) Y (degree) (MPa)

Host 17241 0.3 30 4 9

Orebody 1724 0.3 30 2 7

Fig. 5.5a shows the geometry and dimensions of the excavations, panels and pillar
at each of the mining stages. If the length of the panels, orebody, and pillar were to be
infinitely long, this three-dimensional problem would be equivalent to a two-dimensional

analysis of the central cross-section of the problem. For practical purposes, however, an
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infinite length is not possible and therefore a length to width ratio of 4:1 was selected for

the problem.

The mesh used in discretising the problem domain is shown in Fig. 5.5b. This

mesh remained unchanged for both stages of the problem. Boundary conditions, however,

were chosen to correctly represent the physical conditions prevailing at the different

stages.

Figure 5.5: Geometry and discretisation of the orebody
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Stresses around the excavations and in panels and pillars were computed for the
different stages of the analysis. During stage I, no failure occurred in either pillar or panel
material. Progressive failure of rock occurred only during stage Il of mining. The
normalised normal stresses computed in the plane of the central cross-section of the pillar
are plotted in Fig. 5.6. These results are compared with the results of a two-dimensional
analysis of the central cross-section of the problem. There is good agreement between the
results of the three-dimensional and two-dimensional analyses, even though the mesh

used for the latter was much finer.
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5.7 Summary and Conclusions

The yield behaviour of rock pillars and the analysis of yielding pillars are
generaly very difficult to model numerically, because of the non-linearity of the yielding
process. The prediction however of pillar behaviour is of great importance to the design
of room-and-pillar mining schemes. Due to difficulties in estimating the in-situ strength
properties of pillar material and the complexities of pillar loading conditions, any tool for
the practical analysis of yielding pillars must be smple and yet capable of producing
acceptable results. The progressive failure technique, implemented in the EDDM, meets
these necessary requirements. It was initiated in an effort to develop a quick and efficient
numerical technique for pillar post-failure analysisin the mining of lenticular orebodies.

Although very ssimple in formulation, the progressive failure technique overcomes
many of the numerical programming difficulties associated with the smulation of strain-
softening behaviour. It also provides efficient ways of generating results that conform to
real rock behaviour in pillars and panels. The results of the analysis of sample problems
in both two and three dimensions with the progressive failure procedure in the EDDM
proposed in this thesis, compared very favourably with those obtained from other
methods.

Although the progressive failure method was used only with the EDDM,
additional models for analysing pillar yielding in the EDDM could be readily developed.
For example, more complex plasticity constitutive models can be used in place of the

pseudo-elastic model in the EDDM.
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Chapter 6

Summary and Future Development

6.1 General Summary

The design and analysis of mining excavations has great significance for the
profitable and safe mining of mineral resources. It involves the geomechanical analysis of
mine structures, and requires the use of numerical techniques that are more powerful and
flexible than analytical methods. One of the difficulties of mine analysis is that it
involves large-scale problems, due to the sizes of orebodies and influence zones of
mining activity. The geometry of orebodies, excavations and mine support structures
pose additional challenges in practical mining situations, because of their irregular shapes
and layouts. For example, mine excavation analysis for the extraction of ore from
deposits such as seams or lenticular orebodies, is difficult, because of the unique property
of these excavations that their boundaries consists of two partsin very close proximity to
each other. These factors combine to impose a number of restrictions on the numerical
method that can be for practical mine analysis. The mining of orebodies with shapes as
those just mentioned above, and that are flat lying, are of particular interest in this thesis.

Another magjor problem in geomechanical mine analysis and design is the
uncertainty in data collected on rock properties. Uncertainty makes it uneconomical to
perform elaborate design, especially at preliminary stages of mining. It often brings about
changes in analysis and design, because new data collected on rock properties from a
location as mining progresses show that input parameters are not what they were initially

estimated to be.
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Of the numerical methods available for engineering design, the displacement
discontinuity method (DDM) is most suitable for solving mine design and analysis
problems of lenticular orebodies. Its advantages stem from the use of a boundary element
method in which the two surfaces of thin dit-like excavations are treated as one entity,
and the relative displacements between these surfaces are handled as unknown physical
parameters.

The research conducted in this thesis aimed to resolving a broad spectrum of
issues related to the practical application of the DDM to stress analysis problems of
mining excavations. The new formulations for the DDM derived in this thesis were
verified by implementing them in a C/C++ program code and comparing its results with
those of available software programs. Although results produced by the new code were
very good, it is important to outline some of the ssimplifying assumptions used in its
formulation that lead to limitations in its application. These limitations are related to the
DDM itself, and can be outlined as follows:

The method assumes
1. homogeneous, isotropic, linear elastic behaviour for domain (host rock) material,

2. average stress components in pillars that are distributed along the centerline of DD
elements,
3. only rupture modes that involve spalling from pillar surfaces.
Also, although different plasticity models can be used with the method, they were

not actually implemented.
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6.2 Contributions

The research conducted in this thesis covers a broad spectrum of issues related to
the practical use of the DDM for the stress analysis of mining excavations. Contributions
the thesis has made to research on the practical application of the method to mining are

outlined below.

6.2.1 Node-centric framework

In the first part of this work, a node-centric formulation, applicable to indirect
boundary element methods, was developed. This had not been done previously, because
of difficulties associated with the evaluation of the highly singular integrals of the
indirect method, despite the proven advantages of node sharing in the BEM. The node-
centric indirect BEM was made possible only after the creation of a new and unified
framework for evaluating hyper-singular boundary integrals in the thesis. Original
boundary functions, based on an assumption of linear variation of unknowns in the
indirect BEM, were derived in the thesis. They were used in the new approach for
evaluating singular integrals. The technique of boundary functions significantly reduces
complications in the integration of singular functions, and also uniformly treats singular,
near-singular and regular integrals. It has additional advantages of being robust and fast,
and used adaptive integration to make it possible to evaluate integrals with predetermined
accuracy.

The practical implementation of the node-centric method for indirect BEMs was
demonstrated on the displacement discontinuity method (DDM). PAPER I, in the

appendix to this thesis, discusses the application of the method to two-dimensional
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analysis with the DDM, while in PAPER 11, athree-dimensional DDM implementation of
the node-centric is provided.

The node-centric formulation together with the unified integration scheme
produced more accurate results than the conventional DDM, and demonstrated greater
robustness in comparison to other DD formulations. The node-centric DD formulation
extends the range of application of the DDM to non-standard problems such as those
involving the intersection of excavations by faults. Without a node-centric formulation,
the application of the DDM to such geomechanics problems is quite cumbersome.
Usualy, to overcome the physically impossible large stresses that are calculated in-
between elements in the conventional DDM for problems of this kind, careful and fine
discretisation had to be used. The node-centric formulation obviates this problem by

imposing stress continuity.

6.1.2 Analysis of pillars using EDDM

The second part of the thesis described the derivation of a new DD element - the
enhanced displacement discontinuity method (EDDM). Elements of this new
displacement discontinuity approach were formulated by adding a centre of dilation
singularity to the formulation of the conventional DD element. The dilation singularity is
coupled with the normal singularity through the use of a congtitutive relationship. This
new formulation provides information about the in-plane (confinement) stress in an
element, something the conventional DD does not include. These developments are

discussed in Paper 111, asummary of which is provided in Chapter 4.
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The EDDM allows the process of assigning degrees of confinement, expected to
occur in pillar and abutment elements under a given set of mining conditions, to be
automated. A primary advantage of this feature is that it provides a means to simplify
data preparation, because it eliminates the need for ad hoc means for accounting for the
effects of lateral stresses.

