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Abstract 

 
 

Three-dimensional Analysis of Lenticular Orebodies Using 

Displacment Discontinuity Elements 

Doctor of Philosophy, 1998 

Thamer Yacoub 

Department of Civil Engineering, University of Toronto 

 

The most appropriate numerical techniques for the analysis and design of 

excavations, pillars and mining sequences in lenticular orebodies is the displacement 

discontinuity method (DDM). This thesis examines three important facets of the DDM 

and makes improvements in these areas that affect the efficiency of the method in its 

application to the crack-type problems, arising in the mining of lenticular or seam 

deposits. 

The introduction of the concept of node sharing between adjacent elements into 

the DDM, is the first aspect covered in the thesis. The node-sharing formulation of the 

DDM was made possible after the introduction of a new and unified framework for 

evaluating the singular boundary integrals that exist in the Green’s functions of the 

displacement discontinuity method. The new integration method is based on the 

continuation approach. 

The formulation of a new displacement discontinuity element – the enhanced 

displacement discontinuity (EDD) element – was the second major undertaking of the 

thesis. This new formulation provides information on the in-plane (confinement) stresses 

in an element, something the conventional DDM does not consider. The EDD element 



 

iii

creates an automated and more flexible way of modelling different degrees of 

confinement, expected to occur in unmined orebody zones (i.e. pillars and abutments). 

With the inclusion of confinement into the formulation of the enhanced DD element, it 

can be readily used to analyse yielding pillars, since all components of the stress tensor at 

a point in a material are explicitly taken into account. 

Finally, the thesis looked at the development of a methodology in the EDDM for 

modelling the post-peak behaviour of pillars. The progressive failure procedure was 

incorporated into the EDDM to create a program for simulating post-failure pillar 

response. The progressive failure procedure relies on a simple quasi-elastic constitutive 

relationship, and uncomplicated failure criteria to model failed pillar material. 
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Contribution of Thesis 

 
 
 The research performed for this thesis has led to the following contributions to the 

body of engineering knowledge 

1. A node-centric formulation to the displacement discontinuity method. The 

development of this thesis contributed in the following issues 

i) Establishing unified integration methodology for solving singular integrals through 

the use of boundary functions. 

ii) Deriving the required boundary functions for the two- and three-dimensional node-

centric displacement discontinuity method 

iii)  Implementing and testing the boundary functions for practical engineering 

problems 

2. An enhanced displacement discontinuity element for lenticular orebodies analysis. 

Through the understanding of the original formulation of the displacement 

discontinuity method, a new displacement discontinuity element was derived in this 

thesis. The enhanced formulation introduces an additional displacement discontinuity 

variation to the traditional DD approach. This new formulation provides information 

on the confinement stresses in an element. 

3. A post-peak response of pillars using the enhanced displacement discontinuity 

element. The development of the enhanced DD element in finding the complete stress 

tensor widens the applicability of the method to analyse the yielding pillars. The 

progressive failure procedure is chosen to simulate rock failure in this thesis.
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Chapter 1 

Introduction 

 

1.1 Geomechanical Mine Design and Analysis 

 The analysis and design of mine structures (shafts, drifts, entries, pillars and other 

forms of support, etc.) is important for the safe and economic extraction of ore from 

underground mines, a fact which cannot be overemphasised [1,2]. The rock mechanics 

design and analysis of mine structures involves the establishment of parameters such as 

stope and pillar dimensions, pillar layout, stope mining sequence, pillar extraction 

sequence and type of rock support [3]. The purpose is to ensure that the local stability of 

stopes and the general control of rock response in regions close to stope activity are 

ensured while maintaining the maximum extraction of ore.  

The design and analysis of underground structures poses many difficult problems 

to the rock mechanics expert or rock engineer. For many of these problems, analytical 

solutions either do not exist, or are extremely difficult to determine. This is often due to 

factors such as complex problem geometry, non-homogeneous material properties or 

their combination. More general design tools rely on numerical or empirical techniques 

[4,5]. 

 Additional source of considerable difficulty in mine design is the uncertainty 

inherent in data collected on rock strata properties. The properties of geological domains, 

exhibit a very wide range of variability. In certain regions, the properties of rock masses 

may vary considerably over small volumes, making it very hard to extrapolate or even 
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interpolate rock properties. Aside of the great variability in properties of rock masses, 

there is also uncertainty associated with the determination of their properties in localised 

zones, because the determination of the geomechanical properties of rock samples is not 

always simple or straightforward. In addition, the behaviour of rock masses differs from 

that of the small samples tested in lab or field as a result of which the geomechanical 

properties determined from samples may not be representative of those of the rock mass 

from which the samples were taken.  

The difficulties associated with the uncertainty in the geomechanical properties of 

rock masses indicate that the design of mining stopes and excavations calls more for a 

qualitative, rather than purely quantitative, evaluation of the performance of rock in the 

vicinity of excavations and that in the far-field. The major aim of analyses of this type is 

therefore to gain physical insight into a problem, and to better understand the influence of 

the various factors that govern the overall stability of mine structure [6]. Numerical 

methods are very useful in performing parametric studies under such circumstances. They 

can be used to evaluate a number of feasible of mining options. These methods are not 

only appropriate for parametric studies, but can also be used to identify and explore 

appropriate mine layouts and sequences. The knowledge gained from such analyses can 

be used to develop detailed ore production schemes. 

 

1.2 Numerical Methods 

Numerical methods have undergone major development during the last three 

decades. Their application in engineering design has seen considerable increase, because 

of the increasing computing power and falling costs of computers. With numerical 
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methods, problems that involve complex geometry, non-linear material behaviour, 

multiple material types, and combinations of these factors, can be solved. Because of 

their abilities to model a very broad spectrum of engineering problems and handle the 

modelling difficulties described above, they have made it possible to solve problems that 

previously could not be attempted with analytical methods.  

Based on the form of approximation involved, numerical methods can be 

classified into two categories: domain methods and boundary methods [7]. In domain 

methods, boundary conditions are exactly satisfied, while governing differential 

equations in a material domain are satisfied approximately. On the other hand, boundary 

methods satisfy governing equations throughout a problem domain, but approximate 

boundary conditions. The two most popular domain numerical methods are the finite 

element method (FEM) and the finite difference method (FDM). The FEM is the most 

versatile, and powerful and common of all the different numerical techniques currently 

available. The boundary element method (BEM) is a boundary method.  

Numerical methods do not have the same range of applicability for all classes of 

problems. Particular numerical methods may be advantageous in some situations and 

disadvantageous in others. The selection of a numerical technique for a problem depends 

on the ability of the technique to satisfy the objectives and requirements of the problem. 

In the following sections, brief descriptions and range of applications for the two most 

commonly used numerical methods, the FEM and BEM, are provided. 

 

1.2.1 Finite element method (FEM) 

As stated earlier, the FEM is the most popular numerical method and is used in a 
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wide variety of engineering fields. In the method, a material domain or body is divided 

into elements of various shapes. Each element is connected to others at nodes, which are 

the corners of elements [8]. Boundary conditions are specified for the problem, and the 

governing differential equations approximated by developing approximations of the 

connectivity between elements, and the continuity of displacements and stresses between 

elements. A system of equations is then assembled for the problem and solved for the 

unknown nodal stresses and displacements.  

The FEM can be used to model mining excavations by replacing the rock 

continuum around an excavation with a number of individual elements. It can model the 

enlargement of mining openings or stopes, as well as model the build-up of material 

(back-fill) in existing stopes. The strength of the FEM in mine design lies in its generality 

and ability to handle problems involving non-homogeneous material domains (different 

types of material) or geometric non-linearity.  

The true boundary conditions on the surfaces of excavations can be easily and 

correctly represented in the FEM. However, the method cannot explicitly simulate far-

field conditions in problems with infinite or semi-infinite domains. To simulate far-field 

conditions, the FEM requires the definition of an arbitrary outer boundary with boundary 

conditions that approximate far-field conditions. For cases, in which more than one 

excavation is to be analysed, the outer boundary has to be located at a considerable 

distance from the excavations (beyond the zone of influence of the excavations). Errors 

due to discretisation occur throughout a problem domain as a result. 
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1.2.2 Boundary element methods 

Boundary element methods, are particularly attractive for solving the class of 

problems involving large domains and linear material response. It can also be used for 

non-linear problems [9]. 

In the BEM, only the boundaries of a problem domain are discretised. This 

produces a reduction of one in the dimensionality of problems. Unlike the FEM, 

discretisation errors in the BEM occur only on problem boundaries and it correctly 

models far-field conditions. The BEM uses fundamental solutions that satisfy the 

governing differential equations of a problem to determine the influence of elements on 

one another. When the integral equations for all elements are assembled, the resulting 

system of equations can be solved for unknowns. Once all boundary unknowns have been 

solved for, field quantities, such as stresses and displacements, at any point in the 

problem can be obtained [10]. 

 

1.3 Requirements of a Mining Analysis Tool 

Problems involving analysis of temporary mine excavations such as stopes and 

drifts, possess characteristics that restrict the choice of numerical methods for their 

solution. The following are some of the attributes of numerical techniques that are 

essential and desirable for practical stress analysis in underground mining design: 

(i) The numerical method selected for the design of stopes should be capable of 

efficiently handling the large domains, typically encountered in problems of 

underground mining [11]. If a method that requires extensive discretisation of 

domains is used, large numbers of elements and nodes have to be employed to 
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sufficiently represent the problem. This in turn leads to huge systems of equations 

that demand considerable computational resources and time to solve. In view of the 

fact that there is a substantial uncertainty associated with mine data, analyses have 

to be performed several times in order to obtain a proper understanding of the 

possible consequences of stope activity. Consequently, methods involving extensive 

discretisation are not desirable for such analysis. 

(ii) The computational technique used for the analyses of underground mine 

excavations should be able to accurately model far-field conditions.  

(iii) When analysing underground excavations, not all zones require the calculation of 

very accurate displacements and stresses. For zones that demand high accuracy, 

finer discretization or meshes have to be used. Away from these areas coarser 

meshes can be employed to reduce the time required for calculations. This means 

that numerical methods for such analysis must allow meshes with different sized 

elements to be used in problems. 

(iv) Pillars in underground mine excavations usually have material properties different 

from that of the host rock. The properties of the pillars are that of the orebody. 

Therefore, numerical methods for modelling such excavations should have the 

capability to handle the different material properties. 

(v) Pillars are usually subjected to loads, which induce stresses exceeding the elastic 

limits of the pillar material. Therefore, numerical models for their analysis should 

be able to capture post-failure material behaviour. 

(vi) Mine layouts for flat-lying lenticular orebodies involve parallel-sided openings that 

are characterised by plan dimensions much greater than opening heights. Stresses 
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around such openings vary greatly over small distances and therefore require either 

extensive discretisation around the openings, or elements that can account for this 

rapid stress variation.  

(vii) For most mining excavations, the assumption of two-dimensional plane strain 

analysis is violated due to the complex three-dimensional layout of excavations. As 

a result, three-dimensional analysis has to be performed to determine the states of 

stress induced in rock material in the vicinity of excavation surfaces (near-field). 

The difficulties mentioned above, concerning the sizes of equation systems and 

meshing, are more challenging in three-dimensional numerical analysis than in two-

dimensional analysis by an order of magnitude.  

 

1.4 Choice of Numerical Model for the Analysis of Lenticular   

       Orebodies 

Although the finite element method is a very powerful and flexible technique, and 

has been used to analyse a wide range of geomechanics problems, its usefulness for the 

mining stope problems is restricted by many of the above-enumerated practical 

considerations [11]. Because the FEM requires surface and volume discretisation of 

problem domains, it uses a relatively large number of elements and presents meshing 

problems, especially in three-dimensional analysis. Even with efficient automated 

facilities, mesh generation and the checking of meshes for problems involving complex 

three-dimensional layouts is difficult. Also the FEM does not simulate far-field 

conditions accurately unless an extensive region around excavations is discretised. When 

the computing resources and time needed to determine solutions of problems is combined 
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with the need for multiple and parametric analyses of the same problem, it becomes 

evident that the method is not the most suitable for mine analysis. 

In contrast, the boundary element method requires only the discretisation of 

surfaces, and thus uses much smaller numbers of elements than the FEM. This leads to 

smaller systems of equations in the BEM, easier mesh generation, faster computing 

times, and a reduction in the need for significant computing resources. The BEM 

inherently deals with the infinite and semi-infinite domains of mining problems and 

matches far-field conditions exactly.  

An additional attraction of the BEM is its ability to evaluate stresses and 

displacements at specific points of interest in a problem domain, without re-meshing or 

calculating values for the entire domain. For example, if the stresses and displacements 

along the lengths of extensometers are needed from a model in order to check them with 

field measurements, those specific values can be readily calculated in the BEM.  

 

1.4.1 Variations of the boundary element method 

Generally, for stress analysis, there are two distinct types of boundary element 

formulations. These are the direct BEM and the indirect BEM. The displacement 

discontinuity method (DDM), a method commonly used in the analysis of slit-like 

openings in rock masses, is a type of indirect BEM. Because the DDM is very suitable for 

the analysis of thin crack-type excavations, the focus of this research, it shall also be 

described in detail below.  
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1.4.1.1 The direct boundary element formulation 

Direct boundary element methods use fundamental theorems, which relate 

differential equations over a domain to integrals over the boundaries of the domain, to 

obtain integral equations. The variables in the direct formulation of the BEM are 

meaningful physical attributes of a problem, such as tractions and displacements.  

Solution of the integral equations for the elements into which a boundary is discretised 

directly yields the desired values of the unknown variables on the boundary. 

 

1.4.1.2 The indirect boundary element formulation 

The indirect formulation uses singular solutions, which satisfy the governing 

differential equations of the problem, with specified unknown densities on the boundaries 

in a problem. These unknown densities (known as fictitious stresses, for example, in the 

fictitious stress method) generally have no physical meaning. They can be determined 

from the boundary integral equations for a set of prescribed boundary conditions. 

Displacements and stresses on the boundaries, as well as in the domain, can then be 

obtained indirectly from the fictitious variables.  

 

1.4.1.3 The displacement discontinuity method 

For thin slit-like openings or crack-type elements, the boundaries of the two 

opposing surfaces are very close to each other, thereby practically coinciding. Such 

conditions create numerical instabilities for both the direct and fictitious stress method. It 

follows therefore that special techniques are needed for modelling the mining of seam or 

lenticular orebodies. 
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The displacement discontinuity method is ideally suited for solving problems 

involving crack-type excavations. Although the DDM is technically a type of indirect 

BEM, the unknown variables in it represent physically meaningful aspects of the 

problem. The relative movement between the roof and floor of an excavation is treated as 

a displacement discontinuity. The normal component of the displacement discontinuity 

vector is called the closure and the transverse components are called the ride components 

(Fig. 1.2).  Since both the top and floor in the mine excavation are included in one 

element, numerical instability is eliminated. As well, the inclusion of two surfaces in the 

elements brings about a reduction in the number of elements required for the 

discretisation of problems. 

 

 

 

 

 

 

 

         (a) two-dimensional DD element                (b) three-dimensional DD element 

Figure 1.1: Displacement discontinuity components 

 

Although both the direct and indirect boundary element methods can be applied to 

non-linear and non-homogeneous problems, they are more readily applied to linear 

homogeneous problems. In order to handle non-homogeneous material, however, the 

boundary integral equations have to be augmented by volume integrals, a process that 

Dn 

Ds 

Dn 

Ds1 

Ds2 
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requires internal discretisations of the domain. Such problems are encountered in cases 

where the strength and deformational properties of an orebody differ from that of the host 

rock. The presence of volume and surface integrals gerenrates an additional source of 

difficulty. The displacement discontinuity method, as an exception, is however able to 

model bimaterial problems very efficiently [12]. 

1.5 Shortcomings of the Traditional DDM 

Several advancements have been made to the original DDM, first proposed by 

Salamon [13]. These include improvements to the method’s accuracy through the 

formulation of higher-order elements, and enhancements for overcoming difficulties 

arising in its application to practical problems. Despite all these efforts, the traditional 

DDM still has some shortcomings. These include the following: 

(i) For a constant element in the traditional DDM, unknown parameters are determined 

at the node of the element, which is located at the element centre. This means that 

nodes cannot be shared between elements. As a result, the variation of displacements 

and stresses over adjacent is discontinuous [14, 15]. Even when higher-order linear 

and quadratic DD elements, which increase the number of unknowns for each 

element, are implemented in the method, the lack of node-sharing means that inter-

element continuity cannot be enforced or ensured [16, 17]. Another consequence of 

the absence of node-sharing in the traditional DDM is that huge influence matrices 

have to be solved in large-scale mining problems, because large numbers of nodes are 

used for problem formulation. 



 

12

(ii) The conventional DDM provides no information on the in-plane in the displacement 

discontinuity element. As will be seen further on, the in-plane stress is particularly 

important in the modelling of unmined orebody structures, such as pillars and 

longwalls, since it induces confinement. To overcome this deficiency, ad hoc 

processes are used to estimate the confining stresses in these zones. One such 

common procedure is the use of a family of stress-strain curves. The stress-strain 

curves are assigned to elements based on their location within an unmined structure 

[18]. This procedure is, however, manual, cumbersome, and requires considerable 

experience from the analyst in order to assign reasonable curves to elements. 

(iii)In practical mining situations, pillars regularly experience some yielding or local 

failure. It therefore becomes important to model the post-peak performance of 

orebody material, a problem that involves plastic deformations. Generally, plasticity 

problems require constitutive models that describe non-linear material behaviour. The 

traditional DDM cannot use plasticity constitutive models, because it does not 

provide information on all stress tensor components needed for such analysis. It can, 

however, be adapted to solve elasto-plastic problems using a method of incremental 

linear approximations [19] and stress redistribution [20], although the technique still 

requires cumbersome ad hoc means of estimating missing stress tensor components. 

 

1.6 Objective of Research 

 The primary objective of the research for this thesis was to develop formulations 

of the displacement discontinuity method for practical mining purposes that would retain 

the strengths of the method, and surmount its disadvantages. To achieve this goal, the 
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research was divided into three major aspects. Each of these aspects tackled a 

shortcoming described in the previous section. Attempts were also made to compare 

results obtained from existing techniques with those from new methods proposed. 

The first of the major issues in the DDM considered in this study involved the 

introduction of node-sharing (node-centric) between DD elements. For node-sharing to 

work, it was foremost to establish an efficient and accurate method for evaluating 

integrals of the DDM, especially those associated with singular points in three-

dimensional analysis. The problem of ensuring continuous variation of the singularities 

between elements could then be tackled in order to develop a general framework for the 

node-sharing procedure. 

The absence of confinement effects in elements within unmined regions, it was 

mentioned earlier, resulted in a major drawback of the traditional DDM. Therefore, the 

principal focus of the second part of the thesis was on the development of a new DD 

element that explicitly included confining stress components. This, it was envisaged, 

would facilitate the use of the DDM for pillar analysis, by overcoming the difficulties of 

the ad hoc approaches.   

Finally, the thesis comprehensively looked at the analysis of yielding pillars, and 

the modelling of post-peak pillar behaviour, using the new formulation of the DDM. The 

new DDM is used to simulate the progressive failure of rock. 

 

1.7 Scope and Contents of the Thesis 

 Apart from this opening chapter, there are five other chapters in the thesis. A 

general framework for implementing node-sharing in indirect boundary element methods, 
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which imposes continuity of field quantities between the elements, is described in 

Chapter 2. Difficulties in evaluating the singular integrals of the indirect boundary 

element formulation are discussed in the chapter, and a method for solving them also 

provided. 

 Chapter 3 provides insight into a specific implementation of the node-centric 

method for the displacement discontinuity method. It also includes examples of the 

comparison of node-centric results with closed-form solutions.  

In Chapter 4, the formulation for a new displacement discontinuity element is 

presented. The new DD element does away with one of the shortcomings of the 

conventional DDM. By introducing a lateral discontinuity that considers in-plane 

(confinement) stresses.  

 The post-failure behaviour of pillars is discussed in Chapter 5. The analysis of 

yielding pillars with the simple, yet powerful, progressive failure technique, implemented 

in the new DDM, is also presented. 

 A summary of this research, together with its benefits is outlined in Chapter 6. 

Recommendations for future research and development are in addition discussed. 

 Four papers, which were written during the work of this thesis and are related to 

the material in Chapter 2 to 5, are presented in the Appendices. 
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Chapter 2 

Node-Centric Indirect Boundary Element Method 

2.1 Elements in the BEM 

In the boundary element method, as stated in the previous chapter, only the 

boundaries of a problem are discretised into elements. The governing differential 

equations of the problem are satisfied throughout the solution domain by the results 

obtained from the boundary element method. However, the actual boundary conditions of 

the problem are only approximated. This gives rise to errors on the boundaries. 

