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ABSTRACT 
A new method for calculating three-dimensional stresses under foundations and footings is presented.  The method, 
called the method of images, allows for accurate calculation of stresses in layered materials where large stiffness 
contrasts exist between layers.  Examples are shown comparing stress results from the method of images to results from 
the Boussinesq method and three-dimensional finite element models.  It is shown that the new method is more accurate 
than the Boussinesq method and much simpler than the finite element method. 
  
RÉSUMÉ 
Une nouvelle méthode pour calculer des efforts tridimensionnels sous des bases et des poses est présentée. La 
méthode, appelée la méthode d'images, tient compte du calcul précis des efforts en matériaux posés où les grands 
contrastes de rigidité existent entre les couches. Des exemples sont montrés comparant des résultats d'effort de la 
méthode d'images aux résultats de la méthode de Boussinesq et des modèles finis tridimensionnels d'élément. On lui 
montre que la nouvelle méthode est plus précise que la méthode de Boussinesq et beaucoup plus simple que la 
méthode d'élément fini. 
 
 
 
1 INTRODUCTION 
 
Estimation of foundation settlement (immediate, 
consolidation and creep) depends strongly on the 
calculated stresses in the underlying soil mass due to 
footing pressure.  Several different techniques are 
commonly used in engineering practice to compute these 
stresses, including the 2:1 method, the Boussinesq 
method and the Westergaard equations.  Of these, the 
Boussinesq method is probably the most popular. 
 
The Boussinesq method uses elastic theory to calculate 
stress distribution in an elastic half space due to a point 
load.  By integrating point loads over a specified area, the 
stress distribution in an elastic half space can be found 
under foundations and footings of different shapes.  The 
main disadvantage of the Boussinesq method is that it 
assumes a homogeneous material.  In general this will not 
be the case for geotechnical engineering endeavours in 
which the soil is usually stratified.  For soil layers with high 
stiffness contrasts, the Boussinesq solution can produce 
large errors in stress. 
 
The Westergaard equations (1938) are thought to provide 
better results for layered media, however the solution 
essentially smears out the effect of the different layers so 
that large errors will still occur for a finite number of layers 
with high stiffness contrasts. 
 
In theory, accurate stresses can be calculated for any 
geometry using numerical methods such as three-

dimensional finite element or finite difference analysis. 
The difficulties however with these methods of solution 
are that they: 

• Require significant computing resources not (as 
yet) routinely available to practitioners 

• Substantial user expertise in ensuring adequate 
three-dimensional meshes. 

Generally, three-dimensional meshing is quite challenging. 
It becomes even more challenging in problems involving 
thin seams (layers) of material. If thin layers are not 
properly discretized into elements, their elements will have 
poor aspect ratios, which in turn compromise the accuracy 
of results. In addition, if thin layers are not discretized with 
sufficient numbers of elements in the direction of their 
thickness, then rapid stress gradients in this direction may 
be missed. This aspect of finite element and finite 
difference modeling places onus on users to ensure 
adequate meshes.  
 
In this paper, a new 3D stress calculation method is 
proposed that is simple to apply, yet gives accurate 
results for multi-layered systems.  The method is briefly 
described in the next section and then the rest of the 
paper outlines various examples and compares the results 
from the new method to results obtained using the 
Boussinesq method and the finite element method. 
 
2 METHOD OF IMAGES 
 
About twenty years ago, a theoretical method was 
developed for solving for the stresses and displacements 



in two bonded elastic half-spaces due to the application of 
a point load (Vijayakumar, 1987). Based on what is known 
as the method of images, the method used reflection and 
transmission matrices to calculate the required stresses 
and displacements.  This technique has recently been 
developed into a, fast, three-dimensional computational 
algorithm for calculating stresses due to foundation loads 
(Rocscience, 2007).  As part of this formulation, a robust 
integration scheme (Vijayakumar et al., 2001) had to be 
employed to enable the new computational algorithm to 
produce accurate stress results for all loading 
configurations. 
 
Unlike the finite element method, the method of images is 
meshless and only requires integration of loads over their 
area(s) of application.  For this reason it is much faster 
and easier to use than the finite element method.  
However, as will be shown in the subsequent sections, the 
method of images still produces accurate stress results for 
layered media. 
 
3 EXAMPLE: STRESS UNDER A CIRCULAR 

FOOTING 
 
3.1 Problem geometry 
 
The vertical stress under a circular footing is calculated for 
a two layer system as shown in Figure 1, where: 
 a = radius of the circular load 
 h = thickness of the top layer 
 q = applied distributed load 
 E1, ν1 = Young’s modulus and Poisson’s ratio in 
the top layer 
 E2, ν2 = Young’s modulus and Poisson’s ratio in 
the second layer. 
 