With the inclusion of confinement into the formulation of the enhanced DD
element, it can be readily used for the analysis of yielding pillar, since all components of
the stress tensor at a point in a material are explicitly accounted for in elements. The new
element displays greater flexibility and power in handling two- as well as three-

dimensional mining problems.

6.1.3 Pillar yielding

The final focus of the thesis research was on the development of a methodology in
the EDDM for modelling the behaviour of yielding pillars. The technique selected was
the progressive failure method, previously used with only the FEM. Its application to the
BEM, and specifically to the EDDM, is new. As stated earlier, the powerful and versatile
FEM is not very suitable for practical mine analysis, especialy for three-dimensional
problems, because of the significant computational effort and resources needed to
formulate and solve problems with the method. Therefore the implementation of the
progressive failure procedure in the EDDM was undertaken in an effort to develop a
quick and efficient numerical tool for pillar post-failure analysis in the mining of
lenticular orebodies. PAPER 111, summarized in Chapter 5, contains the full formulation

of the progressive faillure method applied in the EDDM. The progressive failure

aa



procedure is asimple and yet very efficient way of simulating real rock behaviour. It uses
a quasi-elastic approach, accompanied by iterative modifications to element material
deformation and strength properties.

The motivation behind the proposed numerical procedure for modelling yielding
pillars was quite straightforward. Often, not enough is known about rock properties to
justify a complete elastic-plastic anaysis, especialy since elastic-plastic analyses require
considerable computational resources, effort and time. The input data for the progressive
failure procedure, outlined in the thesis, include well-understood parameters, easily

obtained from laboratory tests on rock samples.

6.3 Future Development

Further developments to the methods described in this thesis can be directed in
two principa directions. improvements to modeling techniques and the resolution of
practical application issues. Some of the aspects that need to be investigated in these two
areas are discussed below:

1. The node-centric formulation of the DDM implemented in this work assumed alinear
variation of unknowns, which is the lowest order of interpolation functions that could
be used for node sharing. Higher order of elements can be developed for special
design or analysis cases, where results of higher accuracy are desired.

2. The node-centric framework developed in this research can be applied to other
indirect boundary element methods such as the fictitious stress method. This could
facilitate the coupling of fictitious stress methods with the displacement discontinuity

method, because of node sharing.
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. The node-centric displacement discontinuity method developed here can be extended
to multiple material problems.

. Extensive studies oriented at comparing practical mine data with the numerical results
obtained from the new DD model can be carried out. In these studies, the
performance of both elastic analysis and progressive failure analysis of pillars can be
evaluated.

. More complicated models can be developed for the behaviour of unmined material,
close to excavation boundaries, by incorporating non-linear material constitutive
relationships into the progressive failure method.

. The EDDM developed in the thesis can be used for modelling mining sequences. It
can thus be used to study history dependent phenomena such as those arising from
mining activities in the vicinity of faults. The ability to model mining sequences is
also necessary when considering the non-linear behaviour of the seam material.

. A study directed at the effects of back-filling mined zones can be conducted using the
progressive failure method and the EDDM. Adding a routine that changes the
properties of unmined elements during every mining stage can help accomplish this

objective.
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Node-Centric Displacement Discontinuity Method
for Plane Elasticity Problems

S. Vijayakumar, J. H. Curranand T. E. Yacoub

Rock Engineering Group, Dept. of Civil Engineering,
University of Toronto
Toronto, Ontario, Canada, M5S 1A4

Abstract

A new two-dimensional displacement discontinuity formulation, which preserves inter-
element continuity of tractions and displacements at nodes, is introduced. The continuous
displacement discontinuity variation between elements is achieved by treating inter-
element nodes as the points of specification of unknown displacement discontinuity
values. Thus, the most important source of error in the displacement discontinuity method
implementation is eliminated. This, in turn, widens the applicability of the displacement
discontinuity method. The trade off is that certain conceptual and computational
difficulties with respect to element integrations arise. By employing the ideas of invariant
imbedding and continuation of singular and near-singular integrals, a suitable integration
ansatz is developed. The efficacy of the method is shown using several examples which
are designed to explore its potency as a genera purpose method for solving large scale

field problems.
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Keywords: Indirect Boundary Element Method, Displacement Discontinuity Method,
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A Node-Centric Indirect Boundary Element Method:
Three-Dimensional Displacement Discontinuities

S. Vijayakumar, T. E. Yacoub and J. H. Curran®
Rock Engineering Group, Dept. of Civil Engineering, University of Toronto
Toronto, Ontario, Canada, M5S 1A4

Abstract

An indirect boundary element formulation based on unknown physical values
being defined only at the nodes (vertices) of a boundary discretization of a linear elastic
continuum is introduced. As an adaptation of this genera framework, a linear
displacement discontinuity density distribution using a flat triangular boundary
discretization is considered. A unified element integration methodology based on the
continuation principle is introduced to handle regular as well as near-singular and
singular integrals. The boundary functions that form the basis of the integration
methodology are derived and tabulated in the appendix for linear displacement
discontinuity densities.

The integration of the boundary functions is performed numerically using an
adaptive algorithm which ensures a specified numerical accuracy. The applications
include verification examples which have closed-form analytical solutions as well as
practical problems arising in rock engineering. The node-centric displacement

discontinuity method is shown to be numerically efficient and robust for such problems.

(No. of Figures: 14  No. of Tables: 1 No. of Refs: 21)

Keywords: Displacement Discontinuity Method, Node-centric, Adaptive integration, Singular
integral s, collocation, continuation
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An Enhanced Displacement Discontinuity Method
for the Analysis of Lenticular Orebodies
T. E. Yacoub' and J. H. Curran?
Rock Engineering Group, Dept. of Civil Engineering,

University of Toronto
Toronto, Ontario, Canada, M5S 1A4

Abstract

The displacement discontinuity method (DDM) - an indirect BEM - is very suitable for
calculating stresses and displacements associated with the mining of lenticular orebodies
(orebodies that are at most only afew meters in one direction and tens of metersin the other two).
The original formulation of the DDM, however, omits the effects of confining stresses, which are
important to pillar strength.

In this paper, a new DD method, the enhanced displacement discontinuity method
(EDDM), which explicitly models confining stresses in pillars in the formulation of DD elements,
is presented. The new DD element is derived through the inclusion of an additional singularity
that accounts for confining stresses to the formulation of the conventional DD. The inclusion of
the confinement DD enables the EDDM to accommodate all components of the stress tensor, and
requires a new equation to make the resulting system of equations fully determinate. This
equation is obtained via the material constitutive relationship. The use of the full stress tensor
grants the EDDM the capability to employ general material constitutive relationships for the
modelling of different types of material behaviour. It is developed for both two- and three-
dimensional problems. Sample applications of the new method to pillar problems are provided in

the paper. These examplesillustrate the viability of the EDDM.

Keywords. Displacement Discontinuity, DD, enhanced displacement discontinuity, EDD, strain
nucleus or nuclei, pillar confinement effect.
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1. INTRODUCTION

During the (room-and-pillar or longwall) mining of lenticular orebodies, sections of
the orebody are left intact for the purposes of providing support for excavated rooms. These
unexcavated orebody portions are known as pillars. The anaysis of stresses and
displacements around the resulting excavations and in the pillars often requires the use of
numerical techniques, because closed-form solutions exist only for a very small set of
problems.