Consequently, the accuracy of BEM results in regions close to boundaries is dependent 

on the accuracy of the approximations of the boundary conditions of a problem. It is of 

vital importance, therefore, to use methods that minimise the errors of boundary 

approximations.  

One way to attain good agreement between the real boundary conditions of a 

problem and their representation in the BEM is to represent a boundary with a large 

number of elements. With increasing discretisation, the elements used get smaller, as a 

result of which the expected approximation of the boundary conditions improves. 

However, this approach demands a lot of computations and therefore requires significant 

computer resources for most practical problems. A more reasonable approach is to 

formulate elements that would permit optimal representation of problem boundaries and 

boundary conditions. 

There are two main types of elements that have been formulated for the BEM. 

These major classes of elements are discontinuous elements and continuous elements. 
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The nodes of discontinuous elements are located within the interior bounds of 

elements. They require very simple procedures in determining the element coefficients of 

the influence matrix. Because the nodes of such elements are in the interior of the 

elements, their contributions to the influence matrix occupy distinct locations. In contrast, 

continuous elements have at least some of their nodes situated at the element ends or 

corners. The end nodes of continuous elements, therefore, can be shared with adjacent 

elements [21].  

Both discontinuous and continuous elements have advantages and disadvantages 

in application. Discontinuous elements are widely used in BEMs mainly because of their 

simplicity in formulation. Because there is no node sharing (adjacent elements do not 

have common nodes) in their formulation, the computation of the contributions of point 

sources at nodes is relatively straightforward. However, the lack of node sharing in 

methods with discontinuous elements means that for the same number of nodes a mesh 

with discontinuous elements is coarser than a boundary discretisation with continuous 

elements.  In addition, there are jumps in values of computed field quantities, such as 

stress and displacement, at the end nodes. Inter-element continuity between discontinuous 

elements cannot be attained even with higher order element formulations that use more 

unknowns.  

Typically in the boundary element method, the collection of elements into which 

a boundary has been discretised is taken to be the approximation of the boundary. The 

nodes of discontinuous elements are placed at points on an element so that they facilitate 

convenient integration and interpolation. Since these nodes are chosen to lie in interior 

nodes of elements, they generally, do not exactly coincide with actual problem 
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boundaries (Fig. 2.1a). The points at which the boundary conditions are approximated, 

therefore, do not coincide with points of the boundary.  

The node-centric formulation of continuous elements in the BEM allows the 

nodes of such elements to be chosen such that they lie exactly on a problem boundary 

(Fig. 2.1b). This feature consequently limits boundary approximations to only the 

discretisation of boundaries into elements, as a result of which boundary approximations 

no longer include errors due to nodes not being placed on physical problem boundaries. 

The end nodes of adjacent elements are shared in the node-centric approach. For the same 

number of nodes as in a problem discretisation with discontinuous elements, continuous 

elements provide a finer mesh, resulting in greater accuracy. At the extreme nodes of 

continuous elements, there are no jumps in computed values of field quantities such as 

stresses and displacements. It is expected that a continuous variation of field quantities 

would more accurately model real behaviour than a discontinuous variation. All this, 

however, comes at the price of additional mathematical effort in the formulating of the 

system of equations. 

 

 

 

 

 

 

 

Figure 2.1: Two and three-dimensional node- and element-centric elements 

a) Element-centric linear DD element 

b) Node-centric linear DD element 
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2.2 Continuous Elements in the Indirect BEM 
Continuous elements are used more often than discontinuous elements in the 

direct BEM, because of the advantages the former offer. The direct BEM requires that 

implicit integral equations be formulated for a problem. This leads to substantial  

difficulties in its applications to a number of problems [22], and therefore limiting 

the use of direct methods. The indirect BEM was developed to overcome these 

difficulties. For a wider variety of problems, it is easier to implement the indirect than the 

direct BEM. 

Despite this advantage of the indirect BEM, researchers have been unable to 

extensively use the node-centric formulation of elements with the method, owing to some 

problems with the evaluation of integrals. Integral equations in the node-centric 

formulation of the direct BEM have lower singularity at the nodes and their integration is 

therefore not problematic. In the indirect method, however, this is not so, integral 

functions are highly singular (hyper-singular) owing to the superposition of fundamental 

solutions, making them difficult to evaluate. Unlike discontinuous elements, which have 

all nodes always lying on smooth parts of boundaries, continuous elements, by sharing 

nodes, require that some functions be integrated at the end nodes of elements. The 

computation of jump terms at the end nodes of elements in the indirect BEM (nodes that 

lie on the edges or corners of a boundary) presents significant challenges, due to the 

meeting of multiple element vertices at such nodes. 

2.3 Methods for Integrating Singular Functions 
The essence of the boundary element method lies in the transformation of a 

problem involving a continuum field to an equivalent boundary problem. This 



 

19

transformation is made possible through the use of fundamental solutions or Green’s 

functions. These functions are generally unbounded at one point, i.e. each of the 

functions has an infinite value at a specific point. Such functions are thus termed as 

singular functions. The order of singularity can vary from function to function.  

The fundamental solutions of the BEM serve as kernels in integrations that 

provide the transformation from domain problems to boundary problems. To make 

solutions of the boundary problems feasible and obtainable at reasonable computational 

cost, boundaries are discretised into elements. The principal idea behind this is that each 

element can be assigned a prescribed continuous variation of field quantities based on the 

effects of point loads (values) acting at selected points of the problem domain. The 

variation of field quantities at elements is chosen so that it approximates the actual 

variation.  

The integrands in boundary element methods are Green’s functions multiplied by 

some weighting functions. The behaviour of these integrands is strongly influenced by 

the order of singularity of a Green’s function, and the position of the singular point. 

Mathematically, integrals involving the fundamental solutions and Green functions fall 

into three main classes: non-singular or regular integrals, near-singular integrals, and 

singular integrals. 

Regular or non-singular integrals: 

When the distance of a load point (a point at which a load is applied) from an 

element is far, the integrals are bounded and straightforward to evaluate using any 

classical numerical quadrature routine or method. Most boundary element integrations 

fall in this category. The accuracy of such integrals does not significantly affect results. 
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Near-singular integrals: 

In cases where a load point is close to an element, the value of the integrand over 

the domain of integration varies rapidly. The values of such integrals can be determined 

with classical quadrature methods to reasonable degrees of accuracy, only if excessively 

large numbers of collocation points are used. Accuracy in the evaluation of such integrals 

has greater influence on results than accuracy for regular integrals. 

 

Singular integrals: 

Singular integrals are the most difficult to evaluate, but at the same time the most 

important to calculate accurately in the BEM. They occur when a load point lies on an 

element, and represent the influence of elements on themselves (self-influence). Self-

influence coefficients form the diagonal terms of coefficient matrices that most strongly 

affect the overall accuracy of BEM solutions. Classical numerical quadrature methods 

cannot be applied directly to singular integrals, because of their unbounded nature at 

singular points. They thus require special treatment [23]. The difference between near-

singular and singular integrals is not as sharp as that between near-singular and regular 

integrals. 

The integrals of the DDM are highly singular than those of the direct method. 

This greater degree of singularity of integrals in the DDM has been one of the factors that 

has constrained the widespread use of continuous elements in the method. 
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2.4 Techniques for improving boundary approximations in Node- 

       Centric Methods 
It was mentioned earlier in the chapter that node-sharing methods reduce the 

errors of approximation at the boundaries of a problem. However, the boundary 

approximation errors in the approach can be further reduced through the use of special 

techniques. These special treatments can be classified into two main categories based on 

the manner in which errors are minimised. The methods for reducing boundary errors are 

outlined as follow: 

(i) Values of the error function (the difference between exact boundary values and 

approximated values) can be forced to be zero at the nodes of elements. This method 

is called nodal collocation. 

(ii) Errors can be minimised by distributing them over elements in an averaged sense. 

Minimisation of the averaged error can be accomplished through the multiplication of 

the error function with an interpolation function that approximates boundary 

conditions, and equating the resulting integral of the product of the two functions to 

zero. This approach is called the Galerkin technique. 

 

2.4.1 The Galerkin Technique 

An interpolation function commonly used in the Galerkin technique is the 

Gaussian quadrature weighting function [24]. An important attribute of the Galerkin 

method is that it avoids difficulties associated with the evaluation of singular integrals by 

shifting points of interest from nodal locations to Gaussian quadrature points. 

Previous attempts at creating continuous elements in the indirect BEM have used 

the Galerkin method to reduce boundary approximation errors. An example of such a 
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work is the application of the Galerkin technique to the displacement discontinuity 

method by Vandamme and Curran [25]. The number of integrations in the indirect BEM 

increases by an order of magnitude (i.e., O(n2)) in the Galerkin technique, leading to a 

rapid growth in the computational effort needed to generate matrices of influence 

coefficient. For large three-dimensional problems this computational expense gets 

prohibitive. 

 

2.4.2 Nodal Collocation Method 

In the nodal collocation method, boundary integral equations are satisfied at a 

number of discrete source points on a problem boundary, the nodes of elements. In 

contrast, the Galerkin technique, described above, satisfies the governing boundary 

integrals in an integral or weighted residual sense. 

The nodal collocation method is attractive because it exactly satisfies boundary 

integrals at nodal points, and is more economical than the Galerkin method due to the 

lesser number of integrations in the method. Despite its advantages in speed however, 

there were compelling reasons, in the past, why the nodal collocation method was not 

applied to the indirect BEM. Primary reasons for using the nodal collocation approach 

stemmed from the difficulties associated with the evaluation of the hyper-singular 

integrals of the indirect BEM [26].   

Tremendous effort has been devoted in recent years to the development of 

efficient techniques for the evaluation of singular and near-singular integrals. These 

techniques employ methods such as analytical integration, modified Gaussian methods, 

non-linear transformation of the integration domains, series expansion and row sum 
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methods, to tackle the class of hyper-singular integrals [23]. Although, these methods 

have been successfully applied to a wide variety of problems, they have their own 

drawbacks. For example, most of these techniques evaluate singular and non-singular 

integrals with separate methodologies. In this thesis, an integration technique based on 

the continuation approach [27-28], originally formulated by Vijayakumar and Cormack 

[29-30], that makes it possible to uniformly treat the evaluation of singular and near-

singular integrals, was used.  

The continuation approach provides elegant means for treating singular and near-

singular integrals. This leads to a unified methodology for evaluating integrals of all 

kinds. In the continuation approach integration over the domain of the element is 

converted to integration along the sides (edges) or boundary of the element. Integration 

along the edges eliminates the need to use a mix of analytical and numerical methods to 

compute the different types of integrals, thereby providing a uniform way for computing 

all integrals. Exhaustive details of the continuation approach can be found in the 

references [27-30], with only an overview of the mathematical derivation of the boundary 

functions of the method provided further below. 

The continuation approach offers robustness, in addition to uniformity in the 

evaluation of singular and near-singular integrals. Because in the approach, integration is 

performed along element boundaries, the evaluation of integrands at singular or near-

singular points is avoided. Avoidance of the evaluation of integrals at these points is what 

provides robustness. When a singular point coincides with a node, the values of 

integration along the element sides that form the node automatically reduce to zero. 

Another aspect of the continuation approach is that values of integrals are 
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obtained either as conventional integrals, Cauchy Principal Values or finite-part integrals 

[31], depending on the type of integrands involved. The computation of integrals is 

performed more efficiently in the approach, since the number of collocation points 

required for integration along the boundary of an element is considerably less than the 

number required if the collocation points were to be selected over the area of the element. 

 

2.5 Adaptive Integration 
The new integration formulation described so far simplifies a number of 

difficulties associated with the evaluation of singular and near-singular integrals. 

However, numerical difficulties in implementation still arise when a singular point lies in 

the vicinity of a boundary, because of the steep variation of integrands in the vicinity of 

singular points. For such a case, closely spaced collocation points are required for the 

regions of high variation, while sparse collocation points are needed for the rest of the 

quadrature domain (Fig. 2.2). The traditional approach has been to develop empirical 

relationships, which roughly indicate the number of uniformly spaced collocation points 

required for Gaussian quadrature in different parts of an integration domain [26]. Often 

this number is very large for small sub-regions of extreme variation of an integrand, if the 

integrand is to be adequately sampled. The empirical approach is very useful, but has the 

following drawbacks: 

(i) Using such a large number of collocation points for a small part of an integration 

region is grossly inefficient. 

(ii) The empirical relationship developed for one type of singularity may be invalid for 

another. For example, an empirical relationship that works well for the fictitious stress 

method may not be applicable to the displacement discontinuity method.  
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These drawbacks are overcome in this thesis through the use of an adaptive 

integration scheme that automatically samples different sub-regions of an integration 

domain with required numbers of collocation points. Quadrature in a region is assumed to 

be sufficiently accurate, if the computed value of an integral in that region falls within a 

specified percentage of the sum of the values obtained from the subdivision of the same 

region into two equal sections. This process of subdivision continues until any subdivided 

region satisfies the accuracy criterion. The adaptive method therefore ensures that 

integrals are computed with pre-specified accuracy. Schematically, the subdivision of an 

integrand (shown in Fig. 2.2a) with collocation points, based on the degree of variation of 

the integrand in different parts of the domain of quadrature, is illustrated in Fig. 2.2b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.2: Subdivision of side of element 

(a) 

(b) 
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2.6 Mathematical Formulation of Boundary Functions 

As stated earlier, the major difficulty associated with the formulation of node-

centric elements in the indirect BEM lies in the evaluation of singular integrals. In this 

section, a brief outline of the mathematical technique, underlying the continuation 

approach, is discussed. More detailed information on the approach is presented in 

PAPERS I and II.  

Generally, the surface element integrals that appear in BEM formulation are of 

the form 

Ωϕ d(p)qpgqI   ),()( ∫= ,                                          (2.1) 

where Ω  is an n-flat finite domain of dimension n, bounded by a piecewise continuous 

boundary Ω∂ . When n=2, this domain is equivalent to a planar region. g is a Green’s 

function. It is a continuous differentiable function when qp ≠ , and is infinite when 

qp = . The field point p is a point in the continuum at which field quantities, such as 

displacements or stresses, due to a source applied at load point q, are calculated. (p)ϕ is 

an interpolation function. The surface integrals become singular in the limit as the field 

point p approaches the surface of the integration domain (element). 

 In the continuation limiting process, the singular integral of eqn. (2.1) is obtained 

by simply taking the singularity to the surface [27]. An attempt is then made to either 

integrate the integrand analytically, or to map the integral to one performed on the 

boundary of the integration domain Ω∂ . When the integral is mapped to the boundary of 

the integration domain, it is referred to as a continuation integral [27].  
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 We can consider more general forms of integrals arising in the BEM by placing 

the origin of a local coordinate system at a point Ω∈q̂  (Fig. 2.3). q̂ , called the 

proximate singular point (PSP), is the point on the surface of the integration domain 

closest to the singular point (SP), q. In the local coordinate system, the points p and q can 

be expressed as )(X,0=p  and ),( 1+= nxq 0 , where X is a vector ),...,,( 21 nxxx in the 

(n+1)-dimensional ambient space [28]. 

  

Figure 2.3: Flat integration domain 

 

The integrals encountered in the BEM can be reduced to the following general 

form 

∫ ++ =
Ω

β ΩdxxxxfxI nnn ),,...,,()( 1211 ,                              (2.2) 

for any fixed value of 1+nx . βf  is a homogeneous function of degree β if and only if it 

satisfies the condition 

),...,(),....,( 1111 ++ = nn xxfxxf βλλλ ,                                 (2.3) 
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where λ is an arbitrary constant, or the Euler’s condition 
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Although f is homogeneous in the ambient space, it is not homogeneous in the integration 

domain 11,...., +nxx . Without loss of generality, it is sufficient to consider the prototypical 

function f to be of the form 

k

l
n

l
n

ll

n
r

xxxx
xf

nn 121
121

1

.....
),(

+
+

+ =x                                        (2.5) 

where the exponents kllll nn  and,, ..., 121 +  are positive integers. The general distance 

function r is given by the relationship 
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When both sides of eqn. (2.4) are integrated on the domain Ω , and Green’s theorem is 

applied to the left-hand side, the continuation formula for ),( 1+nxf X  is obtained in terms 

of )( 1+nxI  as  
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where dS is the directed surface area of the element on the boundary Ω∂  of the 

integration domain. α  is the degree of singularity, i.e. n+= βα , viz  
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where d is the dimension of the integration domain. In two-dimensional Euclidean space, 

1221 dxxdxxdS −=⋅X . Solving equation (2.7) produces the result 
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where )( oI η  is the initial condition used for integration, corresponding to the initial value 

of oη . The value of the integral )( 1+nxI should be independent of oη . One way to satisfy 

this requirement is to choose the initial condition far away from the integration domain. 

Under such a condition, ±∞=oη , causing the second term of eqn. (2.8) to vanish for all 

values of α . )( 1+nxI can then be computed with regular quadrature. Equation (2.8) can 

therefore be rearranged to yield  
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Equation (2.9) suggests the existence of a function F, known as a boundary function, 

which is represented by the formula 
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Rosen and Cormack first introduced the boundary function F, in [27], where it was 

referred to as the primitive boundary function (PBF). Note from eqn. (2.10) that the 

primitive boundary function is independent of the geometry of the integration domain. 

Using this function, expression  (2.2) can be integrated along the boundary as 

{ } dSxFFxxI nnn ⋅−= ∫
∂

+∞++ XXX
Ω

α ),()()( 111                    (2.11) 

where ∞F  represents the limit of the primitive boundary function ),( oF ηX  as ∞→oη . 

For Green’s functions that have forms similar to expression (2.5), the function ∞F  is 

always bounded and can be obtained analytically. 
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It is convenient at this stage to introduce an operator B. When B operates on an 

integrand, it produces the boundary function,  

ηη
ηα

α dfxf
x
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13 X∫
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+=B .                                   (2.11) 

Using this operator, the expression (2.2) for evaluating the domain integral becomes 

dSfI ⋅= ∫
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If B(f) is of the form ),...,(
),...,(

)( 1
1

1
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n

ns xxf
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xxf
f +=
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B , the first component of the sum 

represents a divergent part, while the second characterises a regular part. This result 

demonstrates that the boundary function clearly indicates the degree or nature of 

divergence of the divergent part.  

  It has been known in actual physical problems that a property of Green’s 

functions is that the sum of the divergent components of integrals along the boundary of 

an element equals zero [27]. Because of this phenomenon, the divergent component does 

not play any role in the solution process for problems of this type, and it is therefore 

advantageous to retain only the regular part of the integration.  

  In this thesis, the boundary function approach was developed for node-centric 

triangular integration domains, for which singular points occupied various positions in 

relation to flat 2-D triangular element (Fig. 2.4). The conversion of domain integrals to 

boundary integrals helps satisfy the earlier outlined objectives of developing an efficient 

integration methodology for the indirect BEM. It provides a unified integration scheme 

by adopting the same approach for all integrals, regardless of the position of the singular 

point in relation to the integration domain. Secondly, the boundary function method is 
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robust because it is insensitive to the geometry of the integration domain. Thirdly, it is 

numerically efficient due to the fact that it reduces the dimension of the quadrature 

domain by one. By converting integration over a domain to one along a boundary, the 

number of dimensions is scaled back by one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Possible cases of integral domains 

 
  A simple example of the conversion of integration from that over a domain to one 
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along a boundary is provided next. Let ),,( 321 xxxg  be a Green’s function and ),( 21 xxω a 

weighting function, both of which are homogeneous in 321 ,, xxx . Let it be assumed that 

the domain Ω  lies in the 21 xx −  plane. Then 

SX dxxxFdVxxxgxx  .),,( ),,( ),( 32132121 ∫∫
Ω∂Ω

=ω                          (2.13) 

The boundary function F for the function ωg is given by the equation 
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+=                          (2.14) 

 If the weighting function ω is linear, i.e. if the function has the form 

2121 ),( bxaxcxx ++=ω , it can be separated into two components:  

a) cxx =),( 21ω , for which α =-1, and  

b) 2121 ),( bxaxxx +=ω , for which α =0.  

This separation is done, because the degree of homogeneity, α, is different for the 

constant and linear components.  The integration required to produce a boundary function 

(eqn. (2.14)) can be obtained analytically using standard integrals provided by Dwight 

[32]. 

