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1. INTRODUCTION 

One of the meanings of the word lesson is “an 
experience, example, or observation that imparts 
beneficial new knowledge or wisdom. The 
knowledge or wisdom so acquired.” [1]. Our 
involvement in academic research and the 
development of software for geomechanics 
purposes has offered many important lessons we 
would like to share. This paper will outline seven of 
the most important lessons and perspectives gained 
from over 25 years of such work.  

It is the view of the authors that there is currently a 
considerable gap between the state of the art of 
geomechanics research and the state of professional 
practice. A survey of research findings published in 
academic journals and conference proceedings, 
accompanied by a comparison with current 
geomechanics practices quickly establishes this 
state of affairs. Alternatively, one can study the 
history of geomechanics techniques and knowledge 
routinely applied today. It is quickly discovered that 
whereas several of the techniques used in 
geomechanics practice today originated decades 

ago, research knowledge exists today that could 
substantially improve design practices if adopted.  
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Through the seven lessons to be outlined, the paper 
will argue that the development of active 
computational algorithms and software can help 
narrow the gap between geomechanics research 
state of the art and professional practice. (The term 
active computational algorithm will be defined in 
the next section.) The paper will also attempt to 
persuade readers that software development is as 
important a contributor to ‘new’ knowledge and 
insights as any other component of scientific 
research. 

The authors believe that unquestioning adherence to 
traditional views of academic research constitutes a 
major reason for the gap. Grant applications for 
geomechanics research projects, which primarily 
involve software and/or computational algorithm 
development, are seldom adjudged to be ‘original’ 
or ‘new’ enough. The same attitudes persist in the 
assessment of doctoral theses on geomechanics 
software development. With the help of Lesson #2 
especially, the authors hope to convince funding 
agencies and the academic establishment of the 



many scientific merits of software development, 
attributes which call for a re-evaluation of how this 
important enterprise is judged. 

2. A FEW DEFINITIONS 

To avoid ambiguity, we will define a few key terms 
and the sense in which they are used in this paper. 
We define software as the complete suite of 
procedures, such as graphical interface, calculation 
routines, etc., which constitute a stand-alone 
computer program. The term computational 
algorithm refers to a step-by-step procedure for 
solving a numerical problem based on some 
scientific or engineering principle(s) developed in 
the form of pseudo-code, flow chart, or concept 
map. Whenever we refer to an active computational 
algorithm, we mean an algorithm that has been 
implemented in detail in a computer programming 
language such as C++ or FORTRAN, and has been 
well tested and debugged so that it is readily 
incorporated into a program. 

We refer to engineering specialists who practice 
geomechanics by applying the knowledge they have 
acquired to the solution of real-world problems, and 
by translating ideas into reality as practitioners. 
They earn their living by solving the problems of 
clients as efficiently as they can. Under the banner 
of academics, we group specialists whose primary 
activity is to systematically investigate issues in 
order to increase knowledge, or use of this 
knowledge to create new applications. A primary 
characteristic of academic work is originality. 

3. LESSONS OF SOFTWARE DEVELOPMENT 

The lessons learned from the development of 
software from geomechanics research principles are 
many. However, we have attempted to identify 
seven of the most important. They are as follow: 

• Lesson #1: Software is an active medium of 
knowledge; consider it as such. 

• Lesson #2: Software development is integral 
to science; it is hard, creative work that 
generates new knowledge. 

• Lesson #3: Parsimony is invaluable; avoid 
complexity, embrace clarity. 

• Lesson #4: Interface design must not be an 
afterthought; it is fundamental to practical 
engineering. 

• Lesson #5: Users have practical constraints; 
keep things as simple as possible. 

• Lesson #6: Uncertainty is king; make room 
for it. 

• Lesson #7: Legacy codes may be outdated; 
but think carefully before rewriting. 

 

3.1. Lesson #1: Software is an active medium of 
knowledge; consider it as such. 

An inadequate understanding of the nature of 
software development is a major problem in 
geomechanics. Too many specialists view software 
only as a product, a commercial product. But this 
view is inaccurate [2].  