There are two competing demands that control pillar sizes in the design of pillars.
Mining economics demands that as much ore as possible be recovered from mining
operations implying that pillars must have minimal sizes. Safety demands however require
that pillars be designed such that they have adequate load carrying capacity to prevent
catastrophic collapse of excavations. For an optimal solution between the competing factors

to be reached, some failure of peripheral pillar material in practical mining is permitted.

Numerical Modelling Techniques

Today there are a variety of numerical techniques available for performing stress
analysis and design of rock engineering structures. These techniques include the finite
element method (FEM), finite difference method (FDM) and the boundary element method
(BEM). In principle, al of these methods can be used for the detailed modelling of features
such as stopes and pillars that result from mining excavation works [1].

The finite element method is a very powerful and versatile numerical modelling
technique that can be used to solve a very broad range of engineering problems. Overal it

enjoys greater popularity in engineering applications than other numerical methods. In finite



element modelling, the material region of interest is divided (discretised) into a network of
elements. The solution to the problem of finding displacements and stresses induced by
applied stress states is determined at the nodes of the elements. The FEM can be used to
obtain detailed information on the distribution of stresses and strains that other methods are
either incapable of producing, or can produce but with significantly more effort. It can aso
readily model non-linear material behaviour and non-homogeneous material domains.

As the name suggests, the boundary element method (BEM) involves the
representation of only excavation boundaries with elements. Analytical solutions obtained for
problems entailing the application of singular loads in generally homogeneous domains
supply the basis for the BEM to satisfy the problem boundary conditions at the nodes of its
elements. Based on the integral formulations involved, BEMs can be separated into two main
classes - direct methods and indirect methods. In direct boundary element methods, stresses
and displacements are calculated directly from the system of equations that is assembled for a
problem. The indirect approach involves the initial computation of fictitious quantities.
Stresses and displacements are thereafter calculated from these fictitious quantities. Unlike
the FEM, however, the BEM does not accommodate heterogeneous material domains or non-

linear material behaviour very readily.

Selection of Numerical Methods for Mining Applications

The success of these numerical techniques, when applied to mine design, depends on
the level of effort needed to define or formulate problems in the techniques, their ability to
produce solutions fairly rapidly, and the flexibility they offer in analysing alternate mine

layouts reasonably quickly. The application of methods that demand tedious and subjective



input such as the manual assignment of strength parameters to elements is limited by these
constraints. A distinctive characteristic of the modelling of mining excavations is that
problems involve large domains. As a result, when the FEM is applied to mining problems,
relatively large regions around excavations have to be divided into elements. This approach
necessarily leads to large numbers of nodes and elements, which in turn transate into
considerable computational times for each mining layout or sequence examined. For three-
dimensional problems, meshing becomes a significant issue in the FEM. It is not easily
performed and subsequently hampers its use in the examination of aternate mining schemes.
In the BEM, on the other hand, because only problem boundaries are discretized into
elements, the amount of time needed to generate and check meshes is much reduced,
especially for three-dimensional problems [1]. The smaller numbers of elements in the BEM
result in much smaller systems of equations than are found in equivadent FEM
representations of problems. These attributes of the BEM grant it significant advantages in
computational speed and flexibility over the FEM in solving the large domain problems of
mining.

A most important issue in the choice between the FEM and BEM for mine modelling
centres on the justification for selecting one or the other method for design. Characteristically
in mining, data on stress states and other input design parameters are not recorded with great
precision. A reasonably high degree of uncertainty therefore surrounds input parameters for
the design of mining stopes and pillars. Also, in typical mine operations stopes need to be
supported or kept standing only for a few weeks before either being backfilled, or being
alowed to collapse. For the design of mine pillars therefore, the main purpose of stress

analysis is to provide insight into the overall physical behaviour of mine pillars, rather than



into the specifics of the behaviour of individual pillars. The desire of designersin such cases
isto only obtain results that sufficiently capture the essential character of the problem. Due to
these factors (the relatively high uncertainty in input data, moderate levels of required stress
detail, and the short lengths of time over which excavations are required to stand or be
supported), the use of the FEM is not always recommended for problems of analysing stopes
and pillars. BEMs, on the other hand, meet the above criteria for mine design by requiring
less effort in formulating problems and supplying the required amounts of information and
insight, necessary for design. Despite their difficulties in handling heterogeneous materials,
they are often more fitting for mine analysis and design because detailed knowledge on the
material properties needed for the modelling of such material domains is not well established

in many mining cases.

The Displacement Discontinuity Method (DDM). Advantages and Disadvantages

The displacement discontinuity method (DDM) is atype of indirect boundary element
technique. It is well suited for modelling a particular class of mining problems, namely those
involving thin, dlit-like openings, and discontinuities such as faults or joints [2, 3]. Thin, dlit-
like openings are commonly encountered in the mining of lenticular ore bodies (seam-type
deposits) - orebodies that have relatively small thickness compared to their other two
dimensions. In the analysis of such features, both excavated and unexcavated regions can be
represented as crack-type elements.

Since the original papers on the DDM were published, advancements of the method
have followed two principal directions [2]. In the first direction, researchers have sought for

improvements to the accuracy of the method by formulating higher-order DD elements [4, 5].



The second direction has mainly pursued enhancements in the practical application of the
DDM. These efforts have led to the devel opment of severa well-known commercial software
packages [6, 7].

Displacement discontinuities can represent relative displacements of crack surfaces
under the influence of imposed stresses. Because rock discontinuities and the features formed
during the mining of lenticular orebodies have proportions similar to cracks, when compared
to problem domains, they can be readily analysed with DDs. Although, generally, the initial
unknown quantities computed in indirect methods are of a fictitious nature, the unknown
variables in the DDM represent physical features in the modelling of mining excavations in
lenticular orebodies, and rock discontinuities. For the mined sections of alenticular orebody,
the rides (the relative movements of the roof and floor of excavations parallel to each other)
and closure (the relative displacement of the roof and floor perpendicular to their surfaces)
can be treated as the unknown parametersin the DDM [2].

The formulation of DDs for pillars (unmined zones) differs from that of elements in
mined regions of an orebody. To model the behaviour of material in pillars, springs that
respond to the normal and shear stresses are included in the formulation of DD elements for
unmined orebody regions. The formulation of DDs for the different zones (i.e. mined or
unmined) has alowed a number of practical mining problems to be solved.

Useful as the conventional DD formulation for unmined regions is, it has a major
shortcoming. It is a well-established fact in rock mechanics that confining stresses
significantly influence the strength of pillars. Because pillar cores, for example, experience
much higher confining stresses than pillar regions abutting pillar surfaces, cores have much

greater bearing capacities. The hourglass shape of failed pillars provides evidence of the



phenomenon of confinement in rock material. This important effect of lateral confinement is
omitted from the formulation of the conventiona DD element for unmined material. The
modelling of confinement in the pillar materia is especially important when yielding or post-
peak response of pillarsis being analysed.

