

ARMA/USRMS 06- 1012

Keynote Lecture: SEVEN LESSONS OF
GEOMECHANICS SOFTWARE DEVELOPMENT

Curran, J.H.
Lassonde Institute, University of Toronto, Toronto, Ontario, Canada
and Rocscience Inc., Toronto, Ontario, Canada

Hammah, R.E.
Rocscience Inc., Toronto, Ontario, Canada

Copyright 2006, ARMA, American Rock Mechanics Association

This paper was prepared for presentation at Golden Rocks 2006, The 41st U.S. Symposium on Rock Mechanics (USRMS): "50 Years of Rock Mechanics - Landmarks and Future
Challenges.", held in Golden, Colorado, June 17-21, 2006.
This paper was selected for presentation by a USRMS Program Committee following review of information contained in an abstract submitted earlier by the author(s). Contents of the paper,
as presented, have not been reviewed by ARMA/USRMS and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any position of USRMS,
ARMA, their officers, or members. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of ARMA is prohibited.
Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgement of where
and by whom the paper was presented.

1. INTRODUCTION

One of the meanings of the word lesson is “an
experience, example, or observation that imparts
beneficial new knowledge or wisdom. The
knowledge or wisdom so acquired.” [1]. Our
involvement in academic research and the
development of software for geomechanics
purposes has offered many important lessons we
would like to share. This paper will outline seven of
the most important lessons and perspectives gained
from over 25 years of such work.

It is the view of the authors that there is currently a
considerable gap between the state of the art of
geomechanics research and the state of professional
practice. A survey of research findings published in
academic journals and conference proceedings,
accompanied by a comparison with current
geomechanics practices quickly establishes this
state of affairs. Alternatively, one can study the
history of geomechanics techniques and knowledge
routinely applied today. It is quickly discovered that
whereas several of the techniques used in
geomechanics practice today originated decades

ago, research knowledge exists today that could
substantially improve design practices if adopted.

ABSTRACT: The paper outlines 7 key lessons learned from developing software for geomechanics practice. It describes the gap
between the state of geomechanics research and real-world practice of the discipline. The paper argues that the development of
software is essential to narrowing this gap, and outlines reasons why such development should receive greater recognition and
funding. The reasons for this position include the fact that software is a much more active knowledge medium than written
knowledge, and software development constitutes articulation of theory, an important component of science. The paper asserts that
software development generates new knowledge and insights in two ways: during algorithm development and during application to
problems. It illustrates different lessons through three examples.

Through the seven lessons to be outlined, the paper
will argue that the development of active
computational algorithms and software can help
narrow the gap between geomechanics research
state of the art and professional practice. (The term
active computational algorithm will be defined in
the next section.) The paper will also attempt to
persuade readers that software development is as
important a contributor to ‘new’ knowledge and
insights as any other component of scientific
research.

The authors believe that unquestioning adherence to
traditional views of academic research constitutes a
major reason for the gap. Grant applications for
geomechanics research projects, which primarily
involve software and/or computational algorithm
development, are seldom adjudged to be ‘original’
or ‘new’ enough. The same attitudes persist in the
assessment of doctoral theses on geomechanics
software development. With the help of Lesson #2
especially, the authors hope to convince funding
agencies and the academic establishment of the

many scientific merits of software development,
attributes which call for a re-evaluation of how this
important enterprise is judged.

2. A FEW DEFINITIONS

To avoid ambiguity, we will define a few key terms
and the sense in which they are used in this paper.
We define software as the complete suite of
procedures, such as graphical interface, calculation
routines, etc., which constitute a stand-alone
computer program. The term computational
algorithm refers to a step-by-step procedure for
solving a numerical problem based on some
scientific or engineering principle(s) developed in
the form of pseudo-code, flow chart, or concept
map. Whenever we refer to an active computational
algorithm, we mean an algorithm that has been
implemented in detail in a computer programming
language such as C++ or FORTRAN, and has been
well tested and debugged so that it is readily
incorporated into a program.

We refer to engineering specialists who practice
geomechanics by applying the knowledge they have
acquired to the solution of real-world problems, and
by translating ideas into reality as practitioners.
They earn their living by solving the problems of
clients as efficiently as they can. Under the banner
of academics, we group specialists whose primary
activity is to systematically investigate issues in
order to increase knowledge, or use of this
knowledge to create new applications. A primary
characteristic of academic work is originality.

3. LESSONS OF SOFTWARE DEVELOPMENT

The lessons learned from the development of
software from geomechanics research principles are
many. However, we have attempted to identify
seven of the most important. They are as follow:

• Lesson #1: Software is an active medium of
knowledge; consider it as such.

• Lesson #2: Software development is integral
to science; it is hard, creative work that
generates new knowledge.

• Lesson #3: Parsimony is invaluable; avoid
complexity, embrace clarity.

• Lesson #4: Interface design must not be an
afterthought; it is fundamental to practical
engineering.

• Lesson #5: Users have practical constraints;
keep things as simple as possible.

• Lesson #6: Uncertainty is king; make room
for it.

• Lesson #7: Legacy codes may be outdated;
but think carefully before rewriting.

3.1. Lesson #1: Software is an active medium of
knowledge; consider it as such.

An inadequate understanding of the nature of
software development is a major problem in
geomechanics. Too many specialists view software
only as a product, a commercial product. But this
view is inaccurate [2].

Software is primarily knowledge that has been
encoded into a computer program. The most
fundamental attribute of this form of knowledge is
that it is active [3]. Because software can be
executed, it is much more readily applied to
problem-solving than written knowledge.
Knowledge in written form, on the other hand, is
inert or passive.

As will be detailed under the next lesson, the
transformation of knowledge into working, robust
computational algorithms is the hardest component
of geomechanics software development. It requires
extra-theoretical work, and extensive validation and
verification effort. It is also a pursuit that yields
substantial scientific rewards, including the creation
of new knowledge. Because software is an active
knowledge medium, it allows specialists to obtain
deeper and better understanding of parameter
interrelationships and interdependencies in ways
written knowledge cannot. It makes it easier to
perform thought experiments in order to answer a
broad variety of questions.