Software is primarily knowledge that has been 
encoded into a computer program. The most 
fundamental attribute of this form of knowledge is 
that it is active [3]. Because software can be 
executed, it is much more readily applied to 
problem-solving than written knowledge. 
Knowledge in written form, on the other hand, is 
inert or passive.  

As will be detailed under the next lesson, the 
transformation of knowledge into working, robust 
computational algorithms is the hardest component 
of geomechanics software development. It requires 
extra-theoretical work, and extensive validation and 
verification effort. It is also a pursuit that yields 
substantial scientific rewards, including the creation 
of new knowledge. Because software is an active 
knowledge medium, it allows specialists to obtain 
deeper and better understanding of parameter 
interrelationships and interdependencies in ways 
written knowledge cannot. It makes it easier to 
perform thought experiments in order to answer a 
broad variety of questions. 

 

3.2. Lesson #2: Software development is integral 
to science; it is hard, creative work that 
generates new knowledge. 

The development of computational algorithms and 
software constitutes a necessary and important 
component of scientific research. In the seminal 
book, “The Structure of Scientific Revolutions,” [4] 
Thomas Kuhn, the renowned philosopher of 



science, describes an activity he calls articulation of 
theory.  This is the empirical work researchers do to 
resolve residual ambiguities in a theory, refine the 
theory, and apply it to problems to which it had 
previously only alluded [4]. In our opinion software 
development is an embodiment of articulation of 
theory. 

The development of active computer algorithms 
from theoretical concepts is far more challenging 
than is generally recognized in the geomechanics 
community.  To be successful, it requires great skill, 
and some trial-and-error, to overcome numerical 
difficulties and instabilities that occur during 
computations [5].  

It is important to note that computational algorithms 
are developed in the course of many geomechanics 
research projects. However, most of these are still 
not active – they have not been converted into well-
tested and ready-to-be-incorporated-into-a-program 
format.  

Why is Software Necessary to Geomechanics? 
Aside from the fact that computers perform 
calculations much faster than humans, there are 
several other reasons for developing active 
computational algorithms out of theoretical 
concepts. Often theoretical principles are not easily 
applied to specific instances. In other cases, even 
though governing principles may be well 
understood, the local behaviours generated by 
specific sets of conditions may not be known. In yet 
other instances, direct application of governing 
principles lead to equations, solvable only with the 
aid of computers.  

Each year also, many research papers submitted for 
publication receive reviews that, although the ideas 
they express are interesting, they offer little 
practical value. The development of active 
computational algorithms and software can bring 
such ideas closer to real-world application. At the 
least it can help better assess how practical or 
impractical a concept is. 

The Intellectual Challenges of Software 
Development 
Creating computational algorithms out of theory is 
not a straightforward process. It frequently relies on 
simplifications, approximations, idealizations, and 
falsifications (assumptions that contradict theory) to 
make things work [5]. These actions can be 
classified under the single banner of extra-
theoretical work. The development of software must 

also consider limitations such as computer memory 
and speed [5]. 

Due to the potential for errors (primarily from the 
required extra-theoretical work), the process of 
transforming theory into computational algorithms 
requires great care. The sources of these errors 
include: 

1. Discretization – the use of discretization 
inevitably results in the likelihood of 
truncation errors. It can also cause 
instabilities in the solution process, which in 
turn can introduce artifacts into the solution 
that may go undetected [5].   

2. Assumptions, simplifications, falsifications 
– any assumptions made during the creation 
of an algorithm can have unintended 
consequences.  

3. Use of knowledge and routines drawn from 
several different sources – software 
development inevitably relies on numerical 
procedures provided in books and other 
sources. The algorithms provided in 
Numerical Recipes for C [6] are a typical 
example. These algorithms may however 
have errors or difficulties the software 
developer may not be aware of. 