Yielding or failure of pillars cannot properly be analysed if confinement in pillarsis
ignored. In recognition of this problem, ad hoc approaches are used to account for
confinement in the practica application of the DDM to mining problems. One such
procedure recognises confinement in unmined zones through the use of a family of stress-
strain curves. In this method, each pillar is discretised into several elements. Elements are
then assigned stress-strain curves based on their locations in pillars. Those close to pillar
centres or cores are assigned the highest strength curves, while the ones adjacent to pillar
surfaces have the lowest curves. Intermediate elements are assigned intermediate curves.
This approach has been implemented in the commercia software package MULSIM [7].

The ad hoc approaches, however, have some principa deficiencies. The procedure
described above, for example, is tedious and requires considerable experience in order to
determine the appropriate stress-strain curves to assign to elementsin apillar. This makes the
technique subjective in nature. In principle, the approach used in MULSIM/NL can be used
for pillar geometries of varying complexity. However, even slight complications of pillar

geometries, make the technique difficult to use.

Proposed Enhancement to the DDM
This paper proposes an enhanced displacement discontinuity method (EDDM) that

explicitly accounts for the effect of confinement in an objective manner. This enhancement is



achieved through the addition of a displacement discontinuity singularity that is
perpendicular to the normal DD present in the original formulation of DDs. With the addition
of this new DD, three stress types, instead of two, are now accounted for in the modelling of
unmined material. The three stress types accounted for now are normal, shear and confining
stresses. By including confining stress in its formulation, the newly created DD elements can
accommodate general constitutive relationships, ranging from elastic models to generd
plasticity formulations, to represent pillar material behaviour. An additional advantage of the
EDDM isthat it accounts for confinement in a manner more general than those advocated by
ad hoc approaches such as the technique used in MULSIM. Instead of using a discrete set of
strength curves to model the effects of confinement, the EDDM allows strengths at different
locations in a material to be calculated as functions of the stress states at the locations. It
therefore offers more than the mere automation of the procedure advocated in MULSIM
(automation of the process trandlates into considerable timesaving for mine design) by aso

modelling confinement more realistically.

2. PILLAR BEHAVIOR

In room-and-pillar and longwall mining, pillars are generated as ore remnants
between excavations, to control both the local performance of roof rock and the global
response of the host rock medium. These pillars have the capability to transmit axial and
shear loads [8].

The degree of confinement implicitly influences pillar strength. Fig. 1 shows the
stress-strain behaviour of rock cores under confining stresses. The higher the confining

stress, the higher are both the peak and residual strengths of rock cores. Irrespective of the



shape of a pillar, it typically has a confined core. Under normal overburden pressure,
horizontal in-situ stresses are generated in pillar cores due to the effect of Poisson’s ratio [9,
10]. The bearing capacity, thus, of a pillar increases with increasing radius of its confined
core. Pillar deformability isinversely proportional to the area of confined cores[11, 12].
From the above discussion on the effects of confinement, it is reasonable to expect
that in any mathematical formulation of problems involving pillars, significant error is
introduced in the calculated values of displacements and stresses, if confinement is neglected
in the analysis. As earlier mentioned, one of the disadvantages of the classical DDM for
analysis involving pillars is that the formulation involves only two types of singularities that
account for normal and shear stresses [13]. A latera discontinuity that can model the effects
of confinement is not considered. It is to overcome this disadvantage that in the current work
the effect of confinement is explicitly included in the formulation of elements for the EDDM.
The incorporation of the missing lateral component leads to the generalisation of ad hoc
techniques (that compensate for this missing component) used in the practical
implementation of the DDM to mining problems. In modelling pillars and unmined panels
with the assumption that the average stress state (i.e. stress averaged over the height of a
pillar) is representative of pillar response, the new method supplies all components of the
stress tensor. As a result of these particular attributes of the EDDM, it can use any

constitutive relationships to model the behaviour of the orebody material.

3. FORMULATION OF THE EHANCED DISPLACEMENT
DISCONTINUITY METHOD

The original formulation of the displacement discontinuity method (DDM) combined

the idea of modelling cracks as distributions of dislocations with the method of integral



equations [14, 15]. The origina DD formulation assumed a constant distribution of
dislocations in modelling crack problems. This formulation was refined by Crawford and
Curran [4], and later on by Vandamme and Curran [16], using higher-order dislocation
distributions. These higher-order DD elements required that nodes be located in the interior
of elements due to mathematical difficulties with integral equations. Despite an increase in
accuracy with the use of higher-order elements, this approach could not eliminate
inaccuracies in the modelling of lenticular orebody mining, because of the neglect of
confining effectsin pillars.

Confinement can be incorporated into the DDM by deriving DDs starting from the
basic definition of discontinuities as singularities created by strain nuclei, which are

volumetric strain densities in three-dimensional problems, and surface strain densities for

two-dimensional problems. There are two fundamental types of nuclei of strain, d” - shear

and normal strain nuclel. These strain nuclel can be distributed such that the necessary

boundary conditions in crack problems are satisfied [17].

3.1 Conceptual framework

A displacement discontinuity, as originally defined, is the relative movement between
the two surfaces of a crack [2]. This definition of a displacement discontinuity can be
generalised to cover the relative movement between two points on a crack. Because the
relative movement of opposing points on the surfaces of a crack is uniform along the length
of the crack, it becomes possible to define the displacement discontinuity as the relative

movement between surfaces. For the traditional displacement discontinuity element (Fig. 2a),



the shear DD is calculated as D, =u; —u, , while the DD in the normal direction is defined
asD,=u, —u,.

By examining the generalised definition of a DD, athird DD, which shall be named
the lateral or confinement DD, D_, can be defined for an element. It is the relative movement
between the ends of a DD element as shown on Fig. 2b, and is defined by the relationship
D.=u, —u_.

A strain nucleus d” is the displacement discontinuity per unit volume in a continuum

[18]. The cumulative or total displacement discontinuity, €2, in a unit volume can be kept

constant while the height of the volume is collapsed to zero. This can be written
mathematically as Q = [d"dV = [ d dA, where d is anew quantity, which shall be termed the
displacement discontinuity per unit area, or surface displacement discontinuity density.

When a two-dimensional element of height h and length 2a in a homogeneous, linear
elastic material is subjected to normal strain nuclei d,, distributed throughout the element,

stresses are induced in the medium. The stresses induced at a point g, sufficiently far from
the element, by the distribution of strain nuclel can be (closely) replicated by replacing the
element with a displacement discontinuity density, d, acting aong the centreline of the
element. (It is only when q is sufficiently far from the element that the stresses induced by
strain nuclel distributed throughout the element will be well approximated by those induced

by a displacement discontinuity density acting at the centreline of the element.)
Stresses induced by the strain nuclei distribution d, can be determined using the

following integral equation:



+h/2

o(@= [g(p.a)-d"(p)dx,, (1)

“hi2
where g is a Green’s function, and p is a point in the domain of the distribution of strain
nuclei. Since the Green’s function is continuous in the domain of integration (-h/2,h/2),
we can use the mean-value theorem to evaluate equation (1) as
o (a) =9(p,,a)-d; (p,) h, @)
where p,is the point between —h/2 and h/2 at which the integrand takes on its average
value. p, can be approximated to be located at the mid-height (centreline) of the element in
order to simplify computations. From this point forth, p, shall be simply referred to as p.
Equivalent stresses at Q can be induced by a displacement discontinuity density d
placed aong the centre line of the element. These stresses can be evaluated from the formula:
o(q)=g(p.q)-d,(p). ©)
Equating (2) to (3), the strain nucleus distribution can be expressed in terms of the
displacement discontinuity density as:
d;(p) =d,(p)/h (4)
When the displacement discontinuity density d has a constant variation in the x -direction, it
becomes equal to a displacement discontinuity D acting at the centre of the element (see
further explanation in the next section).
Similar to the above development of the normal DD, a shear displacement
discontinuity, D,, can be formulated by replacing the normal strain nuclei with nuclei that

produce shear displacementsin the element.