3.2. Lesson #2: Software development is integral
to science; it is hard, creative work that
generates new knowledge.

The development of computational algorithms and
software constitutes a necessary and important
component of scientific research. In the seminal
book, “The Structure of Scientific Revolutions,” [4]
Thomas Kuhn, the renowned philosopher of

science, describes an activity he calls articulation of
theory. This is the empirical work researchers do to
resolve residual ambiguities in a theory, refine the
theory, and apply it to problems to which it had
previously only alluded [4]. In our opinion software
development is an embodiment of articulation of
theory.

The development of active computer algorithms
from theoretical concepts is far more challenging
than is generally recognized in the geomechanics
community. To be successful, it requires great skill,
and some trial-and-error, to overcome numerical
difficulties and instabilities that occur during
computations [5].

It is important to note that computational algorithms
are developed in the course of many geomechanics
research projects. However, most of these are still
not active – they have not been converted into well-
tested and ready-to-be-incorporated-into-a-program
format.

Why is Software Necessary to Geomechanics?
Aside from the fact that computers perform
calculations much faster than humans, there are
several other reasons for developing active
computational algorithms out of theoretical
concepts. Often theoretical principles are not easily
applied to specific instances. In other cases, even
though governing principles may be well
understood, the local behaviours generated by
specific sets of conditions may not be known. In yet
other instances, direct application of governing
principles lead to equations, solvable only with the
aid of computers.

Each year also, many research papers submitted for
publication receive reviews that, although the ideas
they express are interesting, they offer little
practical value. The development of active
computational algorithms and software can bring
such ideas closer to real-world application. At the
least it can help better assess how practical or
impractical a concept is.

The Intellectual Challenges of Software
Development
Creating computational algorithms out of theory is
not a straightforward process. It frequently relies on
simplifications, approximations, idealizations, and
falsifications (assumptions that contradict theory) to
make things work [5]. These actions can be
classified under the single banner of extra-
theoretical work. The development of software must

also consider limitations such as computer memory
and speed [5].

Due to the potential for errors (primarily from the
required extra-theoretical work), the process of
transforming theory into computational algorithms
requires great care. The sources of these errors
include:

1. Discretization – the use of discretization
inevitably results in the likelihood of
truncation errors. It can also cause
instabilities in the solution process, which in
turn can introduce artifacts into the solution
that may go undetected [5].

2. Assumptions, simplifications, falsifications
– any assumptions made during the creation
of an algorithm can have unintended
consequences.

3. Use of knowledge and routines drawn from
several different sources – software
development inevitably relies on numerical
procedures provided in books and other
sources. The algorithms provided in
Numerical Recipes for C [6] are a typical
example. These algorithms may however
have errors or difficulties the software
developer may not be aware of.

4. Programming errors or bugs – these are
mistakes made during the writing of
software codes. They either produce
unintended consequences, wrong results, or
crashes.

As a result of the potential of errors in active
computer algorithms, software results are not
automatically trustworthy and therefore cannot be
taken for granted [5]. Results are verified or
validated through comparisons with known (often
closed-form) solutions. Validation also involves
checks of the different routines and algorithms used
in a program to ensure they perform as prescribed.
Software and computational algorithms must also
be checked for robustness. Robust programs work
well not only under anticipated conditions, but also
under unusual circumstances that push algorithms to
their limits.

Software Development Produces New Knowledge
The process of developing computational
algorithms from theoretical principles can produce
new knowledge and insights. The new knowledge
stems from questions that arise from the attempts to

apply governing principles to a wide range of
particular initial conditions. These questions force
software developers to examine aspects of
theoretical concepts and their implications much
more closely than was originally done during
development of the theories.

New knowledge can also result from observations
of the local behaviours arising from application of
theory to specific conditions, and from thought
experiments possible with software. The insights
gained can lead to refinements or improvements. At
other times the questions raised can demand newer
answers.

A specific geomechanics example of how software
development produced fresh insights will be
described in the Examples section of this paper. It
involves the development of an algorithm for
calculating stresses in multi-layered materials.

3.3. Lesson #3: Parsimony is invaluable; avoid
complexity, embrace clarity.

In software development, by parsimony we mean
taking great care to develop computational
algorithms that require the smallest possible number
of parameters in order to explain or model
behaviour. It also means avoiding unnecessary
complexity. It encourages approaches that are as
straightforward as possible, and discourages the use
of solutions that may be very clever but may not be
robust or general enough, i.e. solutions that may not
be capable of handling unusual cases. Lastly,
parsimony demands that code be written in the
simplest, self-explanatory manner.

There are many reasons for adhering to the principle
of parsimony in the development of computational
algorithms. Every parameter included in an
algorithm introduces additional uncertainty.
Keeping parameters therefore to a minimum
reduces uncertainty in the solution process. Simple
algorithms are also much easier to understand and
explain than complicated ones. In addition, by
keeping code as simple as possible, it becomes
much easier to find errors and thus minimizes their
occurrence.

The last point cannot be stressed enough. Very
often the details of computer codes are poorly
documented. Computer languages evolve with time.
Programmers and researchers move on, taking with
them important knowledge on the inner workings of

algorithms. If parsimony is neglected therefore
during software development, with time it becomes
virtually impossible to update or fix subroutines.

Adhering to parsimony does not imply use of
computational algorithms that are so simple as to
ignore key aspects of the problem being solved.
Like Albert Einstein once said, “Things should be
made as simple as possible, but not any simpler.”
This underlines some of the challenges facing
today’s practice of geomechanics. In many cases we
are analyzing problems in the field with overly
simple approaches, even though more accurate
techniques exist, which, to the user, are just as
simple to apply.