The load is assumed to be flexible such that displacement 
may vary across the extent of the load.  The second layer 
is assumed to be infinitely thick.  The vertical coordinate, 
z, is positive downwards.  The radial coordinate, r, 
extends from the centre of the load. 
 
One example will be described in detail here.  This 
example uses the following values: 
 a = 0.5 m 
 h = 2.5 m (h/a = 5) 
 q = 1 kPa 
 ν1 = ν2 = 0.2 
 E1 / E2 = variable 
 

 
Figure 1.  Geometry of a circular load test. 

 
 
 
3.2 Solution methods 
 
3.2.1  Boussinesq solution 
 
The Boussinesq method uses the theory of elasticity to 
calculate the stress under a point load in a homogeneous, 
semi-infinite half space (see, for example, Bowles, 1996).  
Useful solutions for stresses under different footing 
shapes can be obtained by integrating over the area of the 
footing.  For example, the stress directly under the centre 
of a circular load is given by: 
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Where z is the depth (positive down). 
 
3.2.2  Finite element solution 
 
The finite element solution is computed using Phase2 
(Rocscience, 2005).  Eight-noded quadrilateral elements 
are used in an axisymmetric simulation.  Boundaries are 
placed far from the load to simulate a half space of infinite 
horizontal and vertical extent (see Figure 2). 
 

 
 
Figure 2.  The finite element model for the circular loading 
test on two layers. The area within the dotted square on 
the left plot is shown close-up in the right plot. The model 
is axisymmetric with the left edge the axis of symmetry. 
 
 
3.2.3  Method of images 
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The method of images solution is obtained from Settle3D 
(Rocscience, 2007).  Unlike the finite element method, it is 
not necessary to discretize the entire region.  Results are 
only calculated at points of interest, in this case along a 
vertical string descending from the centre of the load.  The 
model is shown in Figure 3. 
 



 
Figure 3.  The model used to calculate stresses with the 
method of images 
 
 
3.3 Results  
 
A series of tests were performed varying the stiffness 
contrast between the two layers.  The ratio E1 / E2 was 
varied between 0.001 to 1000 and the vertical stress was 
calculated using the three different methods at points on a 
vertical line descending from the centre of the load (r=0). 
 
An example plot showing the vertical stress versus depth 
in shown in Figure 4 for the case of E1 / E2 = 100.  As 
expected, the stress diminishes rapidly with distance from 
the surface.  Because the top layer is much stiffer than the 
bottom layer, most of the stress is accommodated in the 
top layer and the stress in the bottom layer (z > 2.5) is 
close to 0.  Both the finite element method and the 
method of images exhibit this behaviour, but the 
Boussinesq solution exhibits stresses that are noticeably 
too large.  This is because the Boussinesq solution 
assumes a homogeneous material and does not account 
for the stiffness contrast between layers. 
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Figure 4.  Vertical stress versus depth below the centre of 
the circular load (q = 1 kPa) calculated using three 
different methods.  The top layer is 100× stiffer than the 
bottom layer. 
 
 

Figure 5 shows the vertical stress at r=0, z=h for differing 
stiffness contrasts between the layers.  As expected, all 
methods agree when E1/E2 = 1 (homogeneous material).  
As the stiffness contrast changes, the finite element 
solution and the method of images both exhibit changes in 
stress.  However the Boussinesq solution is insensitive to 
layer stiffness and is therefore highly erroneous for large 
stiffness contrasts.  It underestimates the stress when a 
compliant top layer is present and overestimates the 
stress when a stiff top layer is present. 
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Figure 5.  Vertical stress at the interface below the centre 
of the load for different values of E1/E2.  The applied load 
at the surface, q = 1 kPa. 
 
 
The method of images agrees well with the finite element 
method for a stiff top layer, but the agreement is less good 
when the top layer is more compliant.  This is because as 
the top layer becomes more compliant, more reflections 
are required to maintain the same level of accuracy (see 
Vijayakumar, 2005).  It is expected that better results can 
be obtained by using more reflections in the solution.  
Investigation of this phenomenon is ongoing 
 
4 EXAMPLE: STRESS UNDER A SQUARE FOOTING 
 
4.1 Problem geometry 
 
A square footing represents a more challenging problem 
because it cannot be solved using axisymmetric methods.  
A true three-dimensional solution is required.  The 
problem is similar to that shown for the circular load in 
Figure 1, except in this case the parameter ‘a’ refers to 
half the width of the square load. 
 