We shall now consider another distribution of strain nuclei d_ that act on the

element. We shall label these nuclel as confinement strain nuclei. This new distribution takes

care of the effect of confinement in the element and produces lateral strain within the
element. Analogous to the case of norma strain nuclei d;, a lateral (or confinement)

displacement discontinuity density d, can be obtained from the confinement strain nuclei

d. . They are related through the equation

d.(p)=d.(p)/h (5)

Assuming a constant distribution of lateral displacement discontinuity density in the

X, -direction, the total lateral displacement discontinuity in the element can be evaluated as

D.(p) = Jd: (P =d. (P) 2. ©)

Expression (6) defines the lateral (confinement) displacement discontinuity. This new
DD will be employed in the development of the enhanced DD element, which will be

presented in the next section.

3.2 Mathematical formulation
As mentioned earlier, distributions of shear and normal strain nuclei throughout an
element of height h and length 2a located at a point p in a homogenous, linear elastic

material, induce stresses in the continuum. The components of the stress tensor, o, and the

displacements, u,, that arise at a point g in the continuum due to the strain nuclei can be

determined from the following equations:



+a +h/2

oy (@)= | [gi(p.a)d; (P)pn(x,) dx,dx (7)
u @ =] [h(p.a)d;(p)en(x,) dx,dx,, )

where the repeated indices represent the usual summation convention. For two-dimensional
problemsi, j, k=1, 2. g;, and h; are normal and shear influence functions for stresses and
displacements, respectively, due to the strain density at p. ¢,, is an interpolation function. It
can range from the simple square function, ¢,, to the Dirac delta function, ¢, (or &) (Fig.
3).

We shall select the Dirac delta function for the problem at hand, i.e. ¢, =, because

of its unique properties, and shall aso look to simplify the resulting expression

+h/2
_[gi*jk(p,q)d,:(p) 5(x,)dx, in equation (7). The Dirac delta function has an important

-h/2
property that for two functions f(t) and ¢(t), both continuous at the origin, the following

relationship holds [19]

[Tt @ o] 50 dt = £ (0)p(0) (9)
Using the well-known property of the Dirac function: f:f(t) o(t) dt = f(0), equation (9)
can be written as:

j:[ f(t) p(t)] S(t) dt = j:f (t) 5(t) dt f:go(t) S(t) dt. (10)

The above property, applied to the expression we are trying to ssimplify, leads to the

following result:



+h/2 +h/2 +h/2

[ 95 (P. )AL (P) (%) A, = [ g5 (p,A)S(x,) A, [y (P)S(x,) dx, . (11)

~h/2 -h/2 -h/2
By letting
+h/2 +h/2*
[di(p)s(,)dx, =dy(p) ,and [y (PA)SOG)AX, =gy (p,a),  (12)
-h/2 -h/2

equation (11) can be reduced to the form:

[ 95 (P, )AL (P) 5(%,) A, = g (P, A)d, (P). (13)

-h/2

d, is the displacement discontinuity density (where d, is the ride or shear DD density, and

d, isthe closure or norma DD density). Similar operations can be performed to simplify the

corresponding expression in the equation for computing displacements.
These mathematical operations lead to the important result that for two-dimensional

problems, the stresses and displacements in equations (7) and (8) can be calculated as:

o, (@) = [ gy (p,A)d (p) dx, (14)

u () = [ hy (p,a)d, (p)dx, (15)

gy and h, are the norma and shear influence functions for stresses and displacements,

respectively, due to the displacement discontinuity density d, at the point p. These influence

functions are given in [20]. The eguations (14) and (15) constitute the formulation of the
classical displacement discontinuity method.
We shall now consider the case of a crack divided into N discrete line segments or

elements. Acting over each of these elements is a DD density. Each element is defined by



nodes at which displacement discontinuities (DDs) can be evaluated. By multiplying values
of the nodal DDs with coefficients of an interpolation function, the DD density variation over
the length of the crack can be approximated [1, 21]. The approximation of the DD density at
a point p along the crack, coincident with the nodes of the elements, is represented by the

expression:
d.(p)=> @.(p) D, k=1 2. (16)
@ is an interpolation function identical to the shape functions of elements [1], which is

evaluated at the nodes e. Substituting egn. (16) into egns. (14) and (15) we obtain the

following equations:

o (@) = [ 9y (. A)@.(P)D; dx, (17)

u (@) = Y [ hy (p, Q)@ (p)Df dx, (18)

If we assume a constant variation of the displacement discontinuity over each

element, @,(p) at node p is equal to unity and zero everywhere else, and egns. (17) and (18)

become:

Ojj (= Z DEJ. Gijk (p,q) dx, (19)

U (@) = Y. D hi(p,a) dx, (20)

In this case the total number of nodes is equal to the number of elements N. Equations (19)
and (20) form the classical formulation of the constant DDM.
The formulation of the enhanced displacement discontinuity (EDD) element shall

begin with strain densities. Revisiting the problem of shear and normal strain nuclel acting at



apoint in amaterial, let an additional nucleus, d_, orthogonal to the normal strain nucleus be
included in the problem. Other than direction, this new strain nucleus behaves similarly to the
normal strain density. The solution of the new problem differs from the original only by the
addition of an extraterm to each of the equations (9) and (10), that accounts for the influence
of the newly introduced strain density.

A new displacement discontinuity, D, which is perpendicular to the normal DD, can
be formed from the new strain nucleus. Relying on the same approach used in the

formulation of the classicdl DDM, the density d, of this new lateral or confinement

displacement discontinuity can be determined from the additional strain nucleus d; using the
+h/2
relationship d.(p) = Id;(p) o(X,)dx, . For discretized problems, the DD density at a point

-h/2

p along a crack can be approximated by nodal DD values through interpolation functions and

the equation: d (p) =Y @,(p) D5, k=1, 2.

The stresses and displacements induced at an arbitrary point q in an infinite,
homogeneous, linear elastic domain with the application of a shear, normal, and lateral

constant DD can be written as (Fig. 3):

oy (a) = Y D¢ [ g (@) dx, + XD ['v; (p, ) dx, (21)
U (a) = > D¢ [y (p.g) dx, + Y D¢ [ wi (p,q) dx, . (22)

v; and w; are the confinement displacement discontinuity influence functions for stresses

and displacements, respectively. Their mathematical definitions are as follow:
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where r? = x>+ x5, and G and v are the shear modulus and Poisson’s ratio of the material,

respectively. This newly formulated DD element is what shall be known as the enhanced DD

element.

4. SYSTEM OF EQUATIONS FOR EDDM

The enhanced DD element can be applied to the problem of determining the total
stresses and mining-induced displacements in the room-and-pillar or longwall mining of
lenticular orebodies. As stated earlier, such mining involves dlit-type excavations. It is
necessary to identify the appropriate boundary conditions specific for problems of the type
described above.