A case in point is the analysis of rock falls using
stereomechanical (particle) models. These models
do not include the influence of the size of a falling
rock, and do not properly account for its mass. It
will be shown later in the paper that the behaviour
of rock falls can be better simulated with rigid body
impact mechanics (RBIM). Even though the
framework for RBIM is more involved than the
stereomechanical approach, RBIM captures the
physics of the problem much better. At the same
time, for the user of an RBIM algorithm, it is not
any more complicated than a stereomechanical
model. In fact it requires input parameters, which
are more intuitive to the problem and easier to
obtain than those used in particle analysis.

3.4. Lesson #4: Interface design must not be an
afterthought; it is fundamental to practical
engineering.

If software is to be a useful tool to geomechanics
specialists, especially to practitioners, then its user
interface – the options and tools through which
users interact with the program – must be well
executed. It is a tragedy that many engineering
programs hardly pay attention to good interface
design, completely ignoring the resulting burden
imposed on users. Many excellent research findings
that could have benefited the geomechanics
community have been consigned to library shelves,
because users find the software, which embodies
these findings, too cumbersome or difficult to
understand or use. Academia stands especially
guilty. We seem to stick to a bad formula that
simply says: “All that matters is it works!"

Geomechanics research findings would have much
greater impact on the state of professional practice,

if developers of software resulting from research
would consider that the purpose of any program is
to allow users greater freedom to concentrate on
solving the problem at hand, freedom to express
problem-solving skills. This is accomplished when
a program removes tedium and frustration from the
problem-solving process by assuming the less
skillful chores.

A user-friendly interface must enable users to
efficiently solve their problems, and to be satisfied
with the whole process. It must allow them to
quickly see available options and to understand how
to use these options to achieve their goals. It must
not unnecessarily burden users with the inner
workings of code. A well-designed program should
perform a majority of the work, while requiring a
minimum of information and input from users.
Unless the use of a program is far less burdensome
than the problem being solved, the program’s
application becomes questionable.

This is not to advocate the use of black boxes. We
will explain this through an example of the
application of the finite element method (FEM) to
slope stability analysis. Although it is absolutely
essential that users have good understanding of the
FEM, its capabilities, limitations and caveats, it
would be crippling if users had to know full details
of meshing and matrix solution algorithms before
they could actually create models and solve
problems.

The design of a user interface must consider the
productivity of users. It must ensure a short, gentle
sloping learning curve. Practitioners are keenly
aware that people cost a lot more money than
computers and software. These costs constitute a
primary reason why the state of geomechanics
practice lags behind state-of-the-art research.
Industry finds it hard to justify the costs and delays
inherent in using knowledge stored in written form,
or in poorly written software; the expected value of
the insights to be gained does not match the cost of
people time.

At this stage we would like to stress the importance
of including visualization tools in geomechanics
programs. Such tools are not merely means of
transferring facts. Most computations result in a
bunch of numbers, sometimes huge amounts of
them. As such visualization is a powerful aid to
understanding, allowing users to gain precious
insights into problems. It makes comparisons

between alternative solutions much easier to make.
Software developers must understand that
visualization is by far one of the most effective
means of communicating to humans.

3.5. Lesson #5: Users have practical constraints;
keep things as simple as possible.

Successful transfer of geomechanics research
advances and knowledge to practice of the
discipline through development of software will be
realized only by considering the environment within
which the discipline is practiced. We have to fully
understand the constraints and limitations faced by
practitioners.

Typically, geomechanics practitioners work with
limited budgets, tight project schedules and very
limited knowledge on material properties and
subsurface conditions. Whether or not they have the
tools to model problems, practitioners have no
choice but to make decisions. Given the option,
however, most practitioners would use software to
aid their decision making, since computational and
modelling tools enable logical use of available
information.

The time constraints practitioners face can be quite
severe. The situation of a rock mechanics engineer
in a mine is a typical example. He/she has several
tasks to fulfill each work day in different parts of
the operation. This leaves hardly any time for
carrying out numerical simulations.

The conditions we have described demand software
and computational tools that are as simple as
possible. These tools must not require more skill
than most users are expected to possess. Generally,
specialists in the field, although knowledgeable and
experienced with practical engineering, are not
specialists in the details of numerical analysis
methods. Therefore programs must minimize the
need of users to be well schooled in the intricacies
(rules of thumb, exceptional situations, etc.) of
numerical methods.

We have also learned that under many of the
conditions confronting users, well-designed, simple
software that capture the fundamental physics of
behaviour are empowering. In the world of
practitioners, easy-to-understand and easy-to-use
tools are much more useful than intricate ones,
which may be more accurate. The simpler tools
make it easier to think through problems. For

practitioners, any preoccupation with the details of
computational algorithms (details which they
cannot get right unless they have the relevant
numerical methods expertise) is a barrier, and
actually produces less understanding, and poorer
prediction.

3.6. Lesson #6: Uncertainty is king; make room
for it.

Because geological materials are formed under a
broad variety of complex, physical conditions, the
history of which is not known, geomechanics
involves large uncertainties. Single-point
predictions of quantities have therefore practically
zero likelihood of ever being realized in such a
world. If room is therefore not made in
geomechanics software analysis to accommodate
uncertainty, any conclusions reached will be open to
question.

In the application of geomechanics software to real-
world problems, uncertainty can be dealt with in
different ways. Popular ways of handling
uncertainty include parametric and scenario analysis
– the assessment of possible ranges of behaviours
through variation of input properties and
consideration of different conditions. Such analyses
are very difficult to conduct, especially given the
constraints described above, if geomechanics
software and computational routines are difficult to
modify or take too long to compute. For all practical
purposes, it is nearly impossible if the situation is
compounded by poor interface design.

Although parametric and scenario analyses are very
useful, statistical simulation is an even more
powerful approach. This is because it enables
uncertainty to be quantified and the probabilities
(likelihoods) of outcomes to be estimated.