 As a concrete example, we shall consider a Green’s function that can be expressed 

as [33] 
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Using the operator B on the Green’s function, the boundary function can be evaluated as 
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Equation (2.16) represents a conversion to the boundary function using a weighting 

function of constant variation (the degree of singularity α = -1). Similarly, the boundary 

function using a linear weighting function (α = 0) is evaluated to be  
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where 2
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2.7 Summary 

The accuracy of BEM results in regions close to boundaries is dependent on the 

accuracy of the approximations of the boundary conditions of a problem. It is very 

important therefore to employ techniques that minimise the errors of boundary 

approximations.  

Of the two types of elements available in boundary element methods – 

discontinuous and continuous elements – continuous elements more accurately model 

boundary conditions. The node-centric formulation of continuous elements allows the 

nodes of elements to be chosen such that they exactly coincide with the boundary of a 

problem. A result of this is that boundary approximations are limited only to the 

discretisation of a boundary into elements. They no longer include errors due to the nodes 

not being placed on the physical boundary/boundaries of a problem.  

For the same number of nodes continuous elements provide a somewhat finer 

mesh than discontinuous elements. At the extreme nodes of continuous elements, there 
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are no jumps in computed values of field quantities. It is expected that a continuous 

variation of field quantities would more accurately model real behaviour than a 

discontinuous variation.   

Despite the relative ease of implementation of the indirect BEM, the node-centric 

formulation of elements has not found extensive use in the method, owing to the high 

degree of singularity of the integrals of the indirect BEM at element nodes, making their 

integration problematic. Also the computation of jump terms at the end nodes of elements 

in the indirect BEM (nodes that lie on the edges or corners of a boundary) is difficult, due 

to the meeting of multiple element vertices at such nodes.  

Methods for reducing boundary errors at the nodes of elements fall into two main 

classes- nodal collocation methods and Galerkin techniques. Of the two methods the 

nodal collocation approach is more attractive, because it exactly satisfies boundary 

integrals at nodal points, and is due to the lesser number of integrations in the method.  

The nodal collocation method also has advantages in speed. However, it was not 

applied to the indirect BEM in the past, because of the difficulties in evaluating the 

hyper-singular integrals that occurred at element nodes. In this thesis, an integration 

technique based on the continuation approach, originally formulated by Vijayakumar and 

Cormack [25], was used with the nodal collocation method that made it possible to 

uniformly evaluate all three main types of integrals in the BEM, namely, singular, near-

singular and regular integrals.  

Because the continuation approach provides an elegant treatment of singular and 

near-singular integrals, it leads to a unified methodology for evaluating integrals of all 

kinds. In the continuation approach integrations over the domains of elements are 
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converted to integrations along the sides (edges) or boundaries of elements. Integration 

along the edges of elements eliminates the need to use a mix of analytical and numerical 

methods to compute the different types of integrals thereby providing a uniform way for 

performing all integrals.  

In addition to uniformity, the continuation approach offers robustness and speed. 

Its computation of integrals is performed efficiently, since the number of collocation 

points required for integration along the boundary of an integration domain is 

considerably less than the number required if the collocation points were to be selected 

over the area of the domain. Although, the continuation approach has existed for a while, 

until now it had never been applied to the indirect BEM. 

Implemented with the continuation approach is an adaptive integration scheme. 

Adaptive integration overcomes drawbacks of traditional empirical methods for handling 

the integration of functions that rapidly vary over certain parts of an integration domain 

and slowly over others. It also makes it possible to evaluate integrals with pre-specified 

accuracy.  

In the next chapter the formulation of node-centric elements for a specific type of 

indirect boundary element method, the displacement discontinuity method (DDM), is 

provided. 
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Chapter 3 

Displacement Discontinuity Method (DDM) 

 

3.1 General Scope 

For thin slit-like or crack-type openings, such as the excavations commonly 

encountered in the mining of flat-lying seam or lenticular orebodies, the distance between 

opposing surfaces is very small compared to the other dimensions of the openings. As a 

result the two opposite faces of such excavations practically coincide. The nearness of 

excavation faces to each other creates serious numerical instabilities for many of the 

modelling methods available. Such problems can be best solved with a special numerical 

technique, the displacement discontinuity method (DDM) [34]. The DDM is a boundary 

element method founded on the analytical solution to the problem of a constant slit-like 

opening displacement, acting over a line segment of finite size in an infinite elastic 

domain.  

Each surface of an excavation is discretised into elements in a typical BEM. Thus 

each element lies on only one surface. A single displacement discontinuity element, on 

the other hand, represents a section of the opposing surfaces of a crack-type opening. 

Therefore the method is ideal for the analysis of slit-like excavations [35]. This 

characteristic of the DDM assumes even greater importance in three-dimensional 

problems. It produces significant economy in the number of elements used for 

discretizing problem boundaries, which in turn minimizes the amount effort required of a 

user during data input. 
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Technically, the DDM is an indirect BEM. However, unlike other indirect 

methods, the unknown variables in the DDM represent physically meaningful aspects of 

a problem. Displacement discontinuities are relative displacements of the opposing 

surfaces of cracks or slit openings. The displacement discontinuity method has been used 

to create well-known commercial software packages such as NFOLD [36] and MULSIM 

[37]. For many years these packages have been widely used for analysis by different 

institutions and companies in Australia, Canada and the Unites States, because of their 

practicality for solving mining problems.  

 Nodes of adjacent elements in the traditional DDM are not shared. As a result of 

this the number of equations and unknowns for the DDM increases rapidly with 

increasing number of elements. The situation worsens when higher-order elements are 

used. Because of this, the commercial packages mentioned above employ only constant 

DD elements in order to reduce the number of equations, and keep computing times at 

acceptable levels. Despite the use of constant elements, large numbers of elements are 

needed for the discretisation of regions in which detailed knowledge of stresses (or 

displacements) is required. 

 In the Chapter 2, it was established that when the end nodes of elements are 

shared, the number of unknowns in a problem is curtailed, leading to savings in 

computational time. A general framework for developing such an approach in the indirect 

BEM was discussed in the same chapter. The current chapter gives an overview of the 

development a node-centric formulation specifically for the DDM. This new formulation 

not only preserves the simplicity of the DDM, but also improves the capabilities and 

efficiency of the DDM in the solution of geomechanics problems. The node-centric 
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formulation of DD elements ensures inter-element continuity of stresses due to the 

sharing of nodes, making the new DD element superior to the traditional DD element. 

Basic examples that outline the capabilities and advantages of the new formulation of the 

DDM are also presented in the chapter.  

 

3.2 Node-Centric Displacement Discontinuity Element (Paper II) 

 The three-dimensional displacement discontinuity method is based on the elastic 

solution for the problem of a displacement discontinuity acting over a finite area in a 

material domain. For a planar crack with a normal in the 3x  direction (Fig. 3.1), two 

faces for the crack can be identified - a positive face (or surface) designated as += 03x , 

and a negative face −= 03x . When one crosses from one side of the crack to the other, 

displacements of the faces undergo a jump in value. This jump is known as a 

displacement discontinuity, kD , that is mathematically calculated as: 

−+ −= kkk uuD .                                                     (3.1) 

 

 

 

 

 

 

 

Figure 3.1: Normal and shear DD 
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The displacement discontinuity of a crack can be resolved into three components along 

the coordinate axes kx , k = 1, 2, or 3. These three displacement components are 

comprised of a normal component (closure) that is perpendicular to the plane of the 

discontinuity, and two shear components (rides) that lie in the discontinuity plane. They 

are shown on Fig. 3.1. 

We shall let the boundary of a problem be represented with a number of surface 

patches, λs . Three displacement discontinuity density components (one normal density 

and two shear densities, acting along the directions of local coordinate axes), kd , can be 

distributed over the surface patches. Using the principle of superposition, the stresses and 

displacements at point q in a homogeneous, isotropic, linear elastic material due to the 

displacement discontinuity densities at point p can be written as 

)()(),()( pdSpdqpGq k

s

ijkij ∑ ∫=
λ

λ

σ                                   (3.2) 

∑ ∫=
λ

λs

kiki pdSpdqpHqu )()(),()(                                   (3.3) 

The Green's functions ijkG and ikH  in eqns. (3.2) and (3.3) are defined in Appendix 1 of 

PAPER II. The summation is performed over the surface patches, λs . If either the 

stresses ijσ , or displacements iu , are specified for each λs , then eqns. (3.2) and (3.3) can 

be solved for the unknown DD densities, kd . In practice, the surface patches λs , that 

form the boundaries, are discretised into planar elements, and a functional form that 

approximates the variation of kd  over the elements is assumed. For example, in the 

simplest formulation of the DDM, the density variation over elements is assumed to be 

constant. As a field point q approaches a point p on the boundary of a problem, eqns. 
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(3.2) and (3.3) become the standard indirect boundary element equations.  

The variation of DD densities over elements can be assumed to be linear in the 

solution of a problem. This is the basic formulation adopted in this thesis. Under such an 

assumption, the variation of element DD densities can be approximated by the values of 

densities at the nodes of the element. The nodal values of the displacement discontinuity 

densities, simply known as displacement discontinuities, of an element are designated 

as jND1 , jND2  and jND3  to denote the two shear, and normal components, respectively. 

The elements used in discretising boundaries can have triangular shapes, with nodes 

placed only at the corners of the elements. In such a case, 1N , 2N  and 3N  represent an 

element’s three nodes. The nodal density values jN
kD  can be defined as the following 

function of nodal coordinates:  

jjj NNN
k xaxaaD 22110 ++= ,                                        (3.4) 

where x1 and x2 are the coordinates of nodes in the local coordinate system of an element. 

For a given element, the system of equations for the three components of a nodal DD, 

supplied by eqn. (3.4), can be rearranged and written in the following matrix form:  

































=















−

3

2

1

33

22

11
1

21

21

21

2

1

0

1

1

1

N
k

N
k

N
k

NN

NN

NN

D

D

D

xx

xx

xx

a

a

a

.                                          (3.5) 

For three-dimensional problems, generally, if a boundary is represented with p 

triangular surface elements, the components of stress and displacement induced at a node 

m, due to the distribution of normal and shear displacement discontinuities kD  at a node 

n, can be written as:  

  n
k

mn
ijk

m
ij DA=σ ,    and                                               (3.6)   
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   n
k

mn
ik

m
i DBu = ,                                                         (3.7)      

where the influence coefficient matrices ijkA  and ikB  are given by 

 pj
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The ijt ,’s are the coefficients of the direction cosine matrix. Each coefficient, ijt , is 

defined as the dot product, ji YX   ⋅ , of the two unit vectors ji YX   and , of the axes of the 

local coordinate systems at the field point and load point, respectively. mn
ijkα  is evaluated 

as 
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where kN

px and 1+kN
px are the local coordinates of the two nodes of each side of the element 

(Fig. 3.2). 

 

 

 

 

 

 

 

Figure 3.2: Coordinate system used to compute line integrals 

xp 

xq 

x1 

x2 

xp
k+1 

xp
k θ 



 

42

 
0
ijkI  and 

1
ijkI  are calculated from the formulae:  

pqp

side

ijkijk dxxxI )sincos.(00
θθΦ −= ∫ , and                             (3.11) 

pqp

side

ijkijk dxxxI )sin cos.(11
θθΦ −= ∫ ,                                   (3.12) 

through the use of the boundary functions 0
ijkΦ  and 1

ijkΦ  of the continuation approach. 

These boundary functions can be obtained analytically, as discussed in Chapter 2, and 

they are presented in Paper II. The integrals of eqns. (3.11) and (3.12) are evaluated with 

the adaptive integration scheme. θ is the angle measured between the x1-axis of the 

element local coordinate system and the side of the element along which integration is 

performed. mn
ikβ  is evaluated likewise using eqns. (3.11) and (3.12), and replacing the 

boundary functions Φ’s with Γ’s.  

Eqns. (3.8) and (3.9) represent a system of linear algebraic equations, which after 

the substitution of appropriate boundary conditions, can be solved for the unknown 

values of nodal displacement discontinuities n
kD . After calculating the displacement 

discontinuities, stress, as well as displacement, components at any interior points of the 

domain of a problem can then be computed by substituting values of n
kD  into eqns (3.6) 

and (3.7). 

 

3.3 Numerical Implementation 

3.3.1 Penny-shaped crack 

A standard problem for testing the validity of the results of the three-dimensional 

DDM is the penny-shaped planar crack [38]. In this thesis, a penny-shaped crack was 
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discretised into 108 elements with 61 nodes. A uniform internal unit pressure was applied 

in the crack (Fig. 3.3). The boundary conditions at the nodes on the rim of the crack 

demanded that DD values be zero at those nodes. This stipulation, together with node-

sharing, reduces the number of unknowns in the problem from 3x108 for the 

conventional constant DDM, to 3x49 for the node-centric formulation.  

 

Figure 3.3: Mesh used for the penny-shaped crack problem 
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Figure 3.4: Normal displacement variation over the crack boundary 
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Values of the normal DD components, computed with node-centric elements, 

were compared with results obtained from the constant DDM and the closed-form 

solution in Fig. 3.4. The comparison showed that the node-centric method, although using 

a significantly smaller number of unknowns, produced results comparable to that of the 

conventional DDM, and that were close to the analytical solution. 

 

3.3.2 Long cylindrical tunnel 

 Stresses and displacements around a long cylindrical tunnel under far-field in-situ 

stresses, computed from a numerical technique such as the DDM, can be assessed for 

accuracy by comparing them with those obtained from the closed-form solution. Stresses 

and displacements at the central cross-section of the tunnel must be close to the results of 

Kirsch’s analytical solution to the two-dimensional problem of a circular hole subjected 

to biaxial loading in an infinite elastic medium [3]. A three-dimensional form of this 

problem can be formulated if the length of the tunnel is chosen to be large in relation to 

its diameter so that the assumption of plane strain conditions becomes valid. 

  

Figure 3.5: Tunnel discretiztion 
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Figure 3.5 shows the mesh of node-centric DD elements used for analysing a 

three-dimensional cylindrical tunnel. The dimensions of the tunnel and the properties of 

the rock used for the analysis are provided in Table 3.1. 

Table 3.1: Details of tunnel model 
 

Dimension 
Radius (a) = 0.5 m 

Length (L) = 8m 

Material properties 
Young’s modulus (E)  = 2.5 MPa  

Poisson’s ration (ν)   = 0.25 

Far-field stress Vertical in-situ stress (p) = 1.0 MPa 

horizontal in-situ stress (kp) = 1.0 MPa 

 
The Kirsch solution for radial, tangential and shear stresses around a circular excavation 

with radius a, subjected to biaxial loading in an infinite elastic medium (Fig. 3.6), is 
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                    (3.13) 

where θθθ σσσ rrr  and  , are the total radial, tangential and shear stresses at the point in the 

rock mass with polar coordinates (r, θ), and 
r

a
=β . 
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Figure 3.6: Circular excavation 

Plots of the variation of radial and tangential stresses with distance, obtained analytically 

from equations (3.13) and numerically from the node-centric DDM, are shown in Fig. 

3.7. It is seen from the plots that the stresses predicted by the node-centric DDM are in 

very close agreement with those obtained from the Kirsch solution. 

r / a

1 2 3 4 5 6

st
re

ss
 / 

p

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Closed-form solution
node-centric DD elements

 

Figure 3.7: Tangential and radial stresses along horizontal line at the central cross-
section of cylindrical tunnel 
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3.3.3 Spherical Excavation 
 

On figure 3.8 is shown a spherical excavation in an infinite elastic medium. The 

dimensions of this excavation, and the strength and deformational properties of the 

surrounding rock mass, are summarized in Table 3.2. 

 

 

 

 

 
 

 
 
 
 

 
 
 

Figure 3.8: Spherical excavation 

 

Table 3.2: Details of spherical cavity model 
 

Dimension Radius (a) = 1m 

Material properties 
Young’s modulus (E)  = 2.5 MPa  

Poisson’s ration (ν)   = 0.25 

Far-field stress In-situ field stress (P) = 1.0 MPa 

 
 

This spherical cavity was subjected to two different loading conditions – a hydrostatic 

state of stress and a uniaxial stress field. The spherical excavation problem was then 

solved with the node-centric DD elements.  
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1. Hydrostatic stress field  

This was an excellent test case since the problem has a well-known closed-from 

solution [39]. The external radial and tangential stresses along the direction of θ = 0ο and 

φ = 90ο can be determined from the following equations:  

[ ]
[ ].1

1

3
2
1

3

βσσ

βσ

φφθθ +==

−=

P

Prr

                                               (3.14) 

 
 

Plots, shown in Fig. 3.9, of these stresses computed with the node-centric DDM and the equations in (3.14) 

reveal that the results of the numerical method closely match the analytical solution at every point along the 

direction of radius of the sphere.  
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Figure 3.9: The distribution of stresses outside spherical cavity subjected to a 
hydrostatic pressure at infinity 
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2. Uniaxial stress field  
 

The case of the spherical excavation, subjected to a uniaxial in-situ field stress, 

was considered in order to verify the validity of the node-centric formulation, when used 

in solving problems in which different normal and shear loads are applied to element 

nodes. The total stresses (radial and tangential) at any point (r, θ , φ) in the elastic 

medium can be computed from the equations 
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Figure 3.10: The distribution of stresses outside a spherical cavity subjected to a 
uniaxial stress at infinity 
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Stresses computed for this problem, using the new DDM, were compared with 

those from the analytical solution. Plots of the variation of the different stresses with 

increasing distance from the excavation are shown in Fig. 3.10. Observation of the plots 

shows that for all stresses the results of the node-centric DDM were in good agreement 

with the analytical solution. 

 

3.4 Concluding Remarks 

In the node-centric framework for three-dimensional problems, the number of 

nodes used in discretizaing boundaries is generally much less than the number of 

elements (Table 4.3). To obtain the same degree of accuracy of analysis with constant 

DD elements, the node-centric DDM requires a much smaller number of degrees of 

freedom. This results in computational efficiency, attested to by the results in Table 4.4. 

For example, when boundary of the penny-shaped crack described above is discretised 

with 108 constant DD elements, 324 unknowns result. When 108 node-centric DD 

elements are used, the number of unknowns drops to only 183. Also, the node-centric 

approach allows the boundary condition of zero displacement on crack perimeters to be 

satisfied exactly. The solution of the penny-shaped crack problem exemplifies this 

attribute of the node-centric formulation.  

Because the new formulation assumes a continuous variation of DD values, no 

anomalous changes of stresses occur in neighborhoods where elements are connected to 

each other. This facilitates the use of node-centric approach in practical geomechanics 

problems, where great attention must be paid to regions in which two excavations 
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intersect (e.g. where a tabular orebody intersects another orebody, or a joint intersects 

with an excavation).   

 
 
 

Table 4.3: Comparison of number of nodes for constant, linear and quadratic DDM 

to node-centric DDM for closed boundary and crack type problems 

 
 

Constant Linear Quadratic Node-centric 

Closed boundary problem Ne 3Ne 6Ne 

 

2
2

+eN
 

Spherical cavity 320 960 1920 162 

Crack type problem Ne 3Ne 6Ne 1
2

+
− be NN

 

Penny-shaped crack 108 324 648 49 

 
Where Ne is the number of elements and Nb is the number of nodes on the edge of crack. 

 
 

Table 4.4: Percentage error for normal DD for penny-shaped crack and spherical 

cavity problems 

 
 

Number of D.O.F %Error 

Constant DD [14] 3x108 3.278 Pressurized 
penny-shaped 

crack Node-centric DD 3x97 0.698 

Constant DD [14] 3x120 14.32 Spherical cavity 
under hydrostatic 

pressure Node-centric DD 3x62 14.44 
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Chapter 4 

Analysis of Pillars Using  
Enhanced Displacement Discontinuity Method 

 

4.1 General Scope 

Room and pillar and longwall mining techniques are regularly employed during 

the mining of flat-lying lenticular orebodies. Pillars, which are ore remnants left standing 

between the resulting excavations of the aforementioned mining methods, control both 

the local performance of immediate rock roof and the global response of the host rock 

medium. Pillars provide local rock support for individual excavations, and control the 

extents of deformation of rock material in the zone of mining activity. The degree to 

which the local and near-field stability of mining stopes are maintained to a considerable 

extent depends on the dimensions of the pillars providing support, their layout, and the 

strength and deformational properties of both the ore and host rock material. 

A comprehensive understanding of the behaviour of pillars, and the ability to 

predict this behaviour are very important for the economic and safe mining of ore. From 

the economic point of view, it is desirable that the least possible amount of ore be 

committed to support. On the other hand, the commitment of greater amounts of ore to 

support is preferable from the perspective of safety. For an effective solution between the 

competing factors to be reached, some failure of peripheral pillar material in practical 

mining is permitted [1]. 