As afirst step in solving the problem of mining lenticular orebodies employing room-
and-pillar or longwall techniques, discrete EDD elements are placed along the centre lines of
the excavations, pillars and panels. The next step is to determine values of normal, shear and
confinement DDs that produce total stress and displacement components consistent with the

boundary conditions of the problem. In general, if the problem involves boundaries that are



represented by N elements, M of which are unmined (M<N), induced stresses o and

displacements u” at element p due to the distribution of normal, shear and confinement DDs
at element q can be computed as

o = ARD! +6, KD/ (28)

u® = B®D + LMD (29)

c !

wherei, j, k=1, 2 and &, is Kronecker's delta. The influence coefficients Ai! are obtained

from the expression
Ajiq =1, G [ (30)
where G is the integral in the element loca coordinate system of g, (p,q) in eguation
(21), and
cosfd —sind
il . (31)
sing cosé

@ is the angle between the local coordinate system of element g and the global coordinate
system (Fig. 3). The other coefficients K3, B and L™ of equations (28) and (29) are
determined in similar fashion through the integration and transformation of v;(p,q),
h,(p,q),and w. (p,q)inequations (21) and (22), respectively.

Eqgns. (28) and (29) represent a system of linear algebraic equations which, after
substitution of the appropriate boundary conditions, can be solved for the unknown
displacement discontinuities D,” and D/.

In the solution of problems associated with underground excavations, it is convenient

to separate total stresses o; into two stress components - initia stresses (o;), and induced



stresses due to excavation (or ssmply induced stresses) (aij)' . Thisis written mathematically
as:

o5 = (), + (o) - (32)

Crouch and Starfield [15] introduced mining-specific boundary conditions into the

DDM. Naturaly, these boundary conditions differ for mined and unmined rock or orebody

zones. The boundary conditions for the EDDM are the same as those defined by Crouch and

Starfield. However, because of the inclusion of a third DD, the confinement DD - D, an

additional equation is needed to make the system of equations assembled for the EDDM fully
determinate. This equation is supplied by the constitutive relationship for the seam material
in unmined zones. Boundary conditions and the assembling of equations for the EDDM shall

be discussed next.

Boundary conditions and system of equations for elements in mined zones
In the mined portions of a seam or orebody, generaly, there is no contact between the
roof and the floor of excavations. The boundary conditions” for the roof and floor are defined

by Crouch and Starfield to be:

0 =~(02),s (33
01, =—(012)o» (34)
where (o,,), and (o,,),are the initial normal stress and shear stress, respectively. These
same boundary conditions are applied to EDD elements in mined zones. It is important to
mention here that the lateral confinement of EDD elements in these zones is zero, because

those elements have no material in them.

’6,, and o,, in equations (33) and (34) are equivalent to the stresses denoted in [2] as o, and &, .

C-20



Writing the stresses in the normal and shear directions that arise out of egn. (21) for
EDD elements in mined zones, and using the above boundary conditions, the resulting

system of equationsis:

—(02)s = AD; + AZD! (35)
~(o5), = AZD; + AZDY. (36)
D2 =0 (37)

Boundary conditions and system of equations for elements in unmined zones

To model material in the unmined zones of a seam, earlier works [2, 6, 7] use an
elemental displacement discontinuity whose opposite surfaces are connected by springs (Fig.
4). The stiffness of each spring is chosen so that it has the same properties as the unmined

material. In the original formulation of DDs, since simple one-dimensiona stress-strain

relations for compression and shear is assumed, only the normal stress,(c,,) , and shear

stress, (o,,) , induced on an element are computed. These are determined, respectively, as:

. E

) =——=D, 38

(02) N (38)
_ G

1) =—2D,, 39

(025) h (39)

where hs is the thickness of the seam, and E; and G; are the seam’s Y oung and shear modul us,
respectively. Material in unmined portions of a seam is thus modelled as an assemblage of
springs, independently connecting the opposite surfaces of elements|[2].

For elements in unmined zones, the EDDM accounts for the effect of confinement

with the introduction of the confinement displacement discontinuity, D. (Fig. 5). The

C-71



eguations for modelling the seam material change as a result of the new DD. If it is assumed
that the seam material is homogeneous, isotropic, and linearly elastic, its constitutive

relationship connecting stresses, o, and strains, ¢&; , can be written as:

o. =1.6. ¢, +2G_ ¢, (40)
ij s Vij “kk

s “ij
where 1 is Lame' s constant defined by the relationship:

- 2v G, .
@-2v)

Let strain nuclei acting on thin strips of material with height equal to element height
h, be distributed along the length of a crack [17]. The strain nuclei, d;, d; and d,,

discussed earlier in the development of the EDD element (see section 3.1 of this paper), can

be defined as
d =g, = Z% (41)
d, =&, = Z—iz (42)

whereg,,, ¢€,,, and g, arethe lateral, normal and shear strain, respectively. The strain nuclei
distributions ¢, and &,, corresponding to the displacement discontinuity densities d, and
d, for an element of finite height h,, as shown previously in egns. (3) and (4), can be
expressed as

&, =0, =d, /'h, (44a)
£, =0,=d,/h, (44b)
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The lateral strain in the element, ¢,,, due to the lateral displacement discontinuity density can
be defined as the total |ateral deformation D, over the length of the element 2a and thus can

be represented as

D 1 2a) d
——Cc -~ |d === 45
1= 0, Za( c hj h (49)

Subsequently, the following relationship holds true for ¢, :
g,=d; =d_/h,. (46)
When the variation of the displacement discontinuity density over the length of an
element is considered to be constant, the values of d, and d_ at a node equal D, and D_,

respectively. Therefore, by replacing the strains in the constitutive relationship (34) with the

.. D D : .
quantities h—k and h—° the normal, lateral and shear stresses induced on an element in an

S S

unmined zone through the application of DDs are determined to be:

(h+2G)  , 2G

(Gzz)l = hs 2 hss Dc (47)
(o) =% +h52 Sp, 4 fs D, (48)
(o) ==2D, (49)

The use of the constitutive relationship for the seam material has provided the additional
eguation needed to make the system of assembled equations fully determinate. Observation
of equations (47) and (48) shows that only the confinement and the normal discontinuities are

coupled. Thisis consistent with the expected behaviour of pillars under axial loads.
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By assuming that initial deformations of unmined elements are zero, and that they
deform only in response to induced stresses [2], the following system of equations:

_(+2G) , 26

0 . l +h—S DP +ALD) + ALD! + KD/ (50)

0- {4225 o, 2B pr 4 ALDY +K D] D
GS p =Ipk =Ipk

0= h D" + A% D; + Ay D, (52)

S

can be combined with the system of equations (29) - (31) (i.e. for the mined material), and

the combined system solved for the unknown DDs.

5. VERIFICATION OF THE ENHANCED DISPLACEMENT
DISCONTINUITY METHOD

The newly formulated method - the EDDM for two-dimensional analysis - was
verified through the solution of a number of sample problems. The sample problemsinvolved
excavations of simple geometry. Where closed-form solutions were available, their computed
stresses were compared with those produced by the EDDM. In cases where there were no
closed-form or analytical solutions for the examples, stresses computed from the EDDM
were compared with those calculated from other numerical procedures such as the FEM and
the coupled FEM/BEM. These comparisons helped to establish the correctness of the results

produced by the EDDM.

