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1. INTRODUCTION 

The complex and wide-ranging behaviours of 
geological materials, the great variability in material 
properties, and the intricacies of numerical analysis 
methods, such as the finite element and finite 
difference methods, often combine to make the 
modelling of geotechnical problems a challenge. An 
important and difficult aspect of such modelling is 
the specification of constitutive models that best 
describe the stress-strain behaviour of soil and rock 
materials.  

Full description of the constitutive behaviour of a 
material requires specification of deformation and 
strength parameters.  Upon initial loading a material 
responds elastically; deformations are reversible 
when loading is removed. After a certain level of 
stress is attained plastic deformations (permanent 
deformations that are not reversed when loading is 
removed) begin to occur. In general, after yielding, 
deformations occur at significantly reduced material 
stiffness.  

From the authors’ interactions with various users of 
the finite element program Phase2, it appears to 
them that many geotechnical engineers pay more 
attention to the specification of the strength 
component of constitutive behaviour than to the 
deformation aspect. This may stem from the fact 

that it is generally easier to estimate or measure the 
strength envelopes of soil and rock masses than it is 
to measure their in situ deformation properties. 
Notwithstanding, in numerical models of 
geotechnical problems engineers must endeavour to 
specify deformations properties (primarily values of 
Young’s modulus) characteristic of the materials. 
Failure to do so often leads to ‘surprises’, especially 
in problems involving more than one material. The 
ratios of the different Young’s moduli in a multiple 
material model can significantly alter overall model 
response, including induced failure mechanisms. 

ABSTRACT: In numerical analyses involving multiple geological materials, predicted stress distributions, deformation patterns, 
and failure mechanisms depend on the ratios of the Young’s moduli for the different materials, a detailed often overlooked. Using 
two simple examples this paper demonstrates the wide range of behaviours that can accompany different Young’s modulus ratios 
in problems involving multiple materials. 

This paper will demonstrate the impact of the ratios 
of material stiffness (Young’s modulus) on 
behaviour, using two problems involving linear 
elastic materials. These examples, although quite 
simple, will underline the need to pay attention to 
material stiffness if one desires to properly capture 
the physics of geotechnical problems. 

2. CLASSICAL PROBLEMS 

The first problem, shown on Figure 1, consists of an 
internally pressurized lined circular tunnel in an 
infinite linear elastic continuum. The lining of the 
excavation is also assumed to have linear elastic 
properties. The second problem, drawn on Figure 2, 
comprises a lined excavation surrounded by a thin 
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elastic layer, both of which are situated in an 
infinite linear elastic continuum. 

Depending on the Young’s moduli ascribed to the 
different materials, these examples can exhibit a 
wide range of behaviours bracketed by two classical 
problems: the problem of a pressurized infinitely 
long thin-walled cylinder, and that of a pressurized 
cylindrical hole in an elastic continuum. These 
classical problems, which are briefly described next, 
both have closed-form (analytical) solutions. 

 

 
Fig. 1. Lined circular hole in an infinite, linear elastic 
continuum. In subsequent modelling described below, 
pressure will be applied on the liner from within the 
excavation. 

 
Fig. 2. Lined circular hole surrounded by a thin layer in an 
infinite, linear elastic continuum. In subsequent modelling 
described below, the thin layer will be pressurized. 

 

2.1. Classical problem #1: pressurized thin-walled 
cylinder 

Figure 3 below shows the classical problem of an 
internally pressurized (infinitely long) thin-walled 
cylinder of radius, R, and thickness, t. (A cylinder is 
considered thin-walled when the ratio .) The 
cylinder material is assumed to have linear elastic 

properties, while a pressure p is assumed to act from 
within the cylinder. 
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Fig. 3. Classical problem of an internally pressurized thin-
walled cylinder consisting of linear elastic material. Liner

 

The hoop stress (stress along the circumferential 
direction) induced by the internal pressure is given 
by the following closed-form expression: 

 a
pR
t

σ = . (1) 

 