4. Programming errors or bugs – these are 
mistakes made during the writing of 
software codes. They either produce 
unintended consequences, wrong results, or 
crashes.  

As a result of the potential of errors in active 
computer algorithms, software results are not 
automatically trustworthy and therefore cannot be 
taken for granted [5]. Results are verified or 
validated through comparisons with known (often 
closed-form) solutions. Validation also involves 
checks of the different routines and algorithms used 
in a program to ensure they perform as prescribed. 
Software and computational algorithms must also 
be checked for robustness. Robust programs work 
well not only under anticipated conditions, but also 
under unusual circumstances that push algorithms to 
their limits.  

Software Development Produces New Knowledge 
The process of developing computational 
algorithms from theoretical principles can produce 
new knowledge and insights. The new knowledge 
stems from questions that arise from the attempts to 



apply governing principles to a wide range of 
particular initial conditions. These questions force 
software developers to examine aspects of 
theoretical concepts and their implications much 
more closely than was originally done during 
development of the theories.  

New knowledge can also result from observations 
of the local behaviours arising from application of 
theory to specific conditions, and from thought 
experiments possible with software. The insights 
gained can lead to refinements or improvements. At 
other times the questions raised can demand newer 
answers.  

A specific geomechanics example of how software 
development produced fresh insights will be 
described in the Examples section of this paper.  It 
involves the development of an algorithm for 
calculating stresses in multi-layered materials. 

 

3.3. Lesson #3: Parsimony is invaluable; avoid 
complexity, embrace clarity. 

In software development, by parsimony we mean 
taking great care to develop computational 
algorithms that require the smallest possible number 
of parameters in order to explain or model 
behaviour. It also means avoiding unnecessary 
complexity. It encourages approaches that are as 
straightforward as possible, and discourages the use 
of solutions that may be very clever but may not be 
robust or general enough, i.e. solutions that may not 
be capable of handling unusual cases. Lastly, 
parsimony demands that code be written in the 
simplest, self-explanatory manner. 

There are many reasons for adhering to the principle 
of parsimony in the development of computational 
algorithms. Every parameter included in an 
algorithm introduces additional uncertainty. 
Keeping parameters therefore to a minimum 
reduces uncertainty in the solution process. Simple 
algorithms are also much easier to understand and 
explain than complicated ones. In addition, by 
keeping code as simple as possible, it becomes 
much easier to find errors and thus minimizes their 
occurrence.  

The last point cannot be stressed enough. Very 
often the details of computer codes are poorly 
documented. Computer languages evolve with time. 
Programmers and researchers move on, taking with 
them important knowledge on the inner workings of 

algorithms. If parsimony is neglected therefore 
during software development, with time it becomes 
virtually impossible to update or fix subroutines. 

Adhering to parsimony does not imply use of 
computational algorithms that are so simple as to 
ignore key aspects of the problem being solved. 
Like Albert Einstein once said, “Things should be 
made as simple as possible, but not any simpler.” 
This underlines some of the challenges facing 
today’s practice of geomechanics. In many cases we 
are analyzing problems in the field with overly 
simple approaches, even though more accurate 
techniques exist, which, to the user, are just as 
simple to apply.  

A case in point is the analysis of rock falls using 
stereomechanical (particle) models. These models 
do not include the influence of the size of a falling 
rock, and do not properly account for its mass. It 
will be shown later in the paper that the behaviour 
of rock falls can be better simulated with rigid body 
impact mechanics (RBIM). Even though the 
framework for RBIM is more involved than the 
stereomechanical approach, RBIM captures the 
physics of the problem much better. At the same 
time, for the user of an RBIM algorithm, it is not 
any more complicated than a stereomechanical 
model. In fact it requires input parameters, which 
are more intuitive to the problem and easier to 
obtain than those used in particle analysis. 