Example 1. Multiple Crack Problem
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The first example solves for the stresses induced in an elastic material when an
infinite row of equidistant collinear cracks of equal length in the material are subjected to
internal unit pressures (Fig. 6). Each crack is discretised with 20 equal-sized EDD elements.
The distance between the cracks (pillar width) is chosen to be equal to the length of the
cracks, and is similarly discretised as the cracks. Although the material between the cracks
ordinarily would not have been discretized for a homogeneous domain in either the EDDM
or the DDM, doing so allows one to obtain an idea of the accuracy of the methods, when the
material between cracks is different from that of the domain. In Fig. 6, the variation of the
normalised normal displacement discontinuity over a crack width computed by the new
formulation is compared with that obtained from the closed-form solution for the normal DD
[22]. For this test case, the values of the normalised normal DD produced by the EDDM are
in good agreement with the values from the closed-form solution. The results of the EDDM
are better than the solution obtained with the DDM using the same mesh (Fig. 6). The error
for the EDDM was 3.43%, while that for the DDM was 4.64%. The EDDM has increased
accuracy because its representation of pillars is more realistic. The accuracy of the results of
the EDDM could be improved by increasing the number of elements used to model cracks

and inter-crack spaces.

Example 2. Analysis of Pillar and Stope

The model of a pillar between two stopes presented by Brady and Wassyng [23] is
analysed with the EDDM in the second example. The geometry of the problem is shown in
Fig. 7. The pillar and each of the stopes were modelled with 12 discrete EDD elements. Since

there are no analytical solutions for this problem, stresses computed in the pillar and around

C-25



the stopes by the EDDM were verified by comparing them to those generated from the
coupled FEM/BEM developed by Brady and Wassyng [23] (used in checking only stresses in
the pillar), and to calculated stresses from Phase?, an FE software program developed in the
Rock Engineering Group of the University of Toronto [24]. In the finite element-boundary
element coupling technique presented by Brady and Wassyng [23], the boundaries of the

stopes (excavations) were modelled with boundary elements while a finite element mesh was

used for the pillar. Phase2 wholly employs the finite element method.

Figure 8 contains plots of the major and minor stresses in the pillar computed by the
three methods. From the results, it can be seen that all three methods give similar solutions to
the problem. (The stress values at the ends of the pillar are different for the coupled
FEM/BEM technique because a finer mesh is needed in that region for the technique.) Values
of the normal stresses in the panels for the EDDM and FEM are illustrated in Fig. 9. The plot
in Fig. 9 again shows that the EDDM gives results that are consistent with those obtained

from the FEM. In addition, it must be noted that a very fine finite element mesh was used to

obtain the comparable Phasze2 results.
These comparisons demonstrate that the EDDM, as well as its additional capability of
including confining effects (which are very important when pillar yielding is modelled), can

provide accurate results when used for elastic analysis.

6. FORMULATION OF THE THREE-DIMENSIONAL EDDM

In room-and-pillar mining, the modelling of pillar behaviour with two-dimensional

analysis is inadequate, because plane strain conditions are violated. This violation occurs due
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to the three-dimensional nature of stress states in pillars [11]. In order to achieve a realistic
analysis of the behaviour of pillars, therefore, athree-dimensional analysis is often required.

A three-dimensional formulation of the EDDM can be readily developed through
straightforward extension of the two-dimensional model that was presented in section 3. The
eguations (3) to (16), used in the development of the lateral DD, can be applied to three-
dimensional analysis by merely letting the indices i, j and k take integer values from 1 to 3
instead of from 1 to 2. In the conventional three-dimensional DDM, each element has three
DDs - two shear (ride) components and one normal (closure) component (Fig. 10).

Similar to the development of the two-dimensiona EDDM, two lateral strain
densities are added to the formulation of the three-dimensional DD element. These lateral
strain densities, as was the case in two dimensions, have properties similar to that of the
normal strain nucleus except for direction (see section 3). In direction, they are perpendicular
to the normal strain density. They represent an averaged confinement value that acts along
the axes perpendicular to the normal DD.

The three-dimensiona EDDM is developed in a fashion analogous to the two-
dimensional formulation. The influence functions of the confinement (lateral) DD in
eguations (15) and (16) change for the three-dimensiona case. The influence functions of the

lateral DD (which is formed from the two lateral singularities) for three-dimensional analysis

are asfollow:
G 1 x5 15xZx?
v, =——— | 21-v)=-31-2v)2 =18 53
-G 1 X2  15x2x?
vV, =—— | 21-v)=-31-2v)r - =28 54
2 4ﬂ(1_v){( )53 } (54)
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Vy, =V, = —%{3(1— 2v) X;>5<2 - 15X;)7(2X32 } (56)
= ‘4;;((13- v) 3er ‘15:5)(3} 0
"= s [_ (1_2V)f_;+?’xrl_sxﬂ (59
w, = Wﬁv){— (1- 21/);(—2 ; 3xr2_5x§} (60)
W, = Wiv){(l_ 21/);(—2 n 3;—)(5} (61)

Boundary conditions for three-dimensional EDD elements in mined and unmined
zones of orebodies do not differ from the boundary conditions of their two-dimensional
counterparts. The assumptions underlying these boundary conditions remain the same for the
three-dimensional case. However, the presence of two shear components (ride components)
in three-dimensional analysis (Fig. 10) instead of one leads to an additional equation for each
of the mining zones. The systems of equations for the three-dimensional EDDM assembled

for elements in mined and unmined orebody zones are as follow:

System of Equations for EDD elementsin Mined Zones
—(o2)o = AmDy' + A Dy + Az Dy (62)

—(05), = AiDy' + AgD; ++A5 Dy (63)
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—(021)o = AiDy' + A DS + Aga Dy

D=0

c

(64)

(65)

where D; and D, are shear displacement discontinuities, and the AR!'s coefficients

calculated from the influence functions. (o%), isthe normal initia stress at the locale of an

element, while (o4,), and (o4),aretheinitial shear stresses at the same point.

System of Equations for EDD elements in Unmined Zones

(A, +2G,) 2G,
-2 22Dy + <55 DP + A + AD, + ABDS +KEID!

S S

0

_(s+26,) 1, 26
h h

S S

0 =DJ + AID + K{'D!

G,
0=—%D7" + AuiDy' + ApD; + AysDy

S

G
0= "D} + AZD] + AZLDS + AZDS

S

where D? isthelateral DD of an element, and G, and A, are material constants. hsisthe

thickness of a seam (element). All the other quantities are the same as those define above.

(66)

(67)

(68)

(69)

With the systems of equations defined by (62) to (65) and (66) to (69), one can solve

the problem of determining stresses and displacements in three dimensions induced by the

mining of lenticular orebodies. It must be mentioned again that these equations are valid only

for homogeneous, isotropic, linear, elastic seam material. However, the method allows

analogous equations to be developed for other constitutive models, such as full plasticity

models.
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7. EXAMPLESOF THREE-DIMENSIONAL PILLAR ANALYSIS
WITH THE EDDM

Two examples of the application of the three-dimensional EDDM are considered.