We believe that in many situations, the combination
of statistical simulation with simple models
produces more realistic capturing of the true nature
of geomechanics behaviour than the use of
sophisticated single-point procedures.

3.7. Lesson #7: Legacy codes may be outdated;
but think carefully before rewriting.

Often in software and computational algorithm
development, it becomes necessary to modify older
(legacy) pieces of code or include them in a new
routine. These program routines may be obsolescent

due to the age of the programming languages in
which they were developed.

Such codes often contain a wealth of knowledge,
acquired over the history of the codes’ development
with huge time investments. They embody all sorts
of workarounds and modifications to ensure they
perform as required. Unfortunately, like most codes,
they are often inadequately documented. In
addition, personnel such as post-docs and students,
instrumental in the development of such codes may
have moved on to other places.

The issue then is how to modernize such codes,
while keeping their functionality intact. The task
can be hugely challenging. The topic of how best to
deal with legacy codes is beyond the scope of this
paper. The lesson we would like to share though is
that any undertaking to rewrite such legacy codes
should be well thought out. It is a risky task that
often requires more resources and time than most
developers budget for. The key is to understand that
program codes contain a lot of expert knowledge,
some of which is not formal. They may seem poorly
written or ugly, but great care has to be exercised in
modifying or rewriting them.

4. THE LESSONS AT WORK – THREE
EXAMPLES

We will now look at three concrete examples of the
lessons outlined above at work. The examples
involve the development of active computational
algorithms for

1. Calculating stresses in elastic half-spaces
comprising multiple parallel layers of
material

2. Simulating the behaviour of rock falls, and

3. Analyzing slope stability with the finite
element method.

4.1. Elastic Stress Analysis of Multilayered
Material

There is a class of geomechanics problems for
which the prediction of settlement is very important.
In the design of shallow foundations for buildings
on soils, for example, it is often the case that
settlement (especially differential settlement), rather
than bearing capacity, is of the greatest concern. In
most of these cases, such as the example of the
surface loading due to three buildings shown on

Fig. 1, three-dimensional behaviour is very
dominant and cannot be meaningfully approximated
with two-dimensional analyses.

The first step in the process of computing
settlements is the determination of the stress
distribution as a result of surface or sub-surface
loadings. Despite all the advances of today, elastic
stresses used in settlement calculations are routinely
obtained from classical solutions such as those of
Boussinesq and Westergaard. The problem with this
is that these solutions make very simplifying
assumptions, which as will be shown later, can
distort results. For example, they assume the half-
space of soil material to be homogeneous.

Fig.1: An illustration of three different-sized buildings on a
site comprising layered materials. Due to the asymmetry of
the surface loadings, it is clear that the stresses induced in the
material strata will have a complex, three-dimensional nature.

Fig 2: Problem of unit load applied over a rectangular area on
the surface of an elastic half-space.

In theory, the problem can be tackled with
numerical methods such as three-dimensional finite
element or finite difference analysis. The
difficulties however with these methods of solution
are that they:

1. Require significant computing resources not
(as yet) routinely available to practitioners

2. Substantial user expertise in ensuring
adequate three-dimensional meshes.

Generally, three-dimensional meshing is quite
challenging. It becomes even more challenging in
problems involving thin seams (layers) of material.
If thin layers are not properly discretized into
elements, their elements will have poor aspect
ratios, which in turn compromise the accuracy of
results. In addition, if thin layers are not discretized
with sufficient numbers of elements in the direction
of their thickness, then rapid stress gradients in this
direction may be missed. This aspect of finite
element and finite difference modeling places the
onus on users to ensure adequate meshes.

About twenty years ago, a theoretical method was
developed for solving for the stresses and
displacements in two bonded elastic half-spaces due
to the application of a point load [7, 8]. Based on
what is known as the method of images, the method
used reflection and transmission matrices to
calculate the required stresses and displacements.
When the technique was originally published, it was
deemed theoretically interesting, but of little
practical value.

Recently, the geomechanics research group at the
Lassonde Institute of the University of Toronto
looked into developing an active, fast, three-
dimensional computational algorithm for
calculating stresses due to foundation loads. It was
decided to develop one based on the method of
images solution, especially since such an algorithm
would be meshless – it would only require
integration of loads over their area(s) of application.

A A'

Considerable extra-theoretical work had to be done
in order to achieve the goal. The original two-
material method had to be extended to any number
of materials. Upon attaining this end, the
contribution of the infinite images generated in the
method had to be carefully studied. It was then
discovered that, paired in a particular way, several
terms cancelled out, meaning only very few terms
were actually required. Next a robust integration

Linear elastic
material

scheme [9] had to be employed to enable the new
computational algorithm to produce accurate stress
results for all loading configurations.

The validity of the new method was established
through comparisons to known analytical solutions
or to solutions obtained from three-dimensional,
elastic finite element analysis. One such verification
is described next.

Fig. 3: Contours of the vertical stress distribution on the
vertical plane through A-A' for a homogeneous half-space.

Fig 4: Problem of unit uniform load applied over a square area
on the surface, but this time with a stiffer, thin layer at some
depth below the surface.

Fig. 2 shows the application of a unit, uniform load
to a square surface area of an elastic, homogeneous
half-space. We will consider the stress distribution
on a vertical plane passing through A-A' induced by
the applied load. Contours of this stress distribution
are shown on Fig. 3. These contours are identical to
those predicted from the analytical Boussinesq
solution to the problem.

An interesting thought experiment was performed
with the new computational tool. A thin horizontal
layer with a higher stiffness (larger Young’s
modulus) was inserted into the problem as shown
on Fig. 4. Two cases of Young’s modulus were
considered: in the first case the thin layer was five
times stiffer than the original material, and in the
second case ten times stiffer.

D
ep

th
 b

el
ow

 su
rf

ac
e

D
ep

th
 b

el
ow

 su
rf

ac
e

Fig. 5: Contours of the vertical stress distribution on the
vertical plane through A-A' for the case when the thin middle
layer is five times stiffer than the upper and lower layers.