2.2. Classical problem #2: pressurized circular 
hole in infinite elastic continuum Infinite, 
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linear 
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Figure 4 describes the problem of an internal 
pressure, p, acting on the boundary of a circular 
hole in infinite elastic continuum. The solution to 
this problem can be obtained from Lamé’s theory 
for thick cylinders by letting the external diameter 
go to infinity [1]. The circumferential stress, θσ ,  
and the radial stress,  rσ , in the continuum can be 
determined from the equation 
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Fig. 4. Classical problem of an internally pressurized 
cylindrical hole in an infinite, linear elastic continuum. 

 

3. FINITE ELEMENT MODELLING OF LINED 
CYLINDER IN INFINITE ELASTIC 
CONTINUUM 

A specific instance of the first problem (described 
by Fig. 1) was modelled with Phase2, a two-
dimensional finite element program [2], in which 
the lined excavation had a radius R = 10 m. To 
approximate an infinite boundary, the external 
boundary of the finite element model was set to six 
times the excavation radius. An internal pressure p 
= 100 kPa was assumed to act on the liner, which 
was assumed to have a thickness t = 0.1 m. The 
continuum had no initial stresses. The liner and 
continuum were both assumed linear elastic. The 
continuum was modelled with 6-noded triangular 
elements, while the liner was modelled with 
Timoshenko beam elements. 

Three different cases of the problem were 
considered: three different Young’s modulus values 
were assigned to the continuum. In all the cases a 
constant Young’s modulus, E, of 30,000,000 kPa 
was maintained for the liner.  

We will now discuss the resulting behaviours as the 
continuum stiffness was changed.  

3.1. Case I 
First, the continuum was assigned a very small 
Young’s modulus E = 1e-5 kPa. The combination of 
the small stiffness and no initial stresses made the 
continuum behave like an unpressurized fluid. This 
specific model is expected to exhibit the behaviour 
of the first classical problem (pressurized thin-
walled liner), and would therefore produce a liner 

hoop stress very close to the theoretical value of -

10,000 kPa 100 10
0.1

kPa− ⋅⎛=⎜
⎝ ⎠

⎞
⎟ , predicted by equation 

(1). 
R p The finite element model predicted zero stresses in 

the continuum, and a liner axial force of -996.91kN, 
which translates into a hoop tensile stress of  
-9,969.1 kPa, a value that closely approximates the 
theoretical solution. 

3.2. Case II 
Next, the continuum was assigned a stiffness of E = 
200,000 kPa. This time the stresses in the host 
material adjacent to the liner were significant (90.23 
kPa), and the axial force in the liner has dropped to 
-615.58 kN. This behaviour is as expected since the 
non-negligible stiffness of the continuum enables to 
carry some of the applied loading, and as a result 
relieve the liner of some of the stresses. 

3.3. Case III 
In the third case we assign the continuum a stiffness 
E = 1e30 kPa. The computed stresses in the on the 
boundary of the continuum adjacent to the liner 
were 100 kPa, while the axial force in the liner was 
-3.5e-22 kPa, a practically zero value. Because the 
stiffness of the continuum far exceeds that of the 
liner, the liner does not carry any loads because it 
hardly deforms, and thus the stresses are in a sense 
directly transferred to the continuum. This 
behaviour is very similar to that of the pressurized 
hole in a continuum problem. A plot of the 
maximum principal stresses in the continuum (Fig. 
5) shows that the stresses computed from the finite 
element analysis closely approximate the theoretical 
values obtained from the analytical solution 
equation (2).  

 
Fig. 5. Comparison of analytical solution for stresses to finite 
element results. 
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4. FINITE ELEMENT MODELLING OF LINED 
CYLINDER SURROUNDED BY PRESSURIZED 
THIN LAYER IN ELASTIC CONTINUUM 

A finite element model of the second problem, 
described in Fig. 2, was obtained by including a thin 
material layer between the liner and the continuum. 
In addition the internal pressure acting on the 
excavation was replaced by a pressure acting in the 
thin layer. This pressure was simulated with 
tractions of equal magnitude (100 kN/m) but 
opposite sign applied to the boundaries of the thin 
layer. This is shown in Fig. 6. 