 

3.4. Lesson #4: Interface design must not be an 
afterthought; it is fundamental to practical 
engineering. 

If software is to be a useful tool to geomechanics 
specialists, especially to practitioners, then its user 
interface – the options and tools through which 
users interact with the program – must be well 
executed. It is a tragedy that many engineering 
programs hardly pay attention to good interface 
design, completely ignoring the resulting burden 
imposed on users.  Many excellent research findings 
that could have benefited the geomechanics 
community have been consigned to library shelves, 
because users find the software, which embodies 
these findings, too cumbersome or difficult to 
understand or use. Academia stands especially 
guilty. We seem to stick to a bad formula that 
simply says:  “All that matters is it works!"  

Geomechanics research findings would have much 
greater impact on the state of professional practice, 



if developers of software resulting from research 
would consider that the purpose of any program is 
to allow users greater freedom to concentrate on 
solving the problem at hand, freedom to express 
problem-solving skills. This is accomplished when 
a program removes tedium and frustration from the 
problem-solving process by assuming the less 
skillful chores.  

A user-friendly interface must enable users to 
efficiently solve their problems, and to be satisfied 
with the whole process. It must allow them to 
quickly see available options and to understand how 
to use these options to achieve their goals. It must 
not unnecessarily burden users with the inner 
workings of code. A well-designed program should 
perform a majority of the work, while requiring a 
minimum of information and input from users. 
Unless the use of a program is far less burdensome 
than the problem being solved, the program’s 
application becomes questionable. 

This is not to advocate the use of black boxes. We 
will explain this through an example of the 
application of the finite element method (FEM) to 
slope stability analysis. Although it is absolutely 
essential that users have good understanding of the 
FEM, its capabilities, limitations and caveats, it 
would be crippling if users had to know full details 
of meshing and matrix solution algorithms before 
they could actually create models and solve 
problems.  

The design of a user interface must consider the 
productivity of users. It must ensure a short, gentle 
sloping learning curve. Practitioners are keenly 
aware that people cost a lot more money than 
computers and software. These costs constitute a 
primary reason why the state of geomechanics 
practice lags behind state-of-the-art research. 
Industry finds it hard to justify the costs and delays 
inherent in using knowledge stored in written form, 
or in poorly written software; the expected value of 
the insights to be gained does not match the cost of 
people time. 

At this stage we would like to stress the importance 
of including visualization tools in geomechanics 
programs. Such tools are not merely means of 
transferring facts. Most computations result in a 
bunch of numbers, sometimes huge amounts of 
them. As such visualization is a powerful aid to 
understanding, allowing users to gain precious 
insights into problems. It makes comparisons 

between alternative solutions much easier to make. 
Software developers must understand that 
visualization is by far one of the most effective 
means of communicating to humans. 

 

3.5. Lesson #5: Users have practical constraints; 
keep things as simple as possible.  

Successful transfer of geomechanics research 
advances and knowledge to practice of the 
discipline through development of software will be 
realized only by considering the environment within 
which the discipline is practiced. We have to fully 
understand the constraints and limitations faced by 
practitioners.  

Typically, geomechanics practitioners work with 
limited budgets, tight project schedules and very 
limited knowledge on material properties and 
subsurface conditions. Whether or not they have the 
tools to model problems, practitioners have no 
choice but to make decisions. Given the option, 
however, most practitioners would use software to 
aid their decision making, since computational and 
modelling tools enable logical use of available 
information.  

The time constraints practitioners face can be quite 
severe. The situation of a rock mechanics engineer 
in a mine is a typical example. He/she has several 
tasks to fulfill each work day in different parts of 
the operation. This leaves hardly any time for 
carrying out numerical simulations.  

The conditions we have described demand software 
and computational tools that are as simple as 
possible. These tools must not require more skill 
than most users are expected to possess. Generally, 
specialists in the field, although knowledgeable and 
experienced with practical engineering, are not 
specialists in the details of numerical analysis 
methods. Therefore programs must minimize the 
need of users to be well schooled in the intricacies 
(rules of thumb, exceptional situations, etc.) of 
numerical methods. 