Stress states in pillars, and consequently pillar behaviour, are complicated. For 

example, in the case of the simplest loading of a pillar, when it is compressed uniaxially, 
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the stress state in the pillar is triaxial. The stress state cannot only be triaxial, but it can 

also be non-homogeneous. This is due to the interaction between the ends of the pillar 

and the surrounding host rock mass. The geometry of orebodies and other factors often 

combine to produce irregular mine layouts that cannot be accurately analysed with simple 

or analytical methods. Numerical modelling techniques are best suited for solving 

problems of such degrees of complexity. The computational tool most appropriate for the 

analysis of the slit-type excavations encountered in the mining of lenticular orebodies is 

the displacement discontinuity method (DDM) [40], described in the previous chapter. 

 

4.1.1 The Traditional DDM for Mine Analysis 

During mining activity in a stope, stresses are redistributed around the excavation 

and in the pillars supporting the excavation. When the stresses in the pillars are less than 

the strength of the orebody material, the pillars behave elastically. One of the principal 

aims of such an analysis is to determine the load-bearing capacities of pillars. For 

analysis of pillars in this category, elastic analysis such as that offered by the traditional 

DDM is adequate. The formulation of displacement discontinuity elements for pillars 

(unmined zones of orebodies) differs from that for elements in mined regions. To model 

the behaviour of material in pillars, springs that respond to the normal and shear stresses 

are included in the formulation of DD elements used in representing pillar supports. By 

formulating DDs for different orebody zones it has been possible to solve a number of 

practical mining problems. 

Useful as the conventional DD formulation for unmined regions is, however, it 

has a major shortcoming. For orebodies that extend over large areas or that have low in 
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situ strength, pillars necessarily have to be designed to undergo plastic deformations, 

unless exceedingly large amounts of ore are to be used to provide support. The traditional 

DDM for unmined material, however, cannot appropriately model plastic or yielding 

pillar behaviour without considerable changes being made to its formulation, or 

implementation.  

An important component for modelling plastic material behaviour in pillars, 

lateral confinement, is absent from the formulation of the conventional DD element for 

unmined material. Plastic material behaviour involves post-peak material behaviour. The 

determination of peak loads, post failure strength and the plastic behaviour of material all 

require knowledge of the complete stress tensor at a point in the material. This includes 

the lateral confining stresses omitted from the conventional DDM. 

The degree of confinement in a pillar influences its strength. Irrespective of the 

shape of a pillar, it typically has a confined core [41, 42] and the bearing capacity of the 

pillar increases with increasing radius of this confined core. The higher the confining 

stresses in the pillar are, the higher are both the peak and residual strengths of its core. 

Because of this phenomenon, any mathematical formulation for solving pillar problems 

that neglects confinement in the analysis, is expected to introduce significant error in the 

calculated values of displacements and stresses in pillars.  

 

4.1.2 Conventional Methods for Improving DDM for the design of 

         Yielding Pillars 

In recognition of the inadequacies of the conventional DDM, in its practical 

application to mining problems ad hoc approaches are used to account for confinement. 

One such procedure acknowledges the presence of confinement in unmined zones 
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through the use of a family of stress strain curves. After discretisation of pillars, elements 

are assigned stress-strain curves based on their locations in pillars. Those close to pillar 

centres or cores are assigned the highest strength curves, while the ones adjacent to pillar 

surfaces have the lowest curves. Intermediate elements are assigned intermediate curves. 

This was the approach implemented in the commercial software package, MULSIM [18]. 

The ad hoc approaches, however, have some disadvantages. The procedure 

described above, for example, is tedious and requires considerable experience in order to 

determine the appropriate stress-strain curves to assign to elements in a pillar, making the 

technique quite subjective. The approach used in MULSIM can be used for pillar 

geometries of varying complexity. However, even slight complications of pillar 

geometries, make the technique difficult to use.  

 

4.2 The Enhanced Displacement Discontinuity Method (EDDM) 

In this thesis an enhanced displacement discontinuity method (EDDM) that 

explicitly and objectively accounts for the effects of confinement is proposed. This 

enhancement is achieved through the addition of a displacement discontinuity singularity 

perpendicular to the normal DD, to the original formulation of DDs. With the addition of 

this new DD, all stresses - normal, shear and confining stresses - are now accounted for in 

the modelling of unmined material. The newly created DD elements can accommodate 

general constitutive relationships, ranging from elastic models to general plasticity 

formulations, in the representation of pillar material behaviour, because of the inclusion 

of confining stress.  
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An additional advantage of the EDDM is that it accounts for confinement in a 

manner more general than those advocated by ad hoc approaches such as the technique 

used in MULSIM. Instead of using a discrete set of strength curves to model the effects 

of confinement, the EDDM allows strengths at different locations in a material to be 

calculated as functions of the stress states at the locations. It therefore offers more than 

the mere automation of the procedure advocated in MULSIM (automation of the process 

translates into considerable timesaving for mine design) by also modelling confinement 

more realistically. A discussion of the advantages of the EDDM and its full development 

is provided in Paper III. However the essentials of the approach are discussed next. 

 

4.2.1 Fundamentals of the EDDM 

 The original formulation of the displacement discontinuity method (DDM) 

combined the idea of modelling cracks as distributions of dislocations with the method of 

integral equations [43, 44]. It assumed a constant distribution of dislocations in modelling 

crack problems.  

Confinement can be incorporated into the DDM by deriving DDs starting from 

the basic definition of discontinuities as singularities created by strain nuclei, which are 

volumetric strain densities in three-dimensional problems, and surface strain densities for 

two-dimensional problems. There are two fundamental types of nuclei of strain, *d  - 

shear and normal strain nuclei. These strain nuclei can be distributed such that the 

necessary boundary conditions in crack problems are satisfied [43].  
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4.2.2 Conceptual framework 

A displacement discontinuity, as originally defined, is the relative movement 

between the two surfaces of a crack [40]. This definition of a displacement discontinuity 

can be generalized to cover the relative movement between two points on a crack. 

Because the relative movement of opposing points on the surfaces of a crack is uniform 

along the length of the crack, it becomes possible to define the displacement discontinuity 

as the relative movement between surfaces. For the traditional displacement discontinuity 

element (Fig. 4.1a), the shear DD is calculated as −+ −= 111 uuD , while the DD in the 

normal direction is defined as −+ −= 222 uuD . 

 
(a) Traditional DD element 

(b) New DD element 
 

Figure 4.1: Definition of displacement discontinuity   
 

 

 By examining the generalised definition of a DD, a third DD, which shall be 
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movement between the ends of a DD element as shown on Fig. 4.1b, and is defined by 

the relationship −+ −= ccc uuD .  

A strain nucleus *d  is the displacement discontinuity per unit volume in a 

continuum [45]. The cumulative or total displacement discontinuity, Ω , in a unit volume 

can be kept constant while the height of the volume is collapsed to zero. This can be 

written mathematically as ∫ ∫==Ω dAddVd * , where d is a new quantity, which shall 

be termed the displacement discontinuity per unit area, or surface displacement 

discontinuity density.  

When a two-dimensional element of height h and length 2a in a homogeneous, 

linear elastic material is subjected to normal strain nuclei *
2d , distributed throughout the 

element, stresses are induced in the medium. The stresses induced at a point q, 

sufficiently far from the element, by the distribution of strain nuclei can be (closely) 

replicated by replacing the element with a displacement discontinuity density, d, acting 

along the centreline of the element. (It is only when q is sufficiently far from the element 

that the stresses induced by strain nuclei distributed throughout the element will be well 

approximated by those induced by a displacement discontinuity density acting at the 

centreline of the element.)   

Stresses induced by the strain nuclei distribution *
2d  can be determined using the 

following integral equation: 

2

2/

2/

* )(),()( dxpdqpgq
h

h
∫

+

−

⋅=σ ,                                          (4.1) 

where g  is a Green’s function, and p is a point in the domain of the distribution of strain 

nuclei. Since the Green’s function is continuous in the domain of integration 
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)2/,2/( hh− , we can use the mean-value theorem to evaluate equation (4.1) as 

hpdqpgq oo )(),()( *
2⋅=σ ,                                               (4.2) 

where op is the point between 2/h−  and 2/h  at which the integrand takes on its 

average value. op  can be approximated to be located at the mid-height (centreline) of the 

element in order to simplify computations. From this point forth, op  shall be simply 

referred to as p. 

Equivalent stresses at Q can be induced by a displacement discontinuity density d 

placed along the centre line of the element. These stresses can be evaluated from the 

formula: 

)(),()( 2 pdqpgq ⋅=σ .                                          (4.3) 

Equating (4.2) to (4.3), the strain nucleus distribution can be expressed in terms of the 

displacement discontinuity density as: 

hpdpd /)()( 2
*
2 =                                               (4.4) 

When the displacement discontinuity density d has a constant variation in the 1x -

direction, it becomes equal to a displacement discontinuity D acting at the centre of the 

element (see further explanation in the next section).  

Similar to the above development of the normal DD, a shear displacement 

discontinuity, 1D , can be formulated by replacing the normal strain nuclei with nuclei 

that produce shear displacements in the element. 

We shall now consider another distribution of strain nuclei *
cd  that act on the 

element. We shall label these nuclei as confinement strain nuclei. This new distribution 

takes care of the effect of confinement in the element and produces lateral strain within 
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the element. Analogous to the case of normal strain nuclei *
2d , a lateral (or confinement) 

displacement discontinuity density cd  can be obtained from the confinement strain nuclei 

*
cd . They are related through the equation 

hpdpd cc /)()(* =                                              (4.5) 

Assuming a constant distribution of lateral displacement discontinuity density in 

the 1x -direction, the total lateral displacement discontinuity in the element can be 

evaluated as 

h

a
pddxpdpD c

a

a

cc

2
)()()( 1

* == ∫
+

−

.                                       (4.6) 

Expression (4.6) defines the lateral (confinement) displacement discontinuity. 

This new DD will be employed in the development of the enhanced DD element, which 

will be presented in the next section. 

 

4.2.3 Mathematical formulation 

As mentioned earlier, distributions of shear and normal strain nuclei throughout 

an element of height h and length 2a located at a point p in a homogenous, linear elastic 

material, induce stresses in the continuum. The components of the stress tensor, ijσ , and 

the displacements, iu , that arise at a point q in the continuum due to the strain nuclei can 

be determined from the following equations: 

 ∫ ∫
+

−

+

−

=
a

a

h

h

mkijkij dxdxxpdqpgq
2/

2/

122
**  )()(),( )( ϕσ ,                             (4.7) 

∫ ∫
+

−

+

−

=
a

a

h

h

mkiki dxdxxpdqphqu
2/

2/

122
**  )()(),( )( ϕ ,                              (4.8) 
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where the repeated indices represent the usual summation convention. For two-

dimensional problems i, j, k = 1, 2. *
ijkg  and *

ikh  are normal and shear influence functions 

for stresses and displacements, respectively, due to the strain density at p. mϕ  is an 

interpolation function. It can range from the simple square function, 0ϕ , to the Dirac 

delta function, nϕ  (or δ ) (Fig. 4.2). 

 

          )(0 xφ                              )(1 xφ                            )(2 xφ                        )(xnφ  

 

Figure 4.2: Interpolation functions 

  

We shall select the Dirac delta function for the problem at hand, i.e. δϕ =m , and 

shall also look to simplify the resulting expression ∫
+

−

2/

2/

22
**  )( )(),(

h

h

kijk dxxpdqpg δ  in 

equation (4.7). The Dirac delta function has an important property that for two functions 

)(tf  and )(tϕ , both continuous at the origin, the following relationship holds [19] 

)0()0()()]()([ ϕδϕ fdttttf =∫
+∞

∞−
                             (4.9) 

Using the well-known property of the Dirac function: ∫
+∞

∞−
= )0()()( fdtttf δ , equation 

(4.9) can be written as: 

x x 

δ (x) 

-h/2 +h/2 
x 

-h/2 +h/2 
x 

-h/2 +h/2 -h/2 +h/2 
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∫ ∫∫
+∞

∞−

+∞

∞−

+∞

∞−
= dtttdtttfdttttf )()()()()()]()([ δϕδδϕ .           (4.10) 

The above property, applied to the expression we are trying to simplify, leads to the 

following result: 

∫∫∫
+

−

+

−

+

−

=
2/

2/

22
*

2/

2/

22
*

2/

2/

22
**  )()( )(),( )( )(),(

h

h

k

h

h

ijk

h

h

kijk dxxpddxxqpgdxxpdqpg δδδ .    (4.11) 

By letting 

)()( )( 2

2/

2/

2
* pddxxpd k

h

h

k =∫
+

−

δ  , and     ),()()( 2

2/

2/

2
* qpgdxxp,q g ijk

h

h

ijk =∫
+

−

δ ,       (4.12) 

equation (4.11) can be reduced to the form: 

)(),( )( )(),(
2/

2/

22
** pdqpgdxxpdqpg kijk

h

h

kijk =∫
+

−

δ .                        (4.13) 

kd is the displacement discontinuity density (where 1d  is the ride or shear DD density, 

and 2d  is the closure or normal DD density). Similar operations can be performed to 

simplify the corresponding expression in the equation for computing displacements. 

These mathematical operations lead to the important result that for two-

dimensional problems, the stresses and displacements in equations (4.7) and (4.8) can be 

calculated as: 

∫
+

−

=
a

a

kijkij dxpdqpgq 1 )(),()(σ                                     (4.14) 

∫
+

−

=
a

a

kiki dxpdqphqu 1)(),()( .                                    (4.15) 

ijkg  and ikh  are the normal and shear influence functions for stresses and displacements, 

respectively, due to the displacement discontinuity density kd  at the point p. These 
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influence functions are given in [33]. The equations (4.14) and (4.15) constitute the 

formulation of the classical displacement discontinuity method. 

We shall now consider the case of a crack divided into N discrete line segments or 

elements. Acting over each of these elements is a DD density. Each element is defined by 

nodes at which displacement discontinuities (DDs) can be evaluated. By multiplying 

values of the nodal DDs with coefficients of an interpolation function, the DD density 

variation over the length of the crack can be approximated [7]. The approximation of the 

DD density at a point p along the crack, coincident with the nodes of the elements, is 

represented by the expression: 

2,1, )()( == ∑ kDppd e
k

e
ek Φ .                              (4.16) 

Φ  is an interpolation function identical to the shape functions of elements [7], which is 

evaluated at the nodes e. Substituting eqn. (4.16) into eqns. (4.14) and (4.15) we obtain 

the following equations: 

∑∫=
e a

e
kijkij dxDpqpgq 1e  )(),()( Φσ                              (4.14) 

∑∫=
e a

e
kiki dxDpqphqu 1e  )(),()( Φ                               (4.15) 

 If we assume a constant variation of the displacement discontinuity over each 

element, )( peΦ  at node p is equal to unity and zero everywhere else, and eqns. (4.17) 

and (4.18) become: 

∑ ∫=
e a

ijk
e
kij dxqpgDq 1 ),()(σ                                   (4.16) 

∑ ∫=
e a

ik
e
ki dxqphDqu 1 ),()( ,                                  (4.17) 
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In this case the total number of nodes is equal to the number of elements N. Equations 

(4.16) and (4.17) form the classical formulation of the constant DDM. 

The formulation of the enhanced displacement discontinuity (EDD) element shall 

begin with strain densities. Revisiting the problem of shear and normal strain nuclei 

acting at a point in a material, let an additional nucleus, *
cd , orthogonal to the normal 

strain nucleus be included in the problem. Other than direction, this new strain nucleus 

behaves similarly to the normal strain density. The solution of the new problem differs 

from the original only by the addition of an extra term to each of the equations (4.9) and 

(4.10), that accounts for the influence of the newly introduced strain density.  

A new displacement discontinuity, cD , which is perpendicular to the normal DD, 

can be formed from the new strain nucleus. Relying on the same approach used in the 

formulation of the classical DDM, the density cd  of this new lateral or confinement 

displacement discontinuity can be determined from the additional strain nucleus *
cd  using 

the relationship  

2

2/

2/

2
* )( )()( dxxpdpd

h

h

cc ∫
+

−

= δ .                                           (4.18) 

For discretized problems, the DD density at a point p along a crack can be approximated 

by nodal DD values through interpolation functions and the equation:  

, )()( e
c

e
ec Dppd ∑= Φ .                                    (4.19) 

The stresses and displacements induced at an arbitrary point q in an infinite, 

homogeneous, linear elastic domain with the application of a shear, normal, and lateral 

constant DD can be written as: 
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∑ ∫∑ ∫ +=
e a

ij
e
c

e a

ijk
e
kij dxqpvDdxqpgDq 11  ),( ),()(σ                    (4.20) 

∑ ∫∑ ∫ +=
e a

i
e
c

e a

ik
e
ki dxqpwDdxqphDqu 11  ),( ),()( .                   (4.21) 

ijv  and iw  are the confinement displacement discontinuity influence functions for 

stresses and displacements, respectively. The definitions of the influence functions are 

presented in Paper III. Equation (4.20) and (4.21) represent the enhanced DD element. 

 

4.2.4 System of equations for EDDM 

 The enhanced DD element can be applied to the problem of determining the total 

stresses and mining-induced displacements in the room-and-pillar or longwall mining of 

lenticular orebodies. As stated earlier, such mining involves slit-type excavations. It is 

necessary to identify the appropriate boundary conditions specific for problems of the 

type described above. 

As a first step in solving the problem of mining lenticular orebodies employing 

room-and-pillar or longwall techniques, discrete EDD elements are placed along the 

centre lines of the excavations, pillars and panels. The next step is to determine values of 

normal, shear and confinement DDs that produce total stress and displacement 

components consistent with the boundary conditions of the problem. In general, if the 

problem involves boundaries that are represented by N elements, M of which are unmined 

(M<N), induced stresses σ ij
p  and displacements p

iu  at element p due to the distribution of 

normal, shear and confinement DDs at element q can be computed as 

q
c

pq
jkik

q
k

pq
ijk

p
ij DKDA δσ +=                                              (4.22) 
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q
c

pq
i

q
k

pq
ik

p
i DLDBu +=  ,                                            (4.23) 

where i, j, k = 1, 2 and δ ij  is Kronecker’s delta. The influence coefficients pq
ijkA  are 

obtained from the expression 

mj
pq

lmkil
pq

ijk tGtA  =  ,                                              (4.24) 

where pq
lmkG  is the integral in the element local coordinate system of ),( qpglmk  in 

equation (4.19), and  ilt  is the rotation matrix. The other coefficients pq
jkK , pq

ikB  and pq
iL  

of equations (4.21) and (4.22) are determined in similar fashion through the integration 

and transformation of ),( qpvij , ),( qphik , and ),( qpwi in equations (4.20) and (4.21), 

respectively. The system of linear algebraic equations given by equations (4.22) and 

(4.23) can be solved for the unknown displacement discontinuities p
kD  and p

cD , after 

substitution into the equations of the appropriate boundary conditions.  

 In underground excavation problems, it is convenient to separate total stresses σ ij  

into two stress components - initial stresses oij )(σ  and induced stresses due to excavation 

(or simply induced stresses) ')( ijσ . The separation can be expressed mathematically as: 

')()( ijoijij σσσ += .                                                (4.25) 

 Crouch and Starfield [40] introduced mining-specific boundary conditions and 

material relationships that accounted for the differences in the boundary conditions of 

mined and unmined orebody zones into the DDM. These boundary conditions can be 

used in the solution of problems with the EDDM.  There is however one principal 

difference. Because of the presence of a third DD, the confinement DD ( cD ) in the 

EDDM, an additional equation and condition are needed to make the system of equations 
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assembled for the EDDM fully determinate. This extra equation is supplied by the 

constitutive relationship for seam material in unmined zones. 

Boundary conditions and system of equations for elements in mined zones 

In the mined portions of a seam or orebody, if there is no contact between the roof and 

the floor of excavations. Crouch and Starfield defined the boundary conditions1 for the 

roof and floor to be: 

o)( 2222 σσ −=                                                            (4.26) 

o)( 1212 σσ −= ,                                                         (4.27) 

where o)( 22σ  and o)( 12σ are the initial normal stress and shear stress, respectively. These 

same boundary conditions are applied to EDD elements in mined zones. It is important to 

mention here that the lateral confinement of EDD elements in these zones is zero, since 

those elements have no material. When these boundary conditions are inserted into 

equations (4.20), the resulting system of equation is:  

qpqqpq
o

p DADA 1221222222 )( +=− σ                                      (4.28) 

qpqqpq
o

p DADA 1121212212 )( +=− σ .                                     (4.29) 

0=p
cD                                                   (4.30) 

 

Boundary conditions and system of equations for elements in unmined zones 

For elements in unmined zones, the EDDM accounts for the effect of confinement with 

the introduction of the confinement displacement discontinuity, cD  (Fig. 4.3). 