 
Fig. 6. Finite element model of pressurized thin material layer 
around a cylinder. The pressure is simulated with tractions of 
equal magnitude but opposite sign acting on the inner and 
outer boundaries of the thin layer. 

4.1. Case I 
In the first case of this problem, the thin layer was 
assigned a very small stiffness E = 1e-5 kPa, while 
the host material was given a very high stiffness  
E = 2e30 kPa. This modelled the physical situation 
of a pressurized fluid acting between a rigid block 
(the infinite continuum) and the liner.  

It was expected that the stresses induced in the liner 
would be the same as those calculated for the case 
of the pressurized thin-walled cylinder except that 
the hoop stresses in the liner should be compressive 
instead of tensile. It was also expected that the 
stresses in the continuum would be distributed 
according to the classical solution of an internally 
pressurized hole in an elastic continuum. 

Computation of the finite element model for the 
case produced a liner axial force of 994.52 kPa, 

which is close to the theoretical value of 1000 kN 
(corresponding to a stress of 10,000 kPa).  

The distribution of major principal stresses in the 
continuum was very similar to that shown on Fig. 5, 
results that closely approximate the classical 
solution for the pressurized circular hole problem.  

4.2. Case II 
Next the thin layer was given a stiffness of 20,000 
kPa and the infinite continuum a very small 
stiffness E = 1e-5 kPa.  In this case, it is expected 
that the absence of confinement from the host 
material would cause the thin layer to inflate like a 
balloon. Since the liner is attached to this inflated 
balloon, we would expect it to have some induced 
tensile stresses.  

As expected there were zero stresses in the host 
material, non-trivial stresses (ranging from 26.5 to 
29.85 kPa) in the thin layer, and non-negligible 
tensile forces (-36.44 kN) in the liner. Examination 
of the total displacements of the thin layer revealed 
its expansion. Its outer boundary moved by 
approximately 2.4e-3 m. 

4.3. Case III 
Lastly we assigned both the host material and the 
thin layer equal stiffness E = 20,000 kPa. Due to the 
confinement provided by the host material, we 
expect compressive stresses in the host material and 
liner, while the pressurized thin layer should have 
tensile stresses.  

The finite element results showed that this time the 
host material, thin layer and liner all picked up 
loads. The major principal stress on the boundary of 
the host continuum adjacent to the thin layer had a 
stress of -28.1 kPa, and the axial force in the liner 
was 0.018 kN. The stresses in the thin layer ranged 
from -25 to -28 kPa. The behaviour is as expected. 

5. SUMMARY 

The examples analyzed demonstrate that even in the 
elastic analysis of two simple multi-material 
problems, a wide range of behaviour could be 
obtained by varying the relative stiffnesses of 
materials. In our two examples the models produced 
behaviours bracketed by two very different classical 
problems.  

The insights revealed by these simple problems are 
not trivial. They demonstrate that in practical 
analysis, use of unrepresentative material moduli 
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can cause true behaviour to be completely missed. 
This is especially important in the design and 
analysis of support elements such as tunnel liners. 
Depending on the extents to which material 
surrounding an excavation is softened by 
construction procedures such as blasting, support 
thought to be adequate might actually get 
overloaded and fail. In other situations (for example 
in deep surface excavations), inappropriately 
specified Young’s moduli may result in anticipated 
failure mechanisms being quite differ from true 
behaviour. This may in turn lead to inadequate 
support design.  

Computer modelling can be an effective facilitator, 
provided we use it in ways that strengthen the desire 
to seek deeper understanding. By paying more 
attention to the different input parameters required 
in an analysis, including deformation 
characteristics, we can better anticipate the range of 
behaviours of our geotechnical excavations and 
structures. Such insights will improve our 
engineering decision making. 
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