We have also learned that under many of the 
conditions confronting users, well-designed, simple 
software that capture the fundamental physics of 
behaviour are empowering. In the world of 
practitioners, easy-to-understand and easy-to-use 
tools are much more useful than intricate ones, 
which may be more accurate. The simpler tools 
make it easier to think through problems. For 



practitioners, any preoccupation with the details of 
computational algorithms (details which they 
cannot get right unless they have the relevant 
numerical methods expertise) is a barrier, and 
actually produces less understanding, and poorer 
prediction.  

 

3.6. Lesson #6: Uncertainty is king; make room 
for it. 

Because geological materials are formed under a 
broad variety of complex, physical conditions, the 
history of which is not known, geomechanics 
involves large uncertainties. Single-point 
predictions of quantities have therefore practically 
zero likelihood of ever being realized in such a 
world. If room is therefore not made in 
geomechanics software analysis to accommodate 
uncertainty, any conclusions reached will be open to 
question. 

In the application of geomechanics software to real-
world problems, uncertainty can be dealt with in 
different ways. Popular ways of handling 
uncertainty include parametric and scenario analysis 
– the assessment of possible ranges of behaviours 
through variation of input properties and 
consideration of different conditions. Such analyses 
are very difficult to conduct, especially given the 
constraints described above, if geomechanics 
software and computational routines are difficult to 
modify or take too long to compute. For all practical 
purposes, it is nearly impossible if the situation is 
compounded by poor interface design. 

Although parametric and scenario analyses are very 
useful, statistical simulation is an even more 
powerful approach. This is because it enables 
uncertainty to be quantified and the probabilities 
(likelihoods) of outcomes to be estimated.  

We believe that in many situations, the combination 
of statistical simulation with simple models 
produces more realistic capturing of the true nature 
of geomechanics behaviour than the use of 
sophisticated single-point procedures. 

 

3.7. Lesson #7: Legacy codes may be outdated; 
but think carefully before rewriting. 

Often in software and computational algorithm 
development, it becomes necessary to modify older 
(legacy) pieces of code or include them in a new 
routine. These program routines may be obsolescent 

due to the age of the programming languages in 
which they were developed.  

Such codes often contain a wealth of knowledge, 
acquired over the history of the codes’ development 
with huge time investments. They embody all sorts 
of workarounds and modifications to ensure they 
perform as required. Unfortunately, like most codes, 
they are often inadequately documented. In 
addition, personnel such as post-docs and students, 
instrumental in the development of such codes may 
have moved on to other places.  

The issue then is how to modernize such codes, 
while keeping their functionality intact. The task 
can be hugely challenging. The topic of how best to 
deal with legacy codes is beyond the scope of this 
paper. The lesson we would like to share though is 
that any undertaking to rewrite such legacy codes 
should be well thought out. It is a risky task that 
often requires more resources and time than most 
developers budget for. The key is to understand that 
program codes contain a lot of expert knowledge, 
some of which is not formal. They may seem poorly 
written or ugly, but great care has to be exercised in 
modifying or rewriting them. 

4. THE LESSONS AT WORK – THREE 
EXAMPLES 

We will now look at three concrete examples of the 
lessons outlined above at work. The examples 
involve the development of active computational 
algorithms for 

1. Calculating stresses in elastic half-spaces 
comprising multiple parallel layers of 
material 

2. Simulating the behaviour of rock falls, and 

3. Analyzing slope stability with the finite 
element method. 

 

4.1. Elastic Stress Analysis of Multilayered 
Material 

There is a class of geomechanics problems for 
which the prediction of settlement is very important. 
In the design of shallow foundations for buildings 
on soils, for example, it is often the case that 
settlement (especially differential settlement), rather 
than bearing capacity, is of the greatest concern. In 
most of these cases, such as the example of the 
surface loading due to three buildings shown on 



Fig. 1, three-dimensional behaviour is very 
dominant and cannot be meaningfully approximated 
with two-dimensional analyses. 