                                                           
1 σ 12  and σ 22  in equations (4.26) and (4.27) are equivalent to the stresses denoted in [40] asσ s  and σ n . 
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Figure 4.3: Boundary conditions for mined and unmined elements in a seam  

 

If it is assumed that the seam material is homogeneous, isotropic, and linearly elastic, its 

constitutive relationship connecting stresses, σ ij , and strains, ijε , can be written as: 

ijskkijsij G εεδλσ  2  +=  ,                                    (4.31) 

where λ is Lame’s constant defined by the relationship: 

ss G
)21(

2

ν
νλ

−
=   .                                                (4.32) 

Let strain nuclei acting on thin strips of material with height equal to element 

height hs, be distributed along the length of a crack [43]. The strain nuclei, *
cd , *

1d  and 

*
2d , discussed earlier in the development of the EDD element (see section 4.2.2), can be 

defined as  

1

1
11

*

x

u
dc ∂

∂
== ε                                                (4.33) 

mined element 

unmined element 
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D1 σ22 
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where 11ε , 22ε , and 12ε  are the lateral, normal and shear strain, respectively. The strain 

nuclei distributions 12ε  and 22ε  corresponding to the displacement discontinuity densities 

1d and 2d  for an element of finite height sh , as shown previously in eqns. (4.2) and 

(4.4), can be expressed as  

shdd /1
*
112 ==ε                                          (4.36) 

shdd /2
*
222 ==ε                                          (4.37) 

The lateral strain in the element, 11ε , due to the lateral displacement discontinuity density 

can be defined as the total lateral deformation cD  over the length of the element 2a and 

thus can be represented as 

s

c

s
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h

d

h
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d

aa

D
=








==

2

2

1

211ε .                                           (4.38) 

Subsequently, the following relationship holds true for 11ε : 

scc hdd /*
11 ==ε .                                           (4.39) 

When the variation of the displacement discontinuity density over the length of an 

element is considered to be constant, the values of ck dd and  at a node equal ck DD and , 

respectively. Therefore, by replacing the strains in the constitutive relationship (4.31) 

with the quantities 
s

k

h

D
 and 

s

c

h

D
, the normal, lateral and shear stresses induced on an 

element in an unmined zone through the application of DDs are determined to be: 
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The use of the constitutive relationship for the seam material has provided the additional 

equation needed to make the system of assembled equations fully determinate. 

Observation of equations (4.40) and (4.42) shows that only the confinement and the 

normal discontinuities are coupled. This is consistent with the expected behaviour of 

pillars under axial loads. 

 If it is assumed that elements in unmined zones initially have zero displacement, 

and that they deform only in response to induced stresses [40], the following system of 

equations can be assembled for this type of element: 

q
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pqqpqqpqp
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qpqqpqp

s

s DADAD
h

G
1121212210 ++=                                       (4.45) 

This system of equations, together with the system of equations (4.28) - (4.30), forms the 

basis of the EDDM, and can be solved for the values of the unknowns DDs. 

The EDDM algorithm for three-dimensional is developed along similar lines. A 

detailed account of its formulation is presented in Paper III. 
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4.3 Sample Applications 

  In this section, two examples (one two-dimensional and the other a three-

dimensional case) that demonstrate the functionality and advantages of the enhanced 

displacement discontinuity method (EDDM) are described. More examples of problems 

solved with the new method are given in Paper III. 

 

4.3.1 Example 1: Analysis of a pillar between two stopes 

The model of a pillar between two stopes presented by Brady and Wassyng [46] is 

analysed with the EDDM. The geometry of the problem is shown in Fig. 4.4. The pillar 

and stopes were each modelled with 12 discrete EDD elements. Since there are no 

analytical solutions for this problem, stresses computed in the pillar and around the stopes 

by the EDDM were verified through comparison with those generated from the coupled 

FEM/BEM developed by Brady and Wassyng [46]. (The Brady and Wassyng solution 

was used in checking stresses in the pillar only.) They were also compared to stresses 

calculated from Phase2, a FE software program developed in the Rock Engineering 

Group of the University of Toronto [47]. In the finite element-boundary element coupling 

technique presented by Brady and Wassyng [46], the boundaries of the stopes 

(excavations) were modelled with boundary elements while a finite element mesh was 

used for the pillar. Phase
2
 solely employs the finite element method.  

Figure 4.5 contains plots of the major and minor stresses in the pillar computed by 

the three methods. From the results, it can be seen that all three methods give similar 

solutions to the problem. (The stress values at the ends of the pillar are different for the 

coupled FEM/BEM technique because a finer mesh is needed in that region for the 
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technique.)  These comparisons demonstrate that the EDDM, as well as its additional 

capability of including confining effects (which are very important when pillar yielding is 

modelled), can provide accurate results when used for elastic analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Pillar and stope geometry description 
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Figure 4.5: Stress distribution for the pillar 
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4.3.2 Example 2: Three-dimensional analysis of a pillar in a room  

 Confinement controls the overall behaviour of pillars. A detailed study of the 

failure process in pillars [48, 49], showed that failure commenced on pillar boundaries 

and migrated towards the centres of the pillar, where the cores had not reached their full 

load-bearing capacities. The observed increase in the strength of material from pillar 

boundaries towards the core is attributable to the effects of confinement.  

 Previous approaches for handling lateral confinement in DD methods relied on 

manual techniques to account for the influence of confinement. Figure 4.6 shows a 

typical scheme in MUSLIM for assigning stress-strain curves to the elements of a square 

pillar in a room-and-pillar mining scheme [50]. Elements used in discretizing the square 

pillar are designated with letters from A to D in Fig. 4.6. These elements are assigned 

strength curves (shown on the stress-strain diagram) according to the degree of 

confinement they experience. The element at the core of the pillar, being in the most 

confined region, is assigned the highest strength curve (curve A). 
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Figure 4.6: Assignment of material properties to different elements [50] 
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 For the three-dimensional EDDM to be considered successful it must correctly 

capture the variation of the degree of confinement in pillars. The normalised confinement 

DD adequately captures the degree of confinement in a pillar. An example of a single 

pillar in a room similar to the pillar of Fig. 4.6 is depicted in Fig. 4.7. Figure 4.8 shows 

the contours of equal normalised confinement DDs calculated for the square pillar. Due 

to the inclusion of the lateral singularity in the EDDM, it has been able to effectively 

model confinement in the square pillar. 
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Figure 4.7: Geometry and discretization of problem involving a square pillar in a room 

Figure 4.8: Contours of normalised confinement DD for the pillar 
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4.4 Summary 

 The EDDM makes use of all the components of the stress tensor and assumes a 

homogeneous stress distribution along the height of pillars or panels. It has a principal 

advantage over the classical DDM because of its ability to model material behaviour 

effects which depend on confining stresses. Whereas the DDM is limited in its 

application, the EDDM can accommodate general material constitutive equations 

including plasticity and damage models. By explicitly accounting for confinement in its 

formulation, the new procedure generalizes and automates the process of assigning 

strength curves to elements. As a result, it simplifies data preparation by eliminating the 

need for any artificial means for accounting for the effects of confining stresses.  

Sample problems involving boundaries and pillars of simple geometry were 

solved (mainly described in Paper III) to validate the performance of the EDDM. The 

results obtained from the EDDM compared well with analytical solutions for problems 

for which they were available, and showed good agreement with the results of other 

numerical techniques that have been established to perform well. Although the examples 

used in validating the new formulation involved simple shapes, the procedure is by no 

means limited to such cases. 

 The EDDM in this chapter was formulated using constant elements. However, 

higher-order elements can be implemented, requiring only a few and relatively simple 

modifications. This ability of the EDDM to accommodate a variety of constitutive 

models, combined with its ability to account for confinement, makes it even more 

attractive and important in the analysis of failing or yielding pillars. 
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Chapter 5 

Stability Analysis of Pillars Using 
 Enhanced Displacement Discontinuity Method  

 

5.1 General Scope 

 During the simple uniaxial compression of mine pillars, frictional forces 

perpendicular to the direction of compression arise in the pillars, because of the effects of 

clamping at the ends of the pillars. Because these horizontal frictional forces resist the 

bulging effects of uniaxial compression on pillars, the stresses they generate in pillar 

material are termed confining stresses.  

Due to the effects of confinement, pillars do not experience failure uniformly 

across their cross-sections. Close to pillar surfaces, the degree of confinement is lesser 

than for points further away from exposed faces. Under such triaxial stress conditions, the 

strength of pillar material increases from the boundaries towards the core. It can therefore 

be said that pillar material strength increases with increasing confinement [51, 52]. 

Confinement is more pronounced in the cores of short squat pillars, and reduces with 

increasing pillar slenderness. 

 The presence of confining effects, which render pillar strength non-uniform 

across pillar cross-sections, means that the practical design and analysis of pillars 

yielding without the inclusion of confining stresses is inaccurate. Yielding of pillars or 

plastic pillar response, as stated in Chapter 4, occurs in stoping operations in which ore is 

recovered from pillars and pillars, are allowed to collapse in a controlled fashion [52].  
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In some contemporary design methods, parameters and relationships used for 

computing pillar sizes are obtained through the back analysis of failed and stable pillars. 

The application of these techniques is however limited in range, because they can be used 

to analyse and design only pillars with the same properties and operating under the same 

conditions as those from which the equations and parameters were obtained. More 

general approaches can be devised through theoretical considerations of the behaviour of 

rock material in pillars. 

The yielding behaviour of pillars can be modelled with constitutive relationships 

such as elasto-plastic models. These constitutive models can be used with various 

numerical techniques including the FEM and EDDM. The practical application of 

elaborate models is, however, restricted due to the number of material parameters 

involved, and the difficulties associated with the determination of their appropriate 

values. A simpler approach involves the use of elasticity constitutive relationships, 

together with failure criteria such as the Mohr-Coulomb criterion or Hoek-Brown 

criterion, to model yielding in pillars. These simple approaches perform analysis through 

iterative procedures. One such technique is the progressive failure method developed for 

the FEM [53-56].  

Although quite simple in its formulation, the progressive failure method 

adequately captures the essence of the yield behaviour of materials. The parameters 

needed for the failure criterion incorporated in the method are easy to determine, and 

therefore make the practical application of this method very attractive. Although the 

progressive failure procedure has been successfully implemented with the FEM to 

analyse individual pillars, the large number of elements required to adequately model 
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large-scale mine problems, and the uncertainty in mine input data do not justify the 

approach for practical mine design. A progressive failure approach, implemented in the 

EDDM, will be introduced in this chapter. This new method offers all the advantages of 

the speed of the BEM, and produces results of enough detail to facilitate accurate 

engineering decision-making on mine pillar design. 

 

5.2 Stress-Strain Behaviour of Rock 

After rock is fractured it has reduced resistance to loads. This in turn leads to 

increased deformation under loads, because of the increased external energy supplied to 

the rock. These observations were confirmed by experimental data obtained by 

Bieniawski [51]. His results showed that the post-peak response of intact rock samples 

was characterised by a progressive decrease in both load-bearing capacity and elastic 

stiffness.  

The stress-strain behaviour of rock material, however, depends to a great extent 

on the confining stresses acting on the material. At higher confining stresses, both the 

failure loads and residual strength for rock samples increase in triaxial tests. At low levels 

of confinement, the post-peak strength of rock is reduced to very small fractions of the 

load-bearing capacities of samples, whereas the post-peak loss of strength is not so 

pronounced at high confining stresses.  

 

5.3 Progressive Failure Procedure  

In the rock mass surrounding excavations, and for rock material in pillars, 

extensive redistribution of stresses occurs due to post-peak deformations. When local 



 

79

failure of material occurs at points in rock where stresses have exceeded strength, the loss 

of load-bearing capacity has to be sustained by surrounding material. Stresses are 

therefore redistributed, with regions in the immediate vicinity of failed material acquiring 

increased stresses. Stress redistribution continues (progresses) until a stable state is 

attained in which no new local failures of material occur. 

Progressive failure of rock material was first included in analysis by Kidybinski 

and Babcock [57], when they represented failed rock zones around longwall faces with 

material of reduced elastic moduli. Kripakov [53] developed a more sophisticated 

approach to simulating progressive failure. This approach, implemented in the FEM, 

more realistically modelled the process of progressive failure. The progressive failure 

approach of Kripakov uses an iterative pseudo-elastic method of analysis to simulate the 

progressive yield zone in pillar material. In the method, it is assumed that local failure of 

an element representing a section of a material occurred, when the stress on the element 

exceeded the calculated strength of the material at that point. This strength is calculated 

using a failure criterion such as Mohr-Coulomb.  

If after the computation of element stresses any elements have failed, a new 

iteration is begun in which stresses were recalculated, with the difference between the 

calculated stress of a failed element and its admissible residual stress being distributed to 

surrounding elements. Redistribution of stresses is achieved through the modification of 

the element material stiffnesses. Every time the failure stress of an element is exceeded, 

its elastic modulus is reduced by the ratio of the failure stress predicted by a failure 

criterion to the stress computed at the element.  

Since failure criteria generally do not provide any information on the post-failure 
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behaviour of material, the procedure developed by Kripakov models post-peak material 

constitutive behaviour by reducing the stiffness and strength of material as iterations 

progressed. The amounts of reductions after failure are determined by an empirical local 

material factor of safety, SF . This index is not a global safety factor that indicates the 

danger of collapse of excavations or mine pillars, but rather one that measures how close 

material at a point is to failure. The local factor of safety is computed from the formula: 

  
1σ

σ F
S stressapplied

strengthmaterialmaximum
F == ,                                   (5.1) 

where 1σ  is the maximum principal stress calculated at a point in the material. The 

maximum material strength, Fσ , is calculated from a failure criterion. A factor of safety 

greater than 1.0 implies that no failure has occurred, while factors of safety less than 1.0 

indicate failure. 

 

 

 

 

 

 

 

 

Figure 5.1: Reduced post-peak elastic moduli of material  

 

 The reduced modulus of elasticity and uniaxial strength (Fig. 5.1) of failed 

material are calculated from the equations:  

factor of safety ; 1.0 
factor of safety < 1.0 
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(original)(modified) EFE S ⋅=                                               (5.2) 

)original()modified( cSc F σσ ⋅= ,                                             (5.3) 

respectively. If an element fails in tension, that element is assumed to have yielded 

completely and therefore does not retain any residual strength. 

After the first iteration of the progressive failure algorithm, the degrees of failure 

(factors of safety) of the elements of a discretized structure or domain are assessed for 

values less than 1.0 (indications of failed elements). If all elements have factors of safety 

greater than 1.0, the analysis is terminated. For elements that have factors of safety less 

than 1.0, reductions are applied to their stiffness and strength and the analysis repeated. 

At the end of each iteration a termination condition, which compares element factors of 

safety from the previous iteration to that of the current, is checked. If the differences 

between previous and current values of the factors of safety for elements are smaller than 

a set tolerance, i.e. when the factors of safety practically stop changing, the algorithm is 

adjudged to have converged. Results of studies by Kripakov and others [53, 56] show that 

the criterion produces stable results that are not affected by the accuracy of the 

convergence ratio.  

 

5.4 Failure criteria 

Failure at points of a material occurs when the stresses at these points, or in 

elements used in modelling the material, exceed the material’s strength limit. Strength 

limits are determined or predicted from failure criteria [58]. For isotropic material, a 

failure criterion is an invariant function of the state of stress, and is commonly 

represented with principal stresses as: 
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0),,( 321 =σσσf ,                                                    (5.4) 

where 321  , , σσσ  are, respectively, the major, intermediate and minor principal stress 

components.  

Failure criteria for uniaxial stress conditions cannot be used in progressive failure, 

because the stress-strain behaviour of rock material depends on the magnitude of 

confining stresses. Therefore failure criteria that take into consideration other principal 

stresses are required. The material parameters needed in failure criteria for rock masses 

are critical to the design of underground excavations, but can be at times difficult to 

estimate. As a result, it is desirable that failure criteria chosen for practical analysis 

include only parameters that can be evaluated realistically and reliably [59]. Two such 

criteria, which are very widely used for predicting failure loads of rock under triaxial 

stress states, and that satisfy these conditions, are the Mohr-Coulomb and the Generalised 

Hoek-Brown criteria.  

The Mohr-Coulomb and Generalised Hoek-Brown failure models [60] have great 

appeal when applied to practical problems involving progressive failure of rock material, 

because of their relative simplicity. Although it is possible that more complicated models 

may be able to predict failure stresses more accurately than these two criteria, the ease of 

the determination of the values of their parameters, and the simplicity of their forms, 

renders them very effective for routine use. 

 

5.5 Progressive Failure Simulation Using EDDM 

For progressive failure to be implemented in the EDDM, the stress tensor for each 

unmined element is calculated and rotated to obtain principal stresses. The strength of 
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each element is calculated using either the Mohr-Coulomb or Hoek-Brown failure 

criteria. If the stress computed for an element exceeds the element material strength, then 

the factor of safety for that element is modified in the next run of the algorithm. The 

strength and deformational properties of that element are reduced, thereby simulating 

progressive partial failure of the element. As failed and softened elements will not 

support as much load as before, extra stresses are transferred to other more competent 

elements. This procedure continues until all elements reach an equilibrium state in which 

the computed stresses for all elements do not exceed failure stresses. 

 

5.6 Sample Applications 

Two examples of the application of progressive failure with the EDDM are 

provided in this chapter. These examples help demonstrate the applicability of the 

proposed method to mine pillar analysis. The examples presented in this chapter were 

selected such that the results obtained from analysing them with progressive failure in the 

EDDM could be readily verified. In all the examples it is assumed that the host rock is 

much stronger than the seam or orebody. Under such conditions, the host rock behaves in 

a linear elastic manner. Only material in the seam undergoes yielding. 

 

5.6.1 Two-dimensional analysis of a pillar (Example 1) 

The application of progressive failure with the EDDM to the two-dimensional 

analysis of a pillar is demonstrated in this example. Figs. 5.2a and 5.2b provide a 

description of the problem and the discrete representation of the stopes and pillar with 

EDD elements. The elastic properties for both the host rock and orebody in the problem, 
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and material parameters for determining failure stresses are given in Table 5.1 [51]. This 

problem was solved with progressive failure in the FEM [51]. It is assumed in the 

problem that only vertical stresses due to the weight of rock overburden are applied to the 

excavations. The underground excavations shown in Fig. 5.2a are at a depth of 457m.  

Table 5.1: Rock properties for Example 1 

Rock type E 
 (MPa) ν φ  

(degree) 
C 

 (MPa) 
m 

Host 11324 0.3 40 4 9 

Orebody 3248 0.3 30 2 7 

 

In the analysis, stresses in the pillars were calculated using the EDDM. The ratios 

of the normal stresses to the vertical stress, p, (normalised normal stresses) at various 

points across the width of the pillar are plotted in Fig. 5.4. From the plots it is evident that 

the results of the approach advocated in this paper compare very well with those obtained 

from the FEM with progressive failure modelling.  

 

Host Rock

Panel = 33m Panel = 33mpillar = 9.1m 2.75m6.1m6.1m

Host Rock

 

(a) Geometrical description 

 

(b) Discretized mesh 

Figure 5.2: Two-dimensional model for mining problem 
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Figure 5.3: Normal stress variation across the pillar 
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Figure 5.4: Normal stress variation along the panel 
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In addition to verifying the stresses in the pillar, the stresses computed for the 

panels were also checked. Normalised normal stresses for the panels are plotted in Fig. 

5.4. Again, there is good agreement between the results of the EDDM with progressive 

failure, and those computed from progressive failure in the FEM.  Plots of the normalised 

normal stresses in the pillar and panels produced by an elastic analysis are provided in 

Figs. 5.3 and 5.4, respectively, for comparison with stresses obtained from the yield 

models. 

 

5.5.2 Three-dimensional analysis of a pillar (Example 2) 

Example 2 examined the analysis of a pillar in a longwall mining scheme, in 

which ore from a panel was removed in two stages. The material properties of the host 

rock and orebody analysed in the example are provided in Table 5.2. The mining depth 

was again assumed to be at 457m, with the primitive stress field assumed to be uniform 

and equal to overburden pressure [61].  