Fig. 6: Contours of the vertical stress distribution on the
vertical plane through A-A' for the case in which the thin
middle layer is a ten times stiffer than the upper and lower
layers.

The stress distribution on the vertical plane through
A-A' are shown on Figs. 5 and 6, respectively. The
results are very different from the homogeneous
case. In both cases the stiffer thin layer essentially

Horizontal distance from centre of loading Horizontal distance from centre of loading

A' A

D
ep

th
 b

el
ow

 su
rf

ac
e

Thin layer with
larger Young’s
modulus

Horizontal distance from centre of loading

shields the lower material zone from the applied
load. The shielding is more pronounced in case 2.

This example illustrates several of the lessons
outlined above. Passive knowledge deemed
impractical 20 years ago was converted into an
active software tool suitable for routine analysis.
The process of articulating the theory required an
extension to the theory, and extra-theoretical work
to develop a fast algorithm. It yielded new insights
into the use of reflection and transmission matrices
for elasticity, including the observation of terms that
negate one another. It also enabled the conducting
of thought experiments, which allow a user to gain
better intuition into the influence of different
material stiffnesses.

It was also learned that although the new active
algorithm for elastic stress analysis was restricted to
parallel material layers, it offered significant
improvements over the existing simple approaches
used in current practice. By not requiring meshing,
the new algorithm is more amenable to practical
analysis – users do not have the additional burden
of ensuring good meshing. Because it eliminates
meshing, the method ensures that models can be set
up quickly, and results obtained significantly faster
than is possible with finite element or finite
difference modeling.

4.2. Rigid Body Impact Mechanics Analysis of
Rock Falls

Rock falls can pose significant hazards to
infrastructure such as highways, buildings, and
mine open pits and, sometimes, result in personal
injury or death. Their prediction is a difficult task
fraught with uncertainty. The geometries of natural
slopes, including the location of the boundaries
between different slope materials, can vary
considerably from one cross-section to the other.
The properties of a slope’s materials can also vary
widely, while the location and mass of rocks that
may dislodge are also uncertain. Probabilistic
simulation has proven very useful in analyzing this
class of geomechanics problems [10].

The interactions of a falling rock with a slope
surface mainly consist of bouncing, sliding and
rolling. In some cases the rock may fracture into
smaller pieces upon impact. The primary factors
controlling impact interactions and trajectories of a
falling block of rock are the:

1. Geometry of the slope
2. Shape and mass of the rock, and
3. Energy dissipated upon impact of the block

on a slope segment.

To mitigate the effects of rock falls with measures
such as restraining nets and ditches, engineers need
to predict the velocity, frequency, height of bounce
and run-out distance of potential falling rocks.
Given the large uncertainties of the problem, it is
best to obtain statistical distributions of these
quantities in order to design effective remedial
measures.

Most current rock fall simulation models [11, 12,
13, 14] are based on particle (stereomechanical)
models. These models represent falling rocks with
point masses. Two other input parameters, the
normal and tangential coefficients of restitution
(, and , respectively), are required in these
models.

NR TR

The normal coefficient of restitution is defined as
the ratio of the normal component of the outgoing
velocity of a particle after it collides with a surface,

 to the normal component of the velocity prior

to collision (incident velocity), , i.e.

,out NV

,ini NV ,

,

out N
N

ini N

V
R

V
= .

The tangential coefficient, , is similarly defined
for the tangential components of outgoing and
incoming velocities.

TR

The primary merit of stereomechanical models is
their simplicity and speed of computations. The
latter attribute makes them very conducive for
probabilistic analysis. They suffer though from
three serious deficiencies:

1. Shape, which in reality has significant
influence on trajectory, is ignored.

2. Generally, mass although incorporated, does
not affect the total path of a falling block. It
is not considered during impact interactions,
which play a key role in determining the
overall trajectory, but is only used to
compute energies.

3. In reality, normal and tangential coefficients
of restitution are not intrinsic parameters. It
will be shown later that they depend on
factors such as incident angle, frictional
characteristics of the falling block-slope
contact, and on the point on the falling
object (for non-circular shapes) that collides
with a surface [15].

Simply put, the particle models widely used in
today’s practice are too simplistic, ignoring
important facets of the problem. However, in the
absence of better active computational tools, they
are the tools for practical application.

There are a number of approaches that better model
the true physics of the rock fall problem. One of
them is the powerful discrete element method
(DEM). It can accurately model rock-slope
collisions and can even simulate breakup. The main
drawbacks of the method though are its slow
computational speed, which rules out probabilistic
simulations, and the number of input parameters
required. Some of these parameters, such as spring
stiffnesses, are not observable, and therefore not
easily measured.

The slowness of the DEM arises mainly from the
need to detect contact and the smallness of the time
steps required to adequately model impact
interactions. If care is not exercised with time step
magnitude, the resulting behaviour might be
incorrect. Unfortunately very few practitioners have
enough experience with this intricacy to be able to
specify correct time steps.

An alternative approach that is less sophisticated,
but sufficiently captures the essential behaviour of
rock falls, is rigid body impact mechanics (RBIM).
RBIM models the impulses (but not the contact
forces) that develop during collisions and the
dynamic response of the colliding bodies [15]. It
uses the equations of kinematics and motion. Unlike
the DEM, it assumes the period of contact during
which the velocities of bodies change to be
instantaneous.

The term RBIM is an oxymoron. Ideal rigid bodies
do not deform. However, for the method to
adequately model impact behaviour (namely the
impulses arising out of collision that change the
velocities of colliding bodies), it assumes the region
of contact between colliding bodies to be a very
small (localized) region.

In RBIM, collision is characterized by two phases –
compression and restitution. The compression phase
occurs when a falling body first impacts a surface.
During this phase the kinetic energy of the body is
converted into internal deformational energy due to
the contact force that develops. The compression
phase is followed by restitution, a phase during
which the elastic component of the internal

deformational energy is released and converted into
an exit kinetic energy.