The first step in the process of computing 
settlements is the determination of the stress 
distribution as a result of surface or sub-surface 
loadings. Despite all the advances of today, elastic 
stresses used in settlement calculations are routinely 
obtained from classical solutions such as those of 
Boussinesq and Westergaard. The problem with this 
is that these solutions make very simplifying 
assumptions, which as will be shown later, can 
distort results. For example, they assume the half-
space of soil material to be homogeneous.  

 
Fig.1: An illustration of three different-sized buildings on a 
site comprising layered materials.  Due to the asymmetry of 
the surface loadings, it is clear that the stresses induced in the 
material strata will have a complex, three-dimensional nature. 

 
Fig 2: Problem of unit load applied over a rectangular area on 
the surface of an elastic half-space. 

In theory, the problem can be tackled with 
numerical methods such as three-dimensional finite 
element or finite difference analysis. The 
difficulties however with these methods of solution 
are that they: 

1. Require significant computing resources not 
(as yet) routinely available to practitioners 

2. Substantial user expertise in ensuring 
adequate three-dimensional meshes. 

Generally, three-dimensional meshing is quite 
challenging. It becomes even more challenging in 
problems involving thin seams (layers) of material. 
If thin layers are not properly discretized into 
elements, their elements will have poor aspect 
ratios, which in turn compromise the accuracy of 
results. In addition, if thin layers are not discretized 
with sufficient numbers of elements in the direction 
of their thickness, then rapid stress gradients in this 
direction may be missed. This aspect of finite 
element and finite difference modeling places the 
onus on users to ensure adequate meshes.  

About twenty years ago, a theoretical method was 
developed for solving for the stresses and 
displacements in two bonded elastic half-spaces due 
to the application of a point load [7, 8]. Based on 
what is known as the method of images, the method 
used reflection and transmission matrices to 
calculate the required stresses and displacements. 
When the technique was originally published, it was 
deemed theoretically interesting, but of little 
practical value.   

Recently, the geomechanics research group at the 
Lassonde Institute of the University of Toronto 
looked into developing an active, fast, three-
dimensional computational algorithm for 
calculating stresses due to foundation loads. It was 
decided to develop one based on the method of 
images solution, especially since such an algorithm 
would be meshless – it would only require 
integration of loads over their area(s) of application. 

A A' 

Considerable extra-theoretical work had to be done 
in order to achieve the goal. The original two-
material method had to be extended to any number 
of materials. Upon attaining this end, the 
contribution of the infinite images generated in the 
method had to be carefully studied. It was then 
discovered that, paired in a particular way, several 
terms cancelled out, meaning only very few terms 
were actually required. Next a robust integration 

Linear elastic 
material 



scheme [9] had to be employed to enable the new 
computational algorithm to produce accurate stress 
results for all loading configurations. 

The validity of the new method was established 
through comparisons to known analytical solutions 
or to solutions obtained from three-dimensional, 
elastic finite element analysis. One such verification 
is described next. 

 
Fig. 3: Contours of the vertical stress distribution on the 
vertical plane through A-A' for a homogeneous half-space. 

 
Fig 4: Problem of unit uniform load applied over a square area 
on the surface, but this time with a stiffer, thin layer at some 
depth below the surface. 

Fig. 2 shows the application of a unit, uniform load 
to a square surface area of an elastic, homogeneous 
half-space. We will consider the stress distribution 
on a vertical plane passing through A-A' induced by 
the applied load. Contours of this stress distribution 
are shown on Fig. 3. These contours are identical to 
those predicted from the analytical Boussinesq 
solution to the problem. 

An interesting thought experiment was performed 
with the new computational tool. A thin horizontal 
layer with a higher stiffness (larger Young’s 
modulus) was inserted into the problem as shown 
on Fig. 4. Two cases of Young’s modulus were 
considered: in the first case the thin layer was five 
times stiffer than the original material, and in the 
second case ten times stiffer.  
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Fig. 5: Contours of the vertical stress distribution on the 
vertical plane through A-A' for the case when the thin middle 
layer is five times stiffer than the upper and lower layers. 