Example 1. Three-dimensional analysis of long pillar and stope

Underlying the solution of the two-dimensional example involving a pillar and two
stopes given in [23], and solved earlier on in this paper, is the assumption of plane-strain
conditions. These conditions can be simulated in the central cross-section of the three-
dimensional problem shown in Fig. 11, if the rooms and pillar are made sufficiently long.
The tabular orebody problem illustrated in Fig. 11 was analysed with the three-dimensional
EDDM. The configuration of discrete EDD elements used in modelling the problem is shown
in Fig. 11b. For its results to be correct, quantities such as stresses, for example, calculated
around the excavations and in the pillar in the central cross-sectional plane should match
those obtained from the two-dimensional analysis. Because the two-dimensional EDDM was
verified to correctly solve the planar problem, its results were used in validating those of the
three-dimensional method. Another reason for the choice of the two-dimensiona EDDM for
validation purposes lay in the fact that since its results had been already shown to be
accurate, DDsinstead of stresses or displacements could be compared.

The normalised confinement displacement discontinuity, which is the ratio of the
confinement DD to the maximum value of this DD, formed the basis for comparing the
results of the two-dimensional and three-dimensional EDDMs. This ratio provides a good

indication of the degree of confinement existing at a point in a material.
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The variations of the normalised confinement DD across the width of the pillar for
both the two- and three-dimensional EDDMs were plotted in Fig. 12. The plots indicate that

the results of the two methods are in very good agreement.

Example 2. Three-dimensional analysis of a square pillar in aroom

Confinement controls the overall behaviour of pillars. A detailed study of the failure
process in pillars [9], showed that failure commenced on pillar boundaries and migrated
towards the centres of the pillar, where the cores had not reached their full load-bearing
capacities. The observed increase in the strength of material from pillar boundaries towards
the core is attributable to the effects of confinement.

It was mentioned earlier in this paper that previous approaches used in DD methods
relied on manual approaches of accounting for the influence of confinement. In the technique
employed in the commercial software package MULSIM, for example, users have to
manually assign strengths to different elements according to the closeness of elements to
pillar boundaries. Figure 13 shows a typical scheme for assigning stress-strain curves to the
elements of a square pillar in a room-and-pillar mining scheme [25]. Elements used in
discretizing the square pillar are designated with letters from A to D in Fig. 13 in accordance
to the extents to which they experience confinement. Strength curves that model the different
element types based on the degree of confinement are shown on the stress-strain diagram.
The element at the core of the pillar, being in the most confined region, is assigned the
highest strength curve (curve A). The normalised confinement DD adequately captures the
degree of confinement in a pillar. Strength curves can be defined at a point in a pillar when

the degree of confinement or confining stress at the point is known.

C-21



For the three-dimensional EDDM to be considered successful it must correctly
capture the variation of the degree of confinement in pillars. An example of asingle pillar in
aroom is depicted in Fig. 14. Fig. 15 shows the contours of equal normalised confinement
DDs calculated for the square pillar. Due to the inclusion of the lateral singularity in the

EDDM, it was able to effectively model confinement in the square pillar.
8. CONCLUSIONS

In a mine design environment in general, it is important to have a numerical tool that
solves problems of calculating stresses and displacements around excavations and rock
structures speedily and accurately, because of the need to quickly assess aternate mine
layouts. The mining of lenticular orebodies using room-and-pillar methods creates conditions
that require that the effect of confinement in pillars be modelled. Knowledge of confinement
is necessary in pillar analysis for the reason that it significantly influences pillar behaviour
and strength. Although numerical techniques such as the FEM and the FDM can address one
or the other of the requirements, none of them is able to address the issues of speed and
confinement modelling simultaneoudly.

Prior to the work reported in this paper, ad hoc approaches were used in the practical
application of the DDM to include confinement effectsin pillar analysis. The ad hoc methods
including the approach employed in the commercial software program MULSIM, used
manual means to assign different strength curves to DD elements based on the degree of
confinement they were expected to experience. The research work in this paper was initiated
in an effort to develop a numerical technique that exploited the computational speed of the
DDM, and yet accurately modelled confinement. A new displacement discontinuity method

referred to as the enhanced displacement discontinuity method (EDDM) was subsequently
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developed. The essential difference between the EDDM and the earlier DDM is the
introduction of an extra centre of dilation singularity in the formulation of DD elements.

The new displacement discontinuity density was developed from a strain nucleus.
From the effects of strain nuclei applied at a point in an elastic medium, it became possible to
develop a new latera (confinement) DD that effectively modelled confinement in pillar
material. With the introduction of the lateral DD into the original DD element, the enhanced
displacement discontinuity (EDD) element was created. Systems of equations for EDD
elements in mined and unmined rock zones were developed with the consideration of
appropriate boundary conditions. Both two-dimensiona and three-dimensional models of the
method were formulated in the paper.

The EDDM has a principal advantage over the classical DDM because of its ability to
model different types of material behaviour. Whereas the DDM, due to its inability to use all
components of the stress tensor, is limited in its application, the EDDM can accommodate
general material constitutive equations including plasticity models. By explicitly accounting
for confinement in its formulation, the new procedure generalises and automates the process
of assigning strength curves to elements. As a result, it simplifies data preparation by
eliminating the need for any artificial means for accounting for the effects of confining
stresses.

Sample problems involving simple boundary and pillar geometries were solved in the
paper to validate the performance of the EDDM. The results obtained from the EDDM
compared well with analytical solutions for problems for which they were available, and
showed good agreement with the results of other numerical techniques that have been

established to perform well.
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Although the examples used in validating the new formulation involved problems of
simply geometry, the procedure is by no means limited to such cases. The EDDM presented
in the paper was formulated using constant DD elements. However, higher-order DD
elements can be implemented with a few and relatively simple modifications. Also, owing to
the fact that the newly formulated method uses all the components of stress and strain tensors
for material, it can accommodate a variety of constitutive models including non-linear
material models. This particular feature of the EDDM, combined with its ability to account
for confinement, assumes greater attractiveness and importance in the analysis of failing or
yielding pillars.

In order to simplify the development of the EDDM in this paper, only constant EDD
elements were formulated. However, it is possible to develop higher-order EDD elements
using the node-centric element approach outlined by Vijaykumar, Curran and Y acoub [26]. A
node-centric formulation would allow the variation of the EDD along the lengths of adjacent
elements to be continuous. A node-centric EDDM would have better accuracy compared to
the constant EDD approach, and would alow continuous DD variation between adjacent

elements.
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Fig. 14: Geometry and discretization of problem involving a square pillar and aroom

Fig. 15: Contours of normalised confinement DD for the pillar
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PAPER IV

Simulation of progressive failure procedure using the
Enhanced Displacement Discontinuity Method

T.E. Yacoub and J. H. Curran
Rock Engineering Group, Dept. of Civil Engineering
University of Toronto
Toronto, Ontario
Canada, M5S 1A4

Abstract

In the mining of lenticular orebodies, the ability to model the post-peak behaviour of pillars
is of critical importance since local pillar collapse can lead to catastrophic failure on a mine-
wide scale. This paper models the response of yielding pillarsis using the progressive failure
approach coupled with the enhanced displacement discontinuity method (EDDM). The
EDDM, unlike the DDM, explicitly considers the effect of confinement. The progressive
failure procedure is an iterative technique that employs a quasi-elastic approach to account
for the residual strength of rock material after initial failure. The extent of pillar yielding is
evaluated using the Mohr-Coulomb failure criterion. The potential benefits of using
progressive faillure with EDDM are demonstrated through two- and three-dimensional
examples. These examples were chosen to illustrate the flexibility, robustness and power of

the proposed method for simulating pillar failure on a mine-wide scale.

Keywords: Enhanced Displacement Discontinuity Method (EDDM); Progressive Failure; Pillar

confinement effect; Post-failure analysis.
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