For this problem, the Boussinesq solution and the solution 
from the method of images will be compared with a three-
dimensional finite element solution.  The finite element 
model for this problem is shown in Figure 6.  It is clear that 
a very large number of elements (and consequently a 
large amount of computer resources) is required to obtain 
an accurate solution.  The method of images approach is 
significantly simpler in that only the boundaries need to be 
discretized. 
 



 
This example uses the following values: 
 a = 0.5 m 
 h = 2.0 m (h/a = 4) 
 q = 1 kPa 
 ν1 = ν2 = 0.2 
 E1 / E2 = variable 
 
 

 
Figure 6.  Finite element model used to simulate square 
footing load.  Symmetry is exploited such that only one 
quarter of the problem is modelled.  The model consists of 
over 10,000 quadratic (20-noded) hexahedra elements. 
 
 
4.2 Results for square load 
 
Figure 7 shows the vertical stress beneath the centre of 
the load for E1/E2 = 100.  As with the circular load, the 
finite element model shows that stress is concentrated in 
the top layer.  The method of images solution agrees well 
with the finite element solution.  However the Boussinesq 
solution again shows stresses that are too high since it 
does not take into account the stiffness contrasts between 
the layers. 
 
This is further emphasized in Figure 8, which shows 
contours of vertical stress beneath the load calculated 
using the method of images and the Boussinesq method.  
It is clear from this plot how the stress is confined to the 
top layer when the method of images is used, but not 
when the Boussinesq solution is applied. 
 
Figure 9 shows a graph of the vertical stress beneath the 
centre of the load at the material boundary for different 
values of E1/E2.  As with the circular load, all three 
methods give the same stress when there is no contrast 
(E1/E2 = 1), however the results diverge as the stiffness 
contrast increases.  The method of images solution and 
the finite element solution change as the stress contrast 
changes, but the stress calculated by the Boussinesq 
method remains constant.  The Boussinesq method 

increasing contrast between layers.  The method of 
images again gives better results for a stiff top layer than 
for a compliant top layer.  The reasons for this are outlined 
in section 

therefore gives increasingly inaccurate results with 

3.3. 
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Figure 7.  Vertical stress below the centre of the square 
load calculated using the three different methods.  E1/E2 = 
100 and the applied load, q = 1 kPa. 
 
 
 

 
 

igure 8.  Vertical stress in the top layer below the square F
load calculated using the Boussinesq solution (left) and 
the method of images (right). E1 / E2 = 100. 
 



 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.001 0.01 0.1 1 10 100 1000
E1/E2

St
re

ss
 a

t z
=h

Method of Images
Finite Element
Boussinesq

 
Figure 9.  Calculated vertical stress below the centre of 
the square load at the material boundary (depth = h) for 
different layer stiffness contrasts. 
 
 
 
5 DISCUSSION AND CONCLUSIONS 
 
The examples have clearly shown that the traditional 
Boussinesq method for calculating stresses is highly 
erroneous for soil layers with large stiffness contrasts.  
These errors in stress lead directly to errors in estimated 
settlement.  The actual amount of settlement depends on 
the material type, the applied load and the actual values 
used for the Young’s moduli.  As an example, consider the 
square load example of section 4 and assume linear 
elastic material with E1 = 4500 kPa and E2 = 450 kPa (E1 / 
E2 = 10).  The surface settlement calculated using the 
Boussinesq solution is 0.61 mm while the settlement 
calculated using the method of images is 0.27 mm – less 
than half the Boussinesq settlement.  For non-linear 
materials (as most soils are), the differences in settlement 
will be even more dramatic. 
 
Accurate stresses can be obtained using finite elements, 
but finite element analyses are often prohibitive in terms of 
computer and person resources required to obtain good 
results.  Figure 2 shows how a very dense mesh is 
required near the load to obtain accurate results.  In 
addition the user must be careful to ensure the boundaries 
are far enough away from the load that they do not 
interfere with the induced stresses.  All of these 
considerations require user know-how and experience.  
These problems become even more challenging for three-
dimensional loading scenarios (such as a square load) 
that cannot be analyzed with a plane-strain or 
axisymmetric approach.  Setting up a dense mesh with 
boundaries far from the load will requires a very large 
number of elements and consequently a prohibitive 
amount of computer resources – even for simple problems 
(Figure 6). 
 
The method of images overcomes these problems by 
providing a meshless method for calculating stresses.  
Stresses can be determined very quickly at any point for 
any three dimensional loading shape.  Unlike the 

Boussinesq method, stresses can be accurately obtained 
for multi-layered soil systems, leading to more precise 
estimates of settlement. 
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