Table 5.2: Rock properties for Example 2  

Rock type E 
 (MPa) ν φ  

(degree) 
C 

 (MPa) 
m 

Host 17241 0.3 30 4 9 

Orebody 1724 0.3 30 2 7 

 

Fig. 5.5a shows the geometry and dimensions of the excavations, panels and pillar 

at each of the mining stages. If the length of the panels, orebody, and pillar were to be 

infinitely long, this three-dimensional problem would be equivalent to a two-dimensional 

analysis of the central cross-section of the problem. For practical purposes, however, an 
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infinite length is not possible and therefore a length to width ratio of 4:1 was selected for 

the problem.  

The mesh used in discretising the problem domain is shown in Fig. 5.5b. This 

mesh remained unchanged for both stages of the problem. Boundary conditions, however, 

were chosen to correctly represent the physical conditions prevailing at the different 

stages.  

 

 

 

 

 

 

 

 

(a) Geometry description 

 

(b) Used mesh 

Figure 5.5: Geometry and discretisation of the orebody 

panel 

panel 

pillar 
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Figure 5.6: Variation of normal stress across the pillar for stage II 

 

Stresses around the excavations and in panels and pillars were computed for the 

different stages of the analysis. During stage I, no failure occurred in either pillar or panel 

material. Progressive failure of rock occurred only during stage II of mining. The 

normalised normal stresses computed in the plane of the central cross-section of the pillar 

are plotted in Fig. 5.6. These results are compared with the results of a two-dimensional 

analysis of the central cross-section of the problem. There is good agreement between the 

results of the three-dimensional and two-dimensional analyses, even though the mesh 

used for the latter was much finer. 
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5.7 Summary and Conclusions 

The yield behaviour of rock pillars and the analysis of yielding pillars are 

generally very difficult to model numerically, because of the non-linearity of the yielding 

process. The prediction however of pillar behaviour is of great importance to the design 

of room-and-pillar mining schemes. Due to difficulties in estimating the in-situ strength 

properties of pillar material and the complexities of pillar loading conditions, any tool for 

the practical analysis of yielding pillars must be simple and yet capable of producing 

acceptable results. The progressive failure technique, implemented in the EDDM, meets 

these necessary requirements. It was initiated in an effort to develop a quick and efficient 

numerical technique for pillar post-failure analysis in the mining of lenticular orebodies. 

Although very simple in formulation, the progressive failure technique overcomes 

many of the numerical programming difficulties associated with the simulation of strain-

softening behaviour. It also provides efficient ways of generating results that conform to 

real rock behaviour in pillars and panels. The results of the analysis of sample problems 

in both two and three dimensions with the progressive failure procedure in the EDDM 

proposed in this thesis, compared very favourably with those obtained from other 

methods.  

Although the progressive failure method was used only with the EDDM, 

additional models for analysing pillar yielding in the EDDM could be readily developed. 

For example, more complex plasticity constitutive models can be used in place of the 

pseudo-elastic model in the EDDM. 
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Chapter 6 

Summary and Future Development 

 

6.1 General Summary 

 The design and analysis of mining excavations has great significance for the 

profitable and safe mining of mineral resources. It involves the geomechanical analysis of 

mine structures, and requires the use of numerical techniques that are more powerful and 

flexible than analytical methods. One of the difficulties of mine analysis is that it 

involves large-scale problems, due to the sizes of orebodies and influence zones of 

mining activity. The geometry of orebodies, excavations and mine support structures 

pose additional challenges in practical mining situations, because of their irregular shapes 

and layouts. For example, mine excavation analysis for the extraction of ore from 

deposits such as seams or lenticular orebodies, is difficult, because of the unique property 

of these excavations that their boundaries consists of two parts in very close proximity to 

each other. These factors combine to impose a number of restrictions on the numerical 

method that can be for practical mine analysis. The mining of orebodies with shapes as 

those just mentioned above, and that are flat lying, are of particular interest in this thesis.  

Another major problem in geomechanical mine analysis and design is the 

uncertainty in data collected on rock properties. Uncertainty makes it uneconomical to 

perform elaborate design, especially at preliminary stages of mining. It often brings about 

changes in analysis and design, because new data collected on rock properties from a 

location as mining progresses show that input parameters are not what they were initially 

estimated to be.  
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Of the numerical methods available for engineering design, the displacement 

discontinuity method (DDM) is most suitable for solving mine design and analysis 

problems of lenticular orebodies. Its advantages stem from the use of a boundary element 

method in which the two surfaces of thin slit-like excavations are treated as one entity, 

and the relative displacements between these surfaces are handled as unknown physical 

parameters. 

The research conducted in this thesis aimed to resolving a broad spectrum of 

issues related to the practical application of the DDM to stress analysis problems of 

mining excavations. The new formulations for the DDM derived in this thesis were 

verified by implementing them in a C/C++ program code and comparing its results with 

those of available software programs. Although results produced by the new code were 

very good, it is important to outline some of the simplifying assumptions used in its 

formulation that lead to limitations in its application. These limitations are related to the 

DDM itself, and can be outlined as follows: 

The method assumes 

1. homogeneous, isotropic, linear elastic behaviour for domain (host rock) material, 

2. average stress components in pillars that are distributed along the centerline of DD 

elements, 

3. only rupture modes that involve spalling from pillar surfaces. 

Also, although different plasticity models can be used with the method, they were 

not actually implemented. 
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6.2 Contributions  

The research conducted in this thesis covers a broad spectrum of issues related to 

the practical use of the DDM for the stress analysis of mining excavations. Contributions 

the thesis has made to research on the practical application of the method to mining are 

outlined below. 

 

6.2.1 Node-centric framework 

In the first part of this work, a node-centric formulation, applicable to indirect 

boundary element methods, was developed. This had not been done previously, because 

of difficulties associated with the evaluation of the highly singular integrals of the 

indirect method, despite the proven advantages of node sharing in the BEM. The node-

centric indirect BEM was made possible only after the creation of a new and unified 

framework for evaluating hyper-singular boundary integrals in the thesis. Original 

boundary functions, based on an assumption of linear variation of unknowns in the 

indirect BEM, were derived in the thesis. They were used in the new approach for 

evaluating singular integrals. The technique of boundary functions significantly reduces 

complications in the integration of singular functions, and also uniformly treats singular, 

near-singular and regular integrals. It has additional advantages of being robust and fast, 

and used adaptive integration to make it possible to evaluate integrals with predetermined 

accuracy. 

The practical implementation of the node-centric method for indirect BEMs was 

demonstrated on the displacement discontinuity method (DDM). PAPER I, in the 

appendix to this thesis, discusses the application of the method to two-dimensional 
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analysis with the DDM, while in PAPER II, a three-dimensional DDM implementation of 

the node-centric is provided.  

The node-centric formulation together with the unified integration scheme 

produced more accurate results than the conventional DDM, and demonstrated greater 

robustness in comparison to other DD formulations. The node-centric DD formulation 

extends the range of application of the DDM to non-standard problems such as those 

involving the intersection of excavations by faults. Without a node-centric formulation, 

the application of the DDM to such geomechanics problems is quite cumbersome. 

Usually, to overcome the physically impossible large stresses that are calculated in-

between elements in the conventional DDM for problems of this kind, careful and fine 

discretisation had to be used. The node-centric formulation obviates this problem by 

imposing stress continuity. 

 

6.1.2 Analysis of pillars using EDDM 

 The second part of the thesis described the derivation of a new DD element - the 

enhanced displacement discontinuity method (EDDM). Elements of this new 

displacement discontinuity approach were formulated by adding a centre of dilation 

singularity to the formulation of the conventional DD element. The dilation singularity is 

coupled with the normal singularity through the use of a constitutive relationship. This 

new formulation provides information about the in-plane (confinement) stress in an 

element, something the conventional DD does not include. These developments are 

discussed in Paper III, a summary of  which is provided in Chapter 4. 
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The EDDM allows the process of assigning degrees of confinement, expected to 

occur in pillar and abutment elements under a given set of mining conditions, to be 

automated. A primary advantage of this feature is that it provides a means to simplify 

data preparation, because it eliminates the need for ad hoc means for accounting for the 

effects of lateral stresses. 

With the inclusion of confinement into the formulation of the enhanced DD 

element, it can be readily used for the analysis of yielding pillar, since all components of 

the stress tensor at a point in a material are explicitly accounted for in elements. The new 

element displays greater flexibility and power in handling two- as well as three-

dimensional mining problems. 

 

6.1.3 Pillar yielding 

The final focus of the thesis research was on the development of a methodology in 

the EDDM for modelling the behaviour of yielding pillars. The technique selected was 

the progressive failure method, previously used with only the FEM. Its application to the 

BEM, and specifically to the EDDM, is new. As stated earlier, the powerful and versatile 

FEM is not very suitable for practical mine analysis, especially for three-dimensional 

problems, because of the significant computational effort and resources needed to 

formulate and solve problems with the method. Therefore the implementation of the 

progressive failure procedure in the EDDM was undertaken in an effort to develop a 

quick and efficient numerical tool for pillar post-failure analysis in the mining of 

lenticular orebodies. PAPER III, summarized in Chapter 5, contains the full formulation 

of the progressive failure method applied in the EDDM. The progressive failure 
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procedure is a simple and yet very efficient way of simulating real rock behaviour. It uses 

a quasi-elastic approach, accompanied by iterative modifications to element material 

deformation and strength properties.  

The motivation behind the proposed numerical procedure for modelling yielding 

pillars was quite straightforward. Often, not enough is known about rock properties to 

justify a complete elastic-plastic analysis, especially since elastic-plastic analyses require 

considerable computational resources, effort and time.  The input data for the progressive 

failure procedure, outlined in the thesis, include well-understood parameters, easily 

obtained from laboratory tests on rock samples.  

 
6.3 Future Development 

 Further developments to the methods described in this thesis can be directed in 

two principal directions: improvements to modeling techniques and the resolution of 

practical application issues. Some of the aspects that need to be investigated in these two 

areas are discussed below: 

1. The node-centric formulation of the DDM implemented in this work assumed a linear 

variation of unknowns, which is the lowest order of interpolation functions that could 

be used for node sharing. Higher order of elements can be developed for special 

design or analysis cases, where results of higher accuracy are desired. 

2. The node-centric framework developed in this research can be applied to other 

indirect boundary element methods such as the fictitious stress method. This could 

facilitate the coupling of fictitious stress methods with the displacement discontinuity 

method, because of node sharing.  
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3. The node-centric displacement discontinuity method developed here can be extended 

to multiple material problems.  

4. Extensive studies oriented at comparing practical mine data with the numerical results 

obtained from the new DD model can be carried out. In these studies, the 

performance of both elastic analysis and progressive failure analysis of pillars can be 

evaluated. 

5. More complicated models can be developed for the behaviour of unmined material, 

close to excavation boundaries, by incorporating non-linear material constitutive 

relationships into the progressive failure method.  

6. The EDDM developed in the thesis can be used for modelling mining sequences. It 

can thus be used to study history dependent phenomena such as those arising from 

mining activities in the vicinity of faults. The ability to model mining sequences is 

also necessary when considering the non-linear behaviour of the seam material. 

7. A study directed at the effects of back-filling mined zones can be conducted using the 

progressive failure method and the EDDM. Adding a routine that changes the 

properties of unmined elements during every mining stage can help accomplish this 

objective.      
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Abstract 

 
A new two-dimensional displacement discontinuity formulation, which preserves inter-

element continuity of tractions and displacements at nodes, is introduced. The continuous 

displacement discontinuity variation between elements is achieved by treating inter-

element nodes as the points of specification of unknown displacement discontinuity 

values. Thus, the most important source of error in the displacement discontinuity method 

implementation is eliminated. This, in turn, widens the applicability of the displacement 

discontinuity method. The trade off is that certain conceptual and computational 

difficulties with respect to element integrations arise. By employing the ideas of invariant 

imbedding and continuation of singular and near-singular integrals, a suitable integration 

ansatz is developed. The efficacy of the method is shown using several examples which 

are designed to explore its potency as a general purpose method for solving large scale 

field problems. 
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Abstract 

 
An indirect boundary element formulation based on unknown physical values 

being defined only at the nodes (vertices) of a boundary discretization of a linear elastic 

continuum is introduced. As an adaptation of this general framework, a linear 

displacement discontinuity density distribution using a flat triangular boundary 

discretization is considered. A unified element integration methodology based on the 

continuation principle is introduced to handle regular as well as near-singular and 

singular integrals. The boundary functions that form the basis of the integration 

methodology are derived and tabulated in the appendix for linear displacement 

discontinuity densities.  

The integration of the boundary functions is performed numerically using an 

adaptive algorithm which ensures a specified numerical accuracy. The applications 

include verification examples which have closed-form analytical solutions as well as 

practical problems arising in rock engineering. The node-centric displacement 

discontinuity method is shown to be numerically efficient and robust for such problems. 
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for the Analysis of Lenticular Orebodies 
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University of Toronto 
Toronto, Ontario, Canada, M5S 1A4 

 

Abstract 

The displacement discontinuity method (DDM) - an indirect BEM - is very suitable for 

calculating stresses and displacements associated with the mining of lenticular orebodies 

(orebodies that are at most only a few meters in one direction and tens of meters in the other two). 

The original formulation of the DDM, however, omits the effects of confining stresses, which are 

important to pillar strength.  

In this paper, a new DD method, the enhanced displacement discontinuity method 

(EDDM), which explicitly models confining stresses in pillars in the formulation of DD elements, 

is presented. The new DD element is derived through the inclusion of an additional singularity 

that accounts for confining stresses to the formulation of the conventional DD. The inclusion of 

the confinement DD enables the EDDM to accommodate all components of the stress tensor, and 

requires a new equation to make the resulting system of equations fully determinate. This 

equation is obtained via the material constitutive relationship. The use of the full stress tensor 

grants the EDDM the capability to employ general material constitutive relationships for the 

modelling of different types of material behaviour. It is developed for both two- and three-

dimensional problems. Sample applications of the new method to pillar problems are provided in 

the paper. These examples illustrate the viability of the EDDM. 

 

 Keywords: Displacement Discontinuity, DD, enhanced displacement discontinuity, EDD, strain 
nucleus or nuclei, pillar confinement effect. 
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1. INTRODUCTION 

 During the (room-and-pillar or longwall) mining of lenticular orebodies, sections of 

the orebody are left intact for the purposes of providing support for excavated rooms. These 

unexcavated orebody portions are known as pillars. The analysis of stresses and 

displacements around the resulting excavations and in the pillars often requires the use of 

numerical techniques, because closed-form solutions exist only for a very small set of 

problems.  

There are two competing demands that control pillar sizes in the design of pillars. 

Mining economics demands that as much ore as possible be recovered from mining 

operations implying that pillars must have minimal sizes. Safety demands however require 

that pillars be designed such that they have adequate load carrying capacity to prevent 

catastrophic collapse of excavations. For an optimal solution between the competing factors 

to be reached, some failure of peripheral pillar material in practical mining is permitted. 

 

Numerical Modelling Techniques 

Today there are a variety of numerical techniques available for performing stress 

analysis and design of rock engineering structures. These techniques include the finite 

element method (FEM), finite difference method (FDM) and the boundary element method 

(BEM). In principle, all of these methods can be used for the detailed modelling of features 

such as stopes and pillars that result from mining excavation works [1].  

 The finite element method is a very powerful and versatile numerical modelling 

technique that can be used to solve a very broad range of engineering problems. Overall it 

enjoys greater popularity in engineering applications than other numerical methods. In finite 
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element modelling, the material region of interest is divided (discretised) into a network of 

elements. The solution to the problem of finding displacements and stresses induced by 

applied stress states is determined at the nodes of the elements. The FEM can be used to 

obtain detailed information on the distribution of stresses and strains that other methods are 

either incapable of producing, or can produce but with significantly more effort. It can also 

readily model non-linear material behaviour and non-homogeneous material domains.  

 As the name suggests, the boundary element method (BEM) involves the 

representation of only excavation boundaries with elements. Analytical solutions obtained for 

problems entailing the application of singular loads in generally homogeneous domains 

supply the basis for the BEM to satisfy the problem boundary conditions at the nodes of its 

elements. Based on the integral formulations involved, BEMs can be separated into two main 

classes - direct methods and indirect methods. In direct boundary element methods, stresses 

and displacements are calculated directly from the system of equations that is assembled for a 

problem. The indirect approach involves the initial computation of fictitious quantities. 

Stresses and displacements are thereafter calculated from these fictitious quantities. Unlike 

the FEM, however, the BEM does not accommodate heterogeneous material domains or non-

linear material behaviour very readily. 

 

Selection of Numerical Methods for Mining Applications 

The success of these numerical techniques, when applied to mine design, depends on 

the level of effort needed to define or formulate problems in the techniques, their ability to 

produce solutions fairly rapidly, and the flexibility they offer in analysing alternate mine 

layouts reasonably quickly. The application of methods that demand tedious and subjective 
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input such as the manual assignment of strength parameters to elements is limited by these 

constraints. A distinctive characteristic of the modelling of mining excavations is that 

problems involve large domains. As a result, when the FEM is applied to mining problems, 

relatively large regions around excavations have to be divided into elements. This approach 

necessarily leads to large numbers of nodes and elements, which in turn translate into 

considerable computational times for each mining layout or sequence examined. For three-

dimensional problems, meshing becomes a significant issue in the FEM. It is not easily 

performed and subsequently hampers its use in the examination of alternate mining schemes. 

In the BEM, on the other hand, because only problem boundaries are discretized into 

elements, the amount of time needed to generate and check meshes is much reduced, 

especially for three-dimensional problems [1]. The smaller numbers of elements in the BEM 

result in much smaller systems of equations than are found in equivalent FEM 

representations of problems. These attributes of the BEM grant it significant advantages in 

computational speed and flexibility over the FEM in solving the large domain problems of 

mining.  

A most important issue in the choice between the FEM and BEM for mine modelling 

centres on the justification for selecting one or the other method for design. Characteristically 

in mining, data on stress states and other input design parameters are not recorded with great 

precision. A reasonably high degree of uncertainty therefore surrounds input parameters for 

the design of mining stopes and pillars. Also, in typical mine operations stopes need to be 

supported or kept standing only for a few weeks before either being backfilled, or being 

allowed to collapse. For the design of mine pillars therefore, the main purpose of stress 

analysis is to provide insight into the overall physical behaviour of mine pillars, rather than 



 

C-5

into the specifics of the behaviour of individual pillars. The desire of designers in such cases 

is to only obtain results that sufficiently capture the essential character of the problem. Due to 

these factors (the relatively high uncertainty in input data, moderate levels of required stress 

detail, and the short lengths of time over which excavations are required to stand or be 

supported), the use of the FEM is not always recommended for problems of analysing stopes 

and pillars. BEMs, on the other hand, meet the above criteria for mine design by requiring 

less effort in formulating problems and supplying the required amounts of information and 

insight, necessary for design. Despite their difficulties in handling heterogeneous materials, 

they are often more fitting for mine analysis and design because detailed knowledge on the 

material properties needed for the modelling of such material domains is not well established 

in many mining cases. 

 

The Displacement Discontinuity Method (DDM). Advantages and Disadvantages 

The displacement discontinuity method (DDM) is a type of indirect boundary element 

technique. It is well suited for modelling a particular class of mining problems, namely those 

involving thin, slit-like openings, and discontinuities such as faults or joints [2, 3]. Thin, slit-

like openings are commonly encountered in the mining of lenticular ore bodies (seam-type 

deposits) - orebodies that have relatively small thickness compared to their other two 

dimensions. In the analysis of such features, both excavated and unexcavated regions can be 

represented as crack-type elements. 

Since the original papers on the DDM were published, advancements of the method 

have followed two principal directions [2]. In the first direction, researchers have sought for 

improvements to the accuracy of the method by formulating higher-order DD elements [4, 5]. 
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The second direction has mainly pursued enhancements in the practical application of the 

DDM. These efforts have led to the development of several well-known commercial software 

packages [6, 7]. 

Displacement discontinuities can represent relative displacements of crack surfaces 

under the influence of imposed stresses. Because rock discontinuities and the features formed 

during the mining of lenticular orebodies have proportions similar to cracks, when compared 

to problem domains, they can be readily analysed with DDs. Although, generally, the initial 

unknown quantities computed in indirect methods are of a fictitious nature, the unknown 

variables in the DDM represent physical features in the modelling of mining excavations in 

lenticular orebodies, and rock discontinuities. For the mined sections of a lenticular orebody, 

the rides (the relative movements of the roof and floor of excavations parallel to each other) 

and closure (the relative displacement of the roof and floor perpendicular to their surfaces) 

can be treated as the unknown parameters in the DDM [2].  