 
Fig. 6: Contours of the vertical stress distribution on the 
vertical plane through A-A' for the case in which the thin 
middle layer is a ten times stiffer than the upper and lower 
layers. 

The stress distribution on the vertical plane through 
A-A' are shown on Figs. 5 and 6, respectively. The 
results are very different from the homogeneous 
case. In both cases the stiffer thin layer essentially 
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shields the lower material zone from the applied 
load. The shielding is more pronounced in case 2. 

This example illustrates several of the lessons 
outlined above. Passive knowledge deemed 
impractical 20 years ago was converted into an 
active software tool suitable for routine analysis. 
The process of articulating the theory required an 
extension to the theory, and extra-theoretical work 
to develop a fast algorithm. It yielded new insights 
into the use of reflection and transmission matrices 
for elasticity, including the observation of terms that 
negate one another.  It also enabled the conducting 
of thought experiments, which allow a user to gain 
better intuition into the influence of different 
material stiffnesses. 

It was also learned that although the new active 
algorithm for elastic stress analysis was restricted to 
parallel material layers, it offered significant 
improvements over the existing simple approaches 
used in current practice. By not requiring meshing, 
the new algorithm is more amenable to practical 
analysis – users do not have the additional burden 
of ensuring good meshing. Because it eliminates 
meshing, the method ensures that models can be set 
up quickly, and results obtained significantly faster 
than is possible with finite element or finite 
difference modeling.  

 

4.2. Rigid Body Impact Mechanics Analysis of 
Rock Falls 

Rock falls can pose significant hazards to 
infrastructure such as highways, buildings, and 
mine open pits and, sometimes, result in personal 
injury or death. Their prediction is a difficult task 
fraught with uncertainty. The geometries of natural 
slopes, including the location of the boundaries 
between different slope materials, can vary 
considerably from one cross-section to the other.  
The properties of a slope’s materials can also vary 
widely, while the location and mass of rocks that 
may dislodge are also uncertain. Probabilistic 
simulation has proven very useful in analyzing this 
class of geomechanics problems [10].  

The interactions of a falling rock with a slope 
surface mainly consist of bouncing, sliding and 
rolling. In some cases the rock may fracture into 
smaller pieces upon impact. The primary factors 
controlling impact interactions and trajectories of a 
falling block of rock are the:  

1. Geometry of the slope  
2. Shape and mass of the rock, and 
3. Energy dissipated upon impact of the block 

on a slope segment.  

To mitigate the effects of rock falls with measures 
such as restraining nets and ditches, engineers need 
to predict the velocity, frequency, height of bounce 
and run-out distance of potential falling rocks. 
Given the large uncertainties of the problem, it is 
best to obtain statistical distributions of these 
quantities in order to design effective remedial 
measures. 

Most current rock fall simulation models [11, 12, 
13, 14] are based on particle (stereomechanical) 
models. These models represent falling rocks with 
point masses. Two other input parameters, the 
normal and tangential coefficients of restitution 
( , and , respectively), are required in these 
models.  
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The normal coefficient of restitution is defined as 
the ratio of the normal component of the outgoing 
velocity of a particle after it collides with a surface, 

 to the normal component of the velocity prior 

to collision (incident velocity), , i.e. 
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The tangential coefficient, , is similarly defined 
for the tangential components of outgoing and 
incoming velocities.  

TR

The primary merit of stereomechanical models is 
their simplicity and speed of computations. The 
latter attribute makes them very conducive for 
probabilistic analysis. They suffer though from 
three serious deficiencies: 

1. Shape, which in reality has significant 
influence on trajectory, is ignored. 

2. Generally, mass although incorporated, does 
not affect the total path of a falling block. It 
is not considered during impact interactions, 
which play a key role in determining the 
overall trajectory, but is only used to 
compute energies. 

3. In reality, normal and tangential coefficients 
of restitution are not intrinsic parameters. It 