The input parameters required for RBIM analysis
are all observable and measurable. In addition to
shape, mass, initial velocities, etc., it requires the
friction coefficient of the contacting surfaces, and
an energetic coefficient of restitution. The energetic
coefficient of restitution is simply the square root of
the ratio of the elastic energy recovered during
restitution to the internal energy of deformation
absorbed during compression. It can be readily
measured or estimated. A value of 1 indicates a
perfectly elastic collision in which no energy is lost,
while a value of 0 implies a perfectly plastic
collision in which the impacting body does not
separate and fly off.

From its description, it can be seen that the
parameters of RBIM, in addition to being
measurable, are very intuitive to engineers. Tests
have also shown that it models the real behaviour of
falling objects very well. Upon impact objects can
bounce, slide, rotate or stick, or exhibit
combinations of these behaviours.

To illustrate the advantages of RBIM over
stereomechanical modeling of rock falls, we will
consider the example of a falling rock impacting a
horizontal surface. The normal component of the
incoming velocity (), the tangential component
of the incoming velocity () and angular velocity
(

,ini NV

,ini TV

iniω) of the rock are -10m/s, 10m/s and 0rad/s,
respectively (Fig. 7). (Rotation is assumed positive
in the clockwise direction.)

α

Vini,T = 10

Vini,N = -10

Fig. 7: The behaviour of a falling rock upon impact with a
horizontal surface.

We will consider two shapes of the falling rock: a
sphere and an ellipsoid (with major axis of 2m and
minor axes of 1m). The rock/surface contact is

assumed to have a friction angle of 25° (coefficient
of friction μ = 0.47) and the energy coefficient of
restitution assumed, , assumed equal to 0.8. *e

We would like to draw attention to the intuitiveness
of the parameters friction angle and energy
coefficient of restitution. Given the conditions
prevailing at a field site, it is much easier to
estimate these values than to guess values for the
conventional normal and tangential coefficients of
restitution (and) used in stereomechanical
analysis.

NR TR

-0.25

0

0.25

0.5

0.75

1

1.25

0 45 90 135 180

Impact angle (α)

R
N

Fig. 8: Plot of normal coefficient of restitution, , with
impact angle for an ellipsoid.

nR

0

0.25

0.5

0.75

1

1.25

0 45 90 135 180

Impact angle (α)

R
T

Fig. 9: Plot of tangential coefficient of restitution, , with
impact angle for an ellipsoid.

tR

The equations of RBIM enable prediction of the
outgoing normal, tangential and angular velocities
after impact. Using these values, the conventional

 and can be easily calculated with the
equations described earlier. For the case of the
sphere, the RBIM calculates = 0.8, = 0.71,
and recovery of 68% of the total kinetic energy
prior to collision.

NR TR

NR TR

In the case of the ellipsoid we discover that the
outgoing velocities, and thus the conventional
coefficients of restitution, as well as the energy
retained are found to strongly depend on the
orientation of the ellipsoid (α on Fig. 7) at impact.
Figs. 8, 9, 10 and 11 show plots of , , the
rebound rotational velocity, and the percentage of
energy retained, respectively, as functions of impact
angle α.

NR TR

-6

-4

-2

0

2

4

6

8

10

0 45 90 135 180 225

Impact angle
 (r

ad
/s)

ω

 (r
ad

/s
)

Impact angle (α)

Fig. 10: Plot of angular rotation with impact angle for an
ellipsoid.

0

0.25

0.5

0.75

1

0 45 90 135 180

Impact angle (α)

Er
et

/E
in

i

Fig. 11: Plot of the ratio of total energy retrieved (Eret) after
collision to total energy before impact (Eini) against impact
angle for an ellipsoid.
Figs. 8 through 11 show that, for the ellipsoid, ,

, the rebound rotational velocity, and the
percentage of energy retained are all highly
nonlinear functions of impact angle. The plot of
on Fig. 9 reveals that the tangential coefficient of
restitution initially increases with increasing impact
angle, attaining a maximum at α = 55°. Thereafter

 begins to decline and reaches a minimum at α =
125°. The behaviour of the curve after that point is
also highly variable. Similarly, the behaviour of the

NR

TR

TR

TR

normal coefficient of restitution, , shown on Fig.
8 varies nonlinearly with impact angle.

NR

Fig. 10 shows that the magnitude and direction of
rotation is also highly dependent on the angle of
impact. On Fig. 11 it can be seen that the energy
retained in eccentric collisions can be as high as
85% and as low as 22%.

These analyses of impact behaviour of a relatively
simple ellipsoidal shape clearly demonstrate that
and vary in complex manners with impact angle
for non-circular shapes. They are definitely not the
constants input into stereomechanical models. An
attraction of RBIM for practical rock fall analysis is
it predicts all this irregular behaviour without
asking users for unusual inputs or a greater number
of parameters.

NR

TR

Another attractive feature of RBIM is that it has the
potential to be sufficiently fast so as to be used for
practical probabilistic analysis. Currently, research
is being done at the University of Toronto to
develop an active computational algorithm that
performs RBIM analysis of rock falls. The results
so far are quite promising.

Some issues however remain to be resolved. Two of
them concern how to deal with sharp corners in
order to eliminate spurious bounces, and how to
speed up computations. The University of Toronto
research team is experimenting with different
schemes, simplifications and assumptions that will
address these questions.

Several of the lessons learned from geomechanics
software development are epitomized in this
discussion of rock fall analysis. The example
illustrates how the gap between research and the
state of geomechanics practice can be narrowed
through software development. It shows how the
RBIM, from the user perspective, is no more
complicated than existing stereomechanical models,
but offers significantly better replication of true
behaviour. At the same time, through the example
we obtain glimpses of the creative and hard work
required to make theory active.