 The formulation of DDs for pillars (unmined zones) differs from that of elements in 

mined regions of an orebody. To model the behaviour of material in pillars, springs that 

respond to the normal and shear stresses are included in the formulation of DD elements for 

unmined orebody regions. The formulation of DDs for the different zones (i.e. mined or 

unmined) has allowed a number of practical mining problems to be solved. 

Useful as the conventional DD formulation for unmined regions is, it has a major 

shortcoming. It is a well-established fact in rock mechanics that confining stresses 

significantly influence the strength of pillars. Because pillar cores, for example, experience 

much higher confining stresses than pillar regions abutting pillar surfaces, cores have much 

greater bearing capacities. The hourglass shape of failed pillars provides evidence of the 
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phenomenon of confinement in rock material. This important effect of lateral confinement is 

omitted from the formulation of the conventional DD element for unmined material. The 

modelling of confinement in the pillar material is especially important when yielding or post-

peak response of pillars is being analysed. 

Yielding or failure of pillars cannot properly be analysed if confinement in pillars is 

ignored. In recognition of this problem, ad hoc approaches are used to account for 

confinement in the practical application of the DDM to mining problems. One such 

procedure recognises confinement in unmined zones through the use of a family of stress- 

strain curves. In this method, each pillar is discretised into several elements. Elements are 

then assigned stress-strain curves based on their locations in pillars. Those close to pillar 

centres or cores are assigned the highest strength curves, while the ones adjacent to pillar 

surfaces have the lowest curves. Intermediate elements are assigned intermediate curves. 

This approach has been implemented in the commercial software package MULSIM [7]. 

The ad hoc approaches, however, have some principal deficiencies. The procedure 

described above, for example, is tedious and requires considerable experience in order to 

determine the appropriate stress-strain curves to assign to elements in a pillar. This makes the 

technique subjective in nature. In principle, the approach used in MULSIM/NL can be used 

for pillar geometries of varying complexity. However, even slight complications of pillar 

geometries, make the technique difficult to use.  

 

Proposed Enhancement to the DDM  

This paper proposes an enhanced displacement discontinuity method (EDDM) that 

explicitly accounts for the effect of confinement in an objective manner. This enhancement is 
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achieved through the addition of a displacement discontinuity singularity that is 

perpendicular to the normal DD present in the original formulation of DDs. With the addition 

of this new DD, three stress types, instead of two, are now accounted for in the modelling of 

unmined material. The three stress types accounted for now are normal, shear and confining 

stresses. By including confining stress in its formulation, the newly created DD elements can 

accommodate general constitutive relationships, ranging from elastic models to general 

plasticity formulations, to represent pillar material behaviour. An additional advantage of the 

EDDM is that it accounts for confinement in a manner more general than those advocated by 

ad hoc approaches such as the technique used in MULSIM. Instead of using a discrete set of 

strength curves to model the effects of confinement, the EDDM allows strengths at different 

locations in a material to be calculated as functions of the stress states at the locations. It 

therefore offers more than the mere automation of the procedure advocated in MULSIM 

(automation of the process translates into considerable timesaving for mine design) by also 

modelling confinement more realistically.   

 

2. PILLAR BEHAVIOR 

 In room-and-pillar and longwall mining, pillars are generated as ore remnants 

between excavations, to control both the local performance of roof rock and the global 

response of the host rock medium. These pillars have the capability to transmit axial and 

shear loads [8]. 

 The degree of confinement implicitly influences pillar strength. Fig. 1 shows the 

stress-strain behaviour of rock cores under confining stresses. The higher the confining 

stress, the higher are both the peak and residual strengths of rock cores. Irrespective of the 



 

C-9

shape of a pillar, it typically has a confined core. Under normal overburden pressure, 

horizontal in-situ stresses are generated in pillar cores due to the effect of Poisson’s ratio [9, 

10]. The bearing capacity, thus, of a pillar increases with increasing radius of its confined 

core. Pillar deformability is inversely proportional to the area of confined cores [11, 12]. 

From the above discussion on the effects of confinement, it is reasonable to expect 

that in any mathematical formulation of problems involving pillars, significant error is 

introduced in the calculated values of displacements and stresses, if confinement is neglected 

in the analysis. As earlier mentioned, one of the disadvantages of the classical DDM for 

analysis involving pillars is that the formulation involves only two types of singularities that 

account for normal and shear stresses [13]. A lateral discontinuity that can model the effects 

of confinement is not considered. It is to overcome this disadvantage that in the current work 

the effect of confinement is explicitly included in the formulation of elements for the EDDM. 

The incorporation of the missing lateral component leads to the generalisation of ad hoc 

techniques (that compensate for this missing component) used in the practical 

implementation of the DDM to mining problems. In modelling pillars and unmined panels 

with the assumption that the average stress state (i.e. stress averaged over the height of a 

pillar) is representative of pillar response, the new method supplies all components of the 

stress tensor. As a result of these particular attributes of the EDDM, it can use any 

constitutive relationships to model the behaviour of the orebody material. 

 

3. FORMULATION OF THE EHANCED DISPLACEMENT 
    DISCONTINUITY METHOD 

 The original formulation of the displacement discontinuity method (DDM) combined 

the idea of modelling cracks as distributions of dislocations with the method of integral 



 

C-10

equations [14, 15]. The original DD formulation assumed a constant distribution of 

dislocations in modelling crack problems. This formulation was refined by Crawford and 

Curran [4], and later on by Vandamme and Curran [16], using higher-order dislocation 

distributions. These higher-order DD elements required that nodes be located in the interior 

of elements due to mathematical difficulties with integral equations. Despite an increase in 

accuracy with the use of higher-order elements, this approach could not eliminate 

inaccuracies in the modelling of lenticular orebody mining, because of the neglect of 

confining effects in pillars.  

 Confinement can be incorporated into the DDM by deriving DDs starting from the 

basic definition of discontinuities as singularities created by strain nuclei, which are 

volumetric strain densities in three-dimensional problems, and surface strain densities for 

two-dimensional problems. There are two fundamental types of nuclei of strain, *d  - shear 

and normal strain nuclei. These strain nuclei can be distributed such that the necessary 

boundary conditions in crack problems are satisfied [17].  

 

3.1 Conceptual framework 

A displacement discontinuity, as originally defined, is the relative movement between 

the two surfaces of a crack [2]. This definition of a displacement discontinuity can be 

generalised to cover the relative movement between two points on a crack. Because the 

relative movement of opposing points on the surfaces of a crack is uniform along the length 

of the crack, it becomes possible to define the displacement discontinuity as the relative 

movement between surfaces. For the traditional displacement discontinuity element (Fig. 2a), 
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the shear DD is calculated as −+ −= 111 uuD , while the DD in the normal direction is defined 

as −+ −= 222 uuD . 

 By examining the generalised definition of a DD, a third DD, which shall be named 

the lateral or confinement DD, cD , can be defined for an element. It is the relative movement 

between the ends of a DD element as shown on Fig. 2b, and is defined by the relationship 

−+ −= ccc uuD .  

A strain nucleus *d  is the displacement discontinuity per unit volume in a continuum 

[18]. The cumulative or total displacement discontinuity, Ω , in a unit volume can be kept 

constant while the height of the volume is collapsed to zero. This can be written 

mathematically as ∫ ∫==Ω dAddVd * , where d is a new quantity, which shall be termed the 

displacement discontinuity per unit area, or surface displacement discontinuity density.  

When a two-dimensional element of height h and length 2a in a homogeneous, linear 

elastic material is subjected to normal strain nuclei *
2d , distributed throughout the element, 

stresses are induced in the medium. The stresses induced at a point q, sufficiently far from 

the element, by the distribution of strain nuclei can be (closely) replicated by replacing the 

element with a displacement discontinuity density, d, acting along the centreline of the 

element. (It is only when q is sufficiently far from the element that the stresses induced by 

strain nuclei distributed throughout the element will be well approximated by those induced 

by a displacement discontinuity density acting at the centreline of the element.)   

Stresses induced by the strain nuclei distribution *
2d  can be determined using the 

following integral equation: 
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where g  is a Green’s function, and p is a point in the domain of the distribution of strain 

nuclei. Since the Green’s function is continuous in the domain of integration )2/,2/( hh− , 

we can use the mean-value theorem to evaluate equation (1) as 

hpdqpgq oo )(),()( *
2⋅=σ ,                                               (2) 

where op is the point between 2/h−  and 2/h  at which the integrand takes on its average 

value. op  can be approximated to be located at the mid-height (centreline) of the element in 

order to simplify computations. From this point forth, op  shall be simply referred to as p. 

Equivalent stresses at Q can be induced by a displacement discontinuity density d 

placed along the centre line of the element. These stresses can be evaluated from the formula: 

)(),()( 2 pdqpgq ⋅=σ .                                          (3) 

Equating (2) to (3), the strain nucleus distribution can be expressed in terms of the 

displacement discontinuity density as: 

hpdpd /)()( 2
*
2 =                                               (4) 

When the displacement discontinuity density d has a constant variation in the 1x -direction, it 

becomes equal to a displacement discontinuity D acting at the centre of the element (see 

further explanation in the next section).  

Similar to the above development of the normal DD, a shear displacement 

discontinuity, 1D , can be formulated by replacing the normal strain nuclei with nuclei that 

produce shear displacements in the element. 
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We shall now consider another distribution of strain nuclei *
cd  that act on the 

element. We shall label these nuclei as confinement strain nuclei. This new distribution takes 

care of the effect of confinement in the element and produces lateral strain within the 

element. Analogous to the case of normal strain nuclei *
2d , a lateral (or confinement) 

displacement discontinuity density cd  can be obtained from the confinement strain nuclei 

*
cd . They are related through the equation 

hpdpd cc /)()(* =                                              (5) 

Assuming a constant distribution of lateral displacement discontinuity density in the 

1x -direction, the total lateral displacement discontinuity in the element can be evaluated as 

h

a
pddxpdpD c

a

a

cc

2
)()()( 1

* == ∫
+

−

.                                        (6) 

Expression (6) defines the lateral (confinement) displacement discontinuity. This new 

DD will be employed in the development of the enhanced DD element, which will be 

presented in the next section. 

 

3.2 Mathematical formulation 

As mentioned earlier, distributions of shear and normal strain nuclei throughout an 

element of height h and length 2a located at a point p in a homogenous, linear elastic 

material, induce stresses in the continuum. The components of the stress tensor, ijσ , and the 

displacements, iu , that arise at a point q in the continuum due to the strain nuclei can be 

determined from the following equations: 
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h

mkijkij dxdxxpdqpgq
2/

2/

122
**  )()(),( )( ϕσ ,                             (7) 

∫ ∫
+

−

+

−

=
a

a

h

h

mkiki dxdxxpdqphqu
2/

2/

122
**  )()(),( )( ϕ ,                              (8) 

where the repeated indices represent the usual summation convention. For two-dimensional 

problems i, j, k = 1, 2. *
ijkg  and *

ikh  are normal and shear influence functions for stresses and 

displacements, respectively, due to the strain density at p. mϕ  is an interpolation function. It 

can range from the simple square function, 0ϕ , to the Dirac delta function, nϕ  (or δ ) (Fig. 

3).  

We shall select the Dirac delta function for the problem at hand, i.e. δϕ =m , because 

of its unique properties, and shall also look to simplify the resulting expression 

∫
+

−

2/

2/

22
**  )( )(),(

h

h

kijk dxxpdqpg δ  in equation (7). The Dirac delta function has an important 

property that for two functions )(tf  and )(tϕ , both continuous at the origin, the following 

relationship holds [19] 

)0()0()()]()([ ϕδϕ fdttttf =∫
+∞

∞−
                             (9) 

Using the well-known property of the Dirac function: ∫
+∞

∞−
= )0()()( fdtttf δ , equation (9) 

can be written as: 

∫ ∫∫
+∞

∞−

+∞

∞−

+∞

∞−
= dtttdtttfdttttf )()()()()()]()([ δϕδδϕ .           (10) 

The above property, applied to the expression we are trying to simplify, leads to the 

following result: 
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h

h

kijk dxxpddxxqpgdxxpdqpg δδδ .    (11) 

By letting 

)()( )( 2

2/

2/

2
* pddxxpd k

h

h

k =∫
+

−

δ  , and     ),()()( 2

2/

2/

2
* qpgdxxp,q g ijk

h

h

ijk =∫
+

−

δ ,       (12) 

equation (11) can be reduced to the form: 

)(),( )( )(),(
2/

2/

22
** pdqpgdxxpdqpg kijk

h

h

kijk =∫
+

−

δ .                        (13) 

kd is the displacement discontinuity density (where 1d  is the ride or shear DD density, and 

2d  is the closure or normal DD density). Similar operations can be performed to simplify the 

corresponding expression in the equation for computing displacements. 

These mathematical operations lead to the important result that for two-dimensional 

problems, the stresses and displacements in equations (7) and (8) can be calculated as: 

∫
+

−

=
a

a

kijkij dxpdqpgq 1 )(),()(σ                                     (14) 

∫
+

−

=
a

a

kiki dxpdqphqu 1)(),()( .                                    (15) 

ijkg  and ikh  are the normal and shear influence functions for stresses and displacements, 

respectively, due to the displacement discontinuity density kd  at the point p. These influence 

functions are given in [20]. The equations (14) and (15) constitute the formulation of the 

classical displacement discontinuity method. 

We shall now consider the case of a crack divided into N discrete line segments or 

elements. Acting over each of these elements is a DD density. Each element is defined by 
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nodes at which displacement discontinuities (DDs) can be evaluated. By multiplying values 

of the nodal DDs with coefficients of an interpolation function, the DD density variation over 

the length of the crack can be approximated [1, 21]. The approximation of the DD density at 

a point p along the crack, coincident with the nodes of the elements, is represented by the 

expression: 

2,1, )()( == ∑ kDppd e
k

e
ek Φ .                              (16) 

Φ  is an interpolation function identical to the shape functions of elements [1], which is 

evaluated at the nodes e. Substituting eqn. (16) into eqns. (14) and (15) we obtain the 

following equations: 

∑∫=
e a

e
kijkij dxDpqpgq 1e  )(),()( Φσ                              (17) 

∑∫=
e a

e
kiki dxDpqphqu 1e  )(),()( Φ                               (18) 

 If we assume a constant variation of the displacement discontinuity over each 

element, )( peΦ  at node p is equal to unity and zero everywhere else, and eqns. (17) and (18) 

become: 

∑ ∫=
e a

ijk
e
kij dxqpgDq 1 ),()(σ                                   (19) 

∑ ∫=
e a

ik
e
ki dxqphDqu 1 ),()( ,                                  (20) 

In this case the total number of nodes is equal to the number of elements N. Equations (19) 

and (20) form the classical formulation of the constant DDM. 

The formulation of the enhanced displacement discontinuity (EDD) element shall 

begin with strain densities. Revisiting the problem of shear and normal strain nuclei acting at 
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a point in a material, let an additional nucleus, *
cd , orthogonal to the normal strain nucleus be 

included in the problem. Other than direction, this new strain nucleus behaves similarly to the 

normal strain density. The solution of the new problem differs from the original only by the 

addition of an extra term to each of the equations (9) and (10), that accounts for the influence 

of the newly introduced strain density.  

A new displacement discontinuity, cD , which is perpendicular to the normal DD, can 

be formed from the new strain nucleus. Relying on the same approach used in the 

formulation of the classical DDM, the density cd  of this new lateral or confinement 

displacement discontinuity can be determined from the additional strain nucleus *
cd  using the 

relationship 2

2/

2/

2
* )( )()( dxxpdpd

h

h

cc ∫
+

−

= δ . For discretized problems, the DD density at a point 

p along a crack can be approximated by nodal DD values through interpolation functions and 

the equation: 2,1, )()( == ∑ kDppd e
c

e
ec Φ .                                

The stresses and displacements induced at an arbitrary point q in an infinite, 

homogeneous, linear elastic domain with the application of a shear, normal, and lateral 

constant DD can be written as (Fig. 3): 

∑ ∫∑ ∫ +=
e a

ij
e
c

e a

ijk
e
kij dxqpvDdxqpgDq 11  ),( ),()(σ                    (21) 

∑ ∫∑ ∫ +=
e a

i
e
c

e a

ik
e
ki dxqpwDdxqphDqu 11  ),( ),()( .                   (22) 

ijv  and iw  are the confinement displacement discontinuity influence functions for stresses 

and displacements, respectively. Their mathematical definitions are as follow: 
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where 2
2

2
1

2 xxr += ,  and G and ν are the shear modulus and Poisson’s ratio of the material, 

respectively. This newly formulated DD element is what shall be known as the enhanced DD 

element. 

 

4.  SYSTEM OF EQUATIONS FOR EDDM 

 The enhanced DD element can be applied to the problem of determining the total 

stresses and mining-induced displacements in the room-and-pillar or longwall mining of 

lenticular orebodies. As stated earlier, such mining involves slit-type excavations. It is 

necessary to identify the appropriate boundary conditions specific for problems of the type 

described above. 

As a first step in solving the problem of mining lenticular orebodies employing room-

and-pillar or longwall techniques, discrete EDD elements are placed along the centre lines of 

the excavations, pillars and panels. The next step is to determine values of normal, shear and 

confinement DDs that produce total stress and displacement components consistent with the 

boundary conditions of the problem. In general, if the problem involves boundaries that are 
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represented by N elements, M of which are unmined (M<N), induced stresses σ ij
p  and 

displacements p
iu  at element p due to the distribution of normal, shear and confinement DDs 

at element q can be computed as 

q
c

pq
jkik

q
k

pq
ijk

p
ij DKDA δσ +=                                              (28) 

q
c

pq
i

q
k

pq
ik

p
i DLDBu +=  ,                                            (29) 

where i, j, k = 1, 2 and δ ij  is Kronecker’s delta. The influence coefficients pq
ijkA  are obtained 

from the expression 

mj
pq

lmkil
pq

ijk tGtA  =  ,                                              (30) 

where pq
lmkG  is the integral in the element local coordinate system of ),( qpglmk  in equation 

(21), and 








 −
=

θθ
θθ

cossin

sincos
ilt .                                             (31) 

θ  is the angle between the local coordinate system of element q and the global coordinate 

system (Fig. 3). The other coefficients pq
jkK , pq

ikB  and pq
iL  of equations (28) and (29) are 

determined in similar fashion through the integration and transformation of ),( qpvij , 

),( qphik , and ),( qpwi in equations (21) and (22), respectively.  

Eqns. (28) and (29) represent a system of linear algebraic equations which, after 

substitution of the appropriate boundary conditions, can be solved for the unknown 

displacement discontinuities p
kD  and p

cD .  

 In the solution of problems associated with underground excavations, it is convenient 

to separate total stresses σ ij  into two stress components - initial stresses oij )(σ  and induced 
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stresses due to excavation (or simply induced stresses) ')( ijσ . This is written mathematically 

as: 

')()( ijoijij σσσ += .                                                (32) 

 Crouch and Starfield [15] introduced mining-specific boundary conditions into the 

DDM. Naturally, these boundary conditions differ for mined and unmined rock or orebody 

zones. The boundary conditions for the EDDM are the same as those defined by Crouch and 

Starfield. However, because of the inclusion of a third DD, the confinement DD - cD , an 

additional equation is needed to make the system of equations assembled for the EDDM fully 

determinate. This equation is supplied by the constitutive relationship for the seam material 

in unmined zones. Boundary conditions and the assembling of equations for the EDDM shall 

be discussed next. 

Boundary conditions and system of equations for elements in mined zones 

In the mined portions of a seam or orebody, generally, there is no contact between the 

roof and the floor of excavations. The boundary conditions2 for the roof and floor are defined 

by Crouch and Starfield to be: 

o)( 2222 σσ −=                                                            (33) 

o)( 1212 σσ −= ,                                                         (34) 

where o)( 22σ  and o)( 12σ are the initial normal stress and shear stress, respectively. These 

same boundary conditions are applied to EDD elements in mined zones. It is important to 

mention here that the lateral confinement of EDD elements in these zones is zero, because 

those elements have no material in them.  