4.3. Shear Strength Reduction Method of Slope
Stability Analysis

The assessment of the stability of slopes is a very
common problem in geotechnical engineering. The
most popular measure of the stability of a slope is

the factor of safety. Traditionally it is computed
using limit-equilibrium method-of-slices analysis.

Limit-equilibrium analysis makes a number of
simplifying assumptions including:

• A priori judgments on the shapes or
locations of failure surfaces

• Assumption that the sliding mass moves as a
rigid block, with the movement occurring
only along the failure surface

• Assumption that the shear stresses are
uniformly mobilized along the entire length
of the failure surface, and

• Various assumptions on interslice forces.

The power of limit equilibrium methods lies in the
fact that they are very simple, produce very
reasonable answers in short computational times
and require relatively small numbers of input
parameters. In addition, engineers have acquired
great experience with these methods over decades
of use. As a result the conditions under which the
answers of different limit-equilibrium techniques
can be trusted are well established.

The primary disadvantages of limit-equilibrium
analysis stems from its a priori assumption of a
failure surface, and omission of stress-strain
behaviour. As a result of the omission limit-
equilibrium analysis cannot reveal the development
of the critical failure mechanism and cannot predict
deformations at failure.

A more complete solution of slope stability can be
determined if the boundary conditions of the
problem and constitutive laws of materials are
known, and the conditions of equilibrium and strain
compatibility enforced. The finite element method
(FEM) is the most common numerical technique for
performing such analyses.

A method known as the Shear Strength Reduction
(SSR) method originally devised in the mid-1970s
[16, 17], enabled FEM analysis to be used in
calculating slope factors of safety. It overcomes the
liabilities of limit-equilibrium methods described
above, and is more readily extended to three-
dimensional analysis.

Conceptually, the SSR method is very simple: to
determine the factor of safety of a stable slope,
systematically reduce (divide) the shear strength of
its material by factors until the slope is brought to
complete failure [18]. The reduction factor that
brings the slope to the verge of failure is then the

factor of safety. For the linear Mohr-Coulomb
strength envelope the method is very
straightforward.

Fig. 12: Finite element model of an open pit slope consisting
of three zones of material.

Fig. 13: Plot of the contours of maximum shear strain at
failure. This model assumes all three materials to have the
same stiffness. The failure surface obtained from conventional
limit-equilibrium (Spencer) analysis is superimposed.

Fig. 14: Plot of the contours of maximum shear strain at
failure for the model that assumes the toe material to be stiffer
than the other two. The failure surface obtained from
conventional limit-equilibrium (Spencer) analysis is
superimposed.

The solution of an FEM model is stable when all
equilibrium conditions are satisfied, and unstable or
non-convergent otherwise. (The transition from
stable to unstable behaviour is often characterized
by a sharp increase in displacements.) As a result, in

the SSR method solution convergence is used as the
criterion for determining the onset of slope failure.

As an example, SSR analysis reveals that when
there is great contrast in the stiffnesses of the
materials in a slope, although the factor of safety
predicted by the SSR method does not differ much
from that obtained through conventional limit-
equilibrium analysis, the location and shape of the
failure mechanism can be quite different [19].

Material 1

Material 2

Three images are provided below that show the SSR
analysis of a slope with multiple material zones.
The finite element model of the slope is shown on
Fig. 12.

Material 3

If all three materials are assumed to have the same
Young’s modulus, the factor of safety and failure
mechanism (band of highest maximum shear
strains) predicted by SSR analysis and conventional
limit-equilibrium analysis with the Spencer method
are very similar. These results (the contours of
maximum shear displacements and the slip surface
predicted by limit-equilibrium analysis) are shown
on Fig. 13.

Failure surface
from Spencer
method

The stiffness of the material at the toe (Material 3)
of the slope was then increased a hundred times and
the analysis re-run. The new slope failure
mechanism is visible on Fig. 14. Although the
factor of safety remained the same, the shear strain
pattern changed, especially in the toe area.

The SSR results are very intuitive. They show that
the shear deformations tend to concentrate in the
softer materials. These results can have quite an
impact, for example, on where to place instruments
in order to monitor the onset of failure.

Failure surface
from Spencer
method

The SSR method is a classic illustration of how
wide the gap between research and the state of
geomechanics practice can be. Although in
principle SSR analysis could be performed with any
geotechnical FEM program, it was not applied to
routine slope analysis until quite recently.

In our opinion, aside of computing speed in the
past, the primary reason was related to the manual
effort involved in setting up the several models with
different factored strength, especially for models
comprising multiple materials. A user also had to
properly keep records in order to know which file
used which reduction factor.

The SSR example also enables us to see how
software designed to be simple for users can alter

the state of practice. Until the implementation of
automatic meshing, the user who wanted to perform
such analysis had to manually define meshes for
each of the models. Upon running all models the
user then had to open each model in order to
determine the onset of instability and hence the
factor of safety. And after all this work, it was still
not easy to visualize the development of the failure
mechanism.

Itasca [20] and PLAXIS [21] were the first to
develop commercial software that automatically
performed SSR analysis. The latest release of
Phase2 [22] includes many interface and
computational engine additions that aid ready
creation of SSR models and make interpretation of
SSR results easier. It also allows SSR analysis for
Hoek-Brown and Generalized Hoek-Brown
materials, making the method readily applicable to
rock slopes.

Users have been also given the ability to seamlessly
import limit-equilibrium models into the FEM
program – the geometry is automatically meshed
and each material in the model assigned a default
stiffness value. As a result users can choose to
analyze conventional models with the new tool at
hardly any costs in terms of effort to set up models.

Since the SSR method became accessible to
practitioners, it has rapidly gained in popularity.
Practitioners use it to gain insights into problems in
ways previously not possible with limit-equilibrium
tools.

5. A MESSAGE TO THE ACADEMIC
COMMUNITY

In academia, rewards such as research grants,
recognition, degrees, etc., accrue to those who seek
for new knowledge as defined by traditional criteria
used in science. The traditional assessment criteria,
we believe, have not been very kind to software
development.

Through the arguments offered in this paper, we
hope we have convinced the academic community
that geomechanics software development is not a
trivial and simple-minded exercise in transforming
known theoretical concepts into computer
algorithms. It is exciting work, integral to the
practice and advancement of science and
engineering. It generates new knowledge of
significant scientific value in diverse ways.

It is our hope therefore, that software development
will receive greater attention and will be given
greater support. This will go a long way in
advancing the real-world practice of geomechanics.
It has the potential to radically improve our
solutions and widen the scope of problems we can
tackle.

6. CONCLUDING REMARKS

In the 17th century, academia discovered the
transforming influence of academic publishing, the
formal process of subjecting new ideas to critical
review and ensuring open, transparent and
widespread sharing of ideas. Initially academic
publishing was scorned, but today one cannot
comprehend what the world would be like without
this vehicle. Technological changes, especially the
Internet, are rapidly changing the landscape of
academic publishing as more and more publications
move to the electronic format, and making the
dissemination of ideas more widespread than ever.

We believe that because software makes knowledge
active it presents an even more powerful medium
for disseminating scientific and engineering
knowledge; it is a much more ready means for
testing ideas. Reminiscent of the beginnings of
academic publishing, in many important and
influential establishments such as universities and
funding agencies, user-friendly software
development is not deemed an endeavour of
scientific calibre.

We hope that this paper will help the geomechanics
community to better appreciate the impact software
and active computational algorithm development
can have on the state of our practice. They present
incredible opportunity for transforming theory into
practice. They offer means of gaining new insights
and performing thought experiments.

Most of the lessons we talk about, we learned from
experience. We share them to encourage others to
take up this enterprise, seeing it is as an exciting
way of doing geomechanics. It contributes to the
advancement of both research and real-world
practice. It is our hope also that these lessons will
help people, who evaluate research proposals, to
better appreciate the important position software
development occupies in the science of
geomechanics.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to
the geomechanics research group at the Lassonde
Institute of the University of Toronto and the
software development team at Rocscience Inc.
Without their combined effort this work would not
have been possible. Special thanks are due Dr.
Vijayakumar Sinnathurai and Mr. Parham Ashayer
for their assistance with the examples.

REFERENCES
1. The Free Dictionary. Available online from

http://www.thefreedictionary.com .

2. Armour, P. G. 2000. The case for a new business
model: Is software a product or a medium?
Communications of the ACM, Vol. 43, No. 8, pp. 19-22.

3. Armour, P. G. 2001. Software as currency: With its
valuable characteristics, software is the most effective
storage medium, making it the future currency of the
world. Communications of the ACM, Vol. 44, No. 3, pp.
13-14.

4. Kuhn, T.S. 1970. The structure of scientific
revolutions. 2nd ed. Chicago: University of Chicago
Press.

5. Winsberg, E. 2003. Simulated experiments:
methodology for a virtual world. Philosophy of Science,
Vol. 70, pp. 105-125.

6. Press, W.H., et al. 2002. Numerical recipes in C++ -
the art of scientific computing. 2nd ed. Cambridge:
Cambridge University Press.

7. Vijayakumar, S., Cormack, D.E. 1987. Green’s
functions for the biharmonic equation: bonded elastic
media. SIAM Journal on Applied Mathematics, Vol. 47,
No. 5, pp. 982-997.

8. Vijayakumar, S. 2005. New boundary element methods
for solid mechanics: integration methodology and new
Green's functions [Ph.D. thesis]. Toronto: University of
Toronto.

9. Vijayakumar, S., J.H. Curran, and T.E. Yacoub. 2000.
A node-centric indirect boundary: three-dimensional
displacement discontinuities. Computers and
Structures, Vol. 74, No. 6, pp 687-703.

10. Stevens W.D. 1998. Rock fall: A tool for probabilistic
analysis, design of remedial measures and prediction of
rock falls [Masters thesis]. Toronto: University of
Toronto.

11. Hoek E. 1990. Rock fall - a program in Basic for the
analysis of rock falls from the slopes. Unpublished
notes. Golder Associates/University of Toronto.

12. Rocscience Inc. 1998. RocFall – risk analysis of falling
rocks on steep slopes.

13. Colorado Department of Transportation. 2000. Rock
fall simulation program.

14. Guzzetti F. et al. 2002. STONE: a computer program
for the three-dimensional simulation of rock-falls.
Computer & Geosciences, Vol. 28, pp. 1079-1093

15. Stronge W.J. 2000. Impact mechanics. Cambridge:
Cambridge University Press.

16. Smith I.M., Hobbs R. 1974. Finite element analysis of
centrifuged and built-up slopes. Geotechnique, Vol. 24,
No. 4, pp. 531 - 559.

17. Zienkiewicz, O. C., Humpheson, C., and Lewis, R. W.
1975. Associated and non-associated visco-plasticity
and plasticity in soil mechanics. Geotechnique, Vol. 25,
No. 4, pp. 671–689.

18. Griffiths, D.V. and Lane, P.A. 1999. Slope stability
analysis by finite elements. Geotechnique, Vol. 49,
No.3, pp. 387-403.

19. Hammah, R.E., Yacoub, T.E., Corkum, B., Curran, J.H.
2005. A comparison of finite element slope stability
analysis with conventional limit-equilibrium
investigation. In Proceedings of the 58th Canadian
Geotechnical and 6th Joint IAH-CNC and CGS
Groundwater Specialty Conferences - GeoSask 2005,
Saskatoon, Canada.

20. Itasca. 2002. FLAC/Slope: user’s guide.

21. PLAXIS BV. 2004. PLAXIS 2D Version 8. eds. R.B.J.
Brinkgreve, W. Broere, and D. Waterman

22. Rocscience Inc. 2005. Phase2 v6.0 – a two-dimensional
finite element analysis program.

http://www.thefreedictionary.com/