                                                           
2

12σ  and 22σ  in equations (33) and (34) are equivalent to the stresses denoted in [2] as sσ and nσ . 
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Writing the stresses in the normal and shear directions that arise out of eqn. (21) for 

EDD elements in mined zones, and using the above boundary conditions, the resulting 

system of equations is: 

qpqqpq
o

p DADA 1221222222 )( +=− σ                                      (35) 

qpqqpq
o

p DADA 1121212212 )( +=− σ .                                     (36) 

0=p
cD                                                   (37) 

 

Boundary conditions and system of equations for elements in unmined zones 

 To model material in the unmined zones of a seam, earlier works [2, 6, 7] use an 

elemental displacement discontinuity whose opposite surfaces are connected by springs (Fig. 

4). The stiffness of each spring is chosen so that it has the same properties as the unmined 

material. In the original formulation of DDs, since simple one-dimensional stress-strain 

relations for compression and shear is assumed, only the normal stress, '
22 )(σ , and shear 

stress, '
12 )(σ , induced on an element are computed. These are determined, respectively, as: 

2
s

'
22 )( D

h

Es−=σ                                                 (38) 

1
'

12 )( D
h

G

s

s−=σ ,                                              (39) 

where hs is the thickness of the seam, and Es and Gs are the seam’s Young and shear modulus, 

respectively. Material in unmined portions of a seam is thus modelled as an assemblage of 

springs, independently connecting the opposite surfaces of elements [2].  

For elements in unmined zones, the EDDM accounts for the effect of confinement 

with the introduction of the confinement displacement discontinuity, cD  (Fig. 5). The 



 

C-22

equations for modelling the seam material change as a result of the new DD. If it is assumed 

that the seam material is homogeneous, isotropic, and linearly elastic, its constitutive 

relationship connecting stresses, σ ij , and strains, ijε , can be written as: 

ijskkijsij G εεδλσ  2  +=  ,                                    (40) 

where λ is Lame’s constant defined by the relationship: 

ss G
)21(

2

ν
νλ

−
=   . 

Let strain nuclei acting on thin strips of material with height equal to element height 

hs, be distributed along the length of a crack [17]. The strain nuclei, *
cd , *

1d  and *
2d , 

discussed earlier in the development of the EDD element (see section 3.1 of this paper), can 

be defined as  

1

1
11

*

x

u
dc ∂

∂
== ε                                                (41) 

2

2
22

*
2 x

u
d

∂
∂

== ε                                                (42) 
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==
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1
12

*
1 2

1

x

u

x

u
d ε                                             (43) 

where 11ε , 22ε , and 12ε  are the lateral, normal and shear strain, respectively. The strain nuclei 

distributions 12ε  and 22ε  corresponding to the displacement discontinuity densities 1d and 

2d  for an element of finite height sh , as shown previously in eqns. (3) and (4), can be 

expressed as  

shdd /1
*
112 ==ε                                          (44a) 

shdd /2
*
222 ==ε                                          (44b) 
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The lateral strain in the element, 11ε , due to the lateral displacement discontinuity density can 

be defined as the total lateral deformation cD  over the length of the element 2a and thus can 

be represented as 

s

c

s
c

c

h

d

h

a
d

aa

D
=








==

2

2

1

211ε .                                           (45) 

Subsequently, the following relationship holds true for 11ε : 

scc hdd /*
11 ==ε .                                           (46) 

When the variation of the displacement discontinuity density over the length of an 

element is considered to be constant, the values of ck dd and  at a node equal ck DD and , 

respectively. Therefore, by replacing the strains in the constitutive relationship (34) with the 

quantities 
s

k

h

D
 and 

s

c

h

D
, the normal, lateral and shear stresses induced on an element in an 

unmined zone through the application of DDs are determined to be: 

c
s

s

s

ss D
h

G
D

h

G  2) 2(
)( 2

'
22 +

+
=

λσ                                                (47) 

2
'

11

 2) 2(
)( D

h

G
D

h

G

s

s
c

s

ss +
+

=
λσ                                                (48) 

1
s

'
12  )( D

h

Gs=σ                                                                 (49) 

The use of the constitutive relationship for the seam material has provided the additional 

equation needed to make the system of assembled equations fully determinate. Observation 

of equations (47) and (48) shows that only the confinement and the normal discontinuities are 

coupled. This is consistent with the expected behaviour of pillars under axial loads. 
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 By assuming that initial deformations of unmined elements are zero, and that they 

deform only in response to induced stresses [2], the following system of equations: 

q
c

pqqpqqpqp
c

s

sp

s

ss DKDADAD
h

G
D

h

G
22122122222

 2) 2(
0 ++++

+
=

λ
                (50) 

q
c

pqqpqp

s

sp
c

s

ss DKDAD
h

G
D

h

G
1121122

 2) 2(
0 +++

+
=

λ
                           (51) 

qpqqpqp

s

s DADAD
h

G
1121212210 ++=                                       (52) 

 

can be combined with the system of equations (29) - (31) (i.e. for the mined material), and 

the combined system solved for the unknown DDs. 

 

5. VERIFICATION OF THE ENHANCED DISPLACEMENT  
     DISCONTINUITY METHOD 

The newly formulated method - the EDDM for two-dimensional analysis - was 

verified through the solution of a number of sample problems. The sample problems involved 

excavations of simple geometry. Where closed-form solutions were available, their computed 

stresses were compared with those produced by the EDDM. In cases where there were no 

closed-form or analytical solutions for the examples, stresses computed from the EDDM 

were compared with those calculated from other numerical procedures such as the FEM and 

the coupled FEM/BEM. These comparisons helped to establish the correctness of the results 

produced by the EDDM. 

 

 Example 1. Multiple Crack Problem 
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 The first example solves for the stresses induced in an elastic material when an 

infinite row of equidistant collinear cracks of equal length in the material are subjected to 

internal unit pressures (Fig. 6). Each crack is discretised with 20 equal-sized EDD elements. 

The distance between the cracks (pillar width) is chosen to be equal to the length of the 

cracks, and is similarly discretised as the cracks. Although the material between the cracks 

ordinarily would not have been discretized for a homogeneous domain in either the EDDM 

or the DDM, doing so allows one to obtain an idea of the accuracy of the methods, when the 

material between cracks is different from that of the domain. In Fig. 6, the variation of the 

normalised normal displacement discontinuity over a crack width computed by the new 

formulation is compared with that obtained from the closed-form solution for the normal DD 

[22]. For this test case, the values of the normalised normal DD produced by the EDDM are 

in good agreement with the values from the closed-form solution. The results of the EDDM 

are better than the solution obtained with the DDM using the same mesh (Fig. 6). The error 

for the EDDM was 3.43%, while that for the DDM was 4.64%. The EDDM has increased 

accuracy because its representation of pillars is more realistic. The accuracy of the results of 

the EDDM could be improved by increasing the number of elements used to model cracks 

and inter-crack spaces. 

 

Example 2. Analysis of Pillar and Stope 

The model of a pillar between two stopes presented by Brady and Wassyng [23] is 

analysed with the EDDM in the second example. The geometry of the problem is shown in 

Fig. 7. The pillar and each of the stopes were modelled with 12 discrete EDD elements. Since 

there are no analytical solutions for this problem, stresses computed in the pillar and around 
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the stopes by the EDDM were verified by comparing them to those generated from the 

coupled FEM/BEM developed by Brady and Wassyng [23] (used in checking only stresses in 

the pillar), and to calculated stresses from Phase2, an FE software program developed in the 

Rock Engineering Group of the University of Toronto [24]. In the finite element-boundary 

element coupling technique presented by Brady and Wassyng [23], the boundaries of the 

stopes (excavations) were modelled with boundary elements while a finite element mesh was 

used for the pillar. Phase
2
 wholly employs the finite element method.  

 Figure 8 contains plots of the major and minor stresses in the pillar computed by the 

three methods. From the results, it can be seen that all three methods give similar solutions to 

the problem. (The stress values at the ends of the pillar are different for the coupled 

FEM/BEM technique because a finer mesh is needed in that region for the technique.) Values 

of the normal stresses in the panels for the EDDM and FEM are illustrated in Fig. 9. The plot 

in Fig. 9 again shows that the EDDM gives results that are consistent with those obtained 

from the FEM. In addition, it must be noted that a very fine finite element mesh was used to 

obtain the comparable Phase
2 results.  

 These comparisons demonstrate that the EDDM, as well as its additional capability of 

including confining effects (which are very important when pillar yielding is modelled), can 

provide accurate results when used for elastic analysis.  

 

6. FORMULATION OF THE THREE-DIMENSIONAL EDDM 

 In room-and-pillar mining, the modelling of pillar behaviour with two-dimensional 

analysis is inadequate, because plane strain conditions are violated. This violation occurs due 
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to the three-dimensional nature of stress states in pillars [11]. In order to achieve a realistic 

analysis of the behaviour of pillars, therefore, a three-dimensional analysis is often required. 

 A three-dimensional formulation of the EDDM can be readily developed through 

straightforward extension of the two-dimensional model that was presented in section 3. The 

equations (3) to (16), used in the development of the lateral DD, can be applied to three-

dimensional analysis by merely letting the indices i, j and k take integer values from 1 to 3 

instead of from 1 to 2. In the conventional three-dimensional DDM, each element has three 

DDs - two shear (ride) components and one normal (closure) component (Fig. 10).  

 Similar to the development of the two-dimensional EDDM, two lateral strain 

densities are added to the formulation of the three-dimensional DD element. These lateral 

strain densities, as was the case in two dimensions, have properties similar to that of the 

normal strain nucleus except for direction (see section 3). In direction, they are perpendicular 

to the normal strain density. They represent an averaged confinement value that acts along 

the axes perpendicular to the normal DD. 

 The three-dimensional EDDM is developed in a fashion analogous to the two-

dimensional formulation. The influence functions of the confinement (lateral) DD in 

equations (15) and (16) change for the three-dimensional case. The influence functions of the 

lateral DD (which is formed from the two lateral singularities) for three-dimensional analysis 

are as follow: 
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 Boundary conditions for three-dimensional EDD elements in mined and unmined 

zones of orebodies do not differ from the boundary conditions of their two-dimensional 

counterparts. The assumptions underlying these boundary conditions remain the same for the 

three-dimensional case. However, the presence of two shear components (ride components) 

in three-dimensional analysis (Fig. 10) instead of one leads to an additional equation for each 

of the mining zones. The systems of equations for the three-dimensional EDDM assembled 

for elements in mined and unmined orebody zones are as follow:  

System of Equations for EDD elements in Mined Zones 

qpqqpqqpq
o

p DADADA 33332332133133 )( ++=− σ                                      (62) 

qpqqpqqpq
o

p DADADA 33232322132132 )( +++=− σ                                   (63) 
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qpqqpqqpq
o

p DADADA 33132312131131 )( ++=− σ                                        (64)  

0=p
cD                                                   (65)     

where D1 and D2 are shear displacement discontinuities, and the pq
ijkA ’s coefficients 

calculated from the influence functions. o
p )( 33σ  is the normal initial stress at the locale of an 

element, while o
p )( 33σ  and o

p )( 33σ are the initial shear stresses at the same point. 

 

System of Equations for EDD elements in Unmined Zones 
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s

s DADADAD
h

G
33232322132120 +++=                                       (69) 

where p
cD  is the lateral DD of an element, and Gs and λs are material constants. hs is the 

thickness of a seam (element). All the other quantities are the same as those define above. 

 With the systems of equations defined by (62) to (65) and (66) to (69), one can solve 

the problem of determining stresses and displacements in three dimensions induced by the 

mining of lenticular orebodies. It must be mentioned again that these equations are valid only 

for homogeneous, isotropic, linear, elastic seam material. However, the method allows 

analogous equations to be developed for other constitutive models, such as full plasticity 

models.  
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7. EXAMPLES OF THREE-DIMENSIONAL PILLAR ANALYSIS    
     WITH THE EDDM 
  

 Two examples of the application of the three-dimensional EDDM are considered. 

 

Example 1. Three-dimensional analysis of long pillar and stope  

 Underlying the solution of the two-dimensional example involving a pillar and two 

stopes given in [23], and solved earlier on in this paper, is the assumption of plane-strain 

conditions. These conditions can be simulated in the central cross-section of the three-

dimensional problem shown in Fig. 11, if the rooms and pillar are made sufficiently long. 

The tabular orebody problem illustrated in Fig. 11 was analysed with the three-dimensional 

EDDM. The configuration of discrete EDD elements used in modelling the problem is shown 

in Fig. 11b. For its results to be correct, quantities such as stresses, for example, calculated 

around the excavations and in the pillar in the central cross-sectional plane should match 

those obtained from the two-dimensional analysis. Because the two-dimensional EDDM was 

verified to correctly solve the planar problem, its results were used in validating those of the 

three-dimensional method. Another reason for the choice of the two-dimensional EDDM for 

validation purposes lay in the fact that since its results had been already shown to be 

accurate, DDs instead of stresses or displacements could be compared. 

 The normalised confinement displacement discontinuity, which is the ratio of the 

confinement DD to the maximum value of this DD, formed the basis for comparing the 

results of the two-dimensional and three-dimensional EDDMs. This ratio provides a good 

indication of the degree of confinement existing at a point in a material.  
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 The variations of the normalised confinement DD across the width of the pillar for 

both the two- and three-dimensional EDDMs were plotted in Fig. 12. The plots indicate that 

the results of the two methods are in very good agreement. 

 

Example 2. Three-dimensional analysis of a square pillar in a room  

 Confinement controls the overall behaviour of pillars. A detailed study of the failure 

process in pillars [9], showed that failure commenced on pillar boundaries and migrated 

towards the centres of the pillar, where the cores had not reached their full load-bearing 

capacities. The observed increase in the strength of material from pillar boundaries towards 

the core is attributable to the effects of confinement.  

 It was mentioned earlier in this paper that previous approaches used in DD methods 

relied on manual approaches of accounting for the influence of confinement. In the technique 

employed in the commercial software package MULSIM, for example, users have to 

manually assign strengths to different elements according to the closeness of elements to 

pillar boundaries. Figure 13 shows a typical scheme for assigning stress-strain curves to the 

elements of a square pillar in a room-and-pillar mining scheme [25]. Elements used in 

discretizing the square pillar are designated with letters from A to D in Fig. 13 in accordance 

to the extents to which they experience confinement. Strength curves that model the different 

element types based on the degree of confinement are shown on the stress-strain diagram. 

The element at the core of the pillar, being in the most confined region, is assigned the 

highest strength curve (curve A). The normalised confinement DD adequately captures the 

degree of confinement in a pillar. Strength curves can be defined at a point in a pillar when 

the degree of confinement or confining stress at the point is known.  
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 For the three-dimensional EDDM to be considered successful it must correctly 

capture the variation of the degree of confinement in pillars. An example of a single pillar in 

a room is depicted in Fig. 14. Fig. 15 shows the contours of equal normalised confinement 

DDs calculated for the square pillar. Due to the inclusion of the lateral singularity in the 

EDDM, it was able to effectively model confinement in the square pillar.   

8. CONCLUSIONS 

 In a mine design environment in general, it is important to have a numerical tool that 

solves problems of calculating stresses and displacements around excavations and rock 

structures speedily and accurately, because of the need to quickly assess alternate mine 

layouts. The mining of lenticular orebodies using room-and-pillar methods creates conditions 

that require that the effect of confinement in pillars be modelled. Knowledge of confinement 

is necessary in pillar analysis for the reason that it significantly influences pillar behaviour 

and strength. Although numerical techniques such as the FEM and the FDM can address one 

or the other of the requirements, none of them is able to address the issues of speed and 

confinement modelling simultaneously.  

 Prior to the work reported in this paper, ad hoc approaches were used in the practical 

application of the DDM to include confinement effects in pillar analysis. The ad hoc methods 

including the approach employed in the commercial software program MULSIM, used 

manual means to assign different strength curves to DD elements based on the degree of 

confinement they were expected to experience. The research work in this paper was initiated 

in an effort to develop a numerical technique that exploited the computational speed of the 

DDM, and yet accurately modelled confinement. A new displacement discontinuity method 

referred to as the enhanced displacement discontinuity method (EDDM) was subsequently 
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developed. The essential difference between the EDDM and the earlier DDM is the 

introduction of an extra centre of dilation singularity in the formulation of DD elements.  

 The new displacement discontinuity density was developed from a strain nucleus. 

From the effects of strain nuclei applied at a point in an elastic medium, it became possible to 

develop a new lateral (confinement) DD that effectively modelled confinement in pillar 

material. With the introduction of the lateral DD into the original DD element, the enhanced 

displacement discontinuity (EDD) element was created. Systems of equations for EDD 

elements in mined and unmined rock zones were developed with the consideration of 

appropriate boundary conditions. Both two-dimensional and three-dimensional models of the 

method were formulated in the paper. 

 The EDDM has a principal advantage over the classical DDM because of its ability to 

model different types of material behaviour. Whereas the DDM, due to its inability to use all 

components of the stress tensor, is limited in its application, the EDDM can accommodate 

general material constitutive equations including plasticity models. By explicitly accounting 

for confinement in its formulation, the new procedure generalises and automates the process 

of assigning strength curves to elements. As a result, it simplifies data preparation by 

eliminating the need for any artificial means for accounting for the effects of confining 

stresses.  

Sample problems involving simple boundary and pillar geometries were solved in the 

paper to validate the performance of the EDDM. The results obtained from the EDDM 

compared well with analytical solutions for problems for which they were available, and 

showed good agreement with the results of other numerical techniques that have been 

established to perform well. 
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 Although the examples used in validating the new formulation involved problems of 

simply geometry, the procedure is by no means limited to such cases. The EDDM presented 

in the paper was formulated using constant DD elements. However, higher-order DD 

elements can be implemented with a few and relatively simple modifications. Also, owing to 

the fact that the newly formulated method uses all the components of stress and strain tensors 

for material, it can accommodate a variety of constitutive models including non-linear 

material models. This particular feature of the EDDM, combined with its ability to account 

for confinement, assumes greater attractiveness and importance in the analysis of failing or 

yielding pillars.   

 In order to simplify the development of the EDDM in this paper, only constant EDD 

elements were formulated. However, it is possible to develop higher-order EDD elements 

using the node-centric element approach outlined by Vijaykumar, Curran and Yacoub [26]. A 

node-centric formulation would allow the variation of the EDD along the lengths of adjacent 

elements to be continuous. A node-centric EDDM would have better accuracy compared to 

the constant EDD approach, and would allow continuous DD variation between adjacent 

elements. 
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Fig. 1: Stress-strain behaviour of sandstone in triaxial compression 

for various confining pressures [10] 
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(a) Traditional DD element 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) New DD element 
 

Fig. 2: Definition of displacement discontinuity   
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Fig. 4: Notations 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Boundary conditions for mined and unmined elements in a seam 
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Fig. 6: Normal displacement discontinuity variation of central crack for a row of 

collinear cracks under unit internal pressure (G=100 MPa) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Pillar and stopes geometry description 
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Fig. 9: Normal stress variation along the panel 

 

 
 
 
 
 
 
 
            

 
 

 
 

Fig. 10: Components of the three-dimensional displacement discontinuity  
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(a) orebody geometry 

 

(b) discretization of the orebody 

Fig. 11: Geometry and discretization of the orebody 
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 Fig. 12: Variation of the normalised confinement DD across the pillar width 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Assignment of material properties to different elements [24] 
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Fig. 14: Geometry and discretization of problem involving a square pillar and a room 

 

Fig. 15: Contours of normalised confinement DD for the pillar 
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PAPER IV 
 

Simulation of progressive failure procedure using the 
Enhanced Displacement Discontinuity Method  

 
T. E. Yacoub and J. H. Curran 

Rock Engineering Group, Dept. of Civil Engineering 
University of Toronto 

Toronto, Ontario 
Canada, M5S 1A4 

 

Abstract 

In the mining of lenticular orebodies, the ability to model the post-peak behaviour of pillars 

is of critical importance since local pillar collapse can lead to catastrophic failure on a mine-

wide scale. This paper models the response of yielding pillars is using the progressive failure 

approach coupled with the enhanced displacement discontinuity method (EDDM). The 

EDDM, unlike the DDM, explicitly considers the effect of confinement. The progressive 

failure procedure is an iterative technique that employs a quasi-elastic approach to account 

for the residual strength of rock material after initial failure. The extent of pillar yielding is 

evaluated using the Mohr-Coulomb failure criterion. The potential benefits of using 

progressive failure with EDDM are demonstrated through two- and three-dimensional 

examples. These examples were chosen to illustrate the flexibility, robustness and power of 

the proposed method for simulating pillar failure on a mine-wide scale. 

 

Keywords: Enhanced Displacement Discontinuity Method (EDDM); Progressive Failure; Pillar   

                     confinement effect; Post-failure analysis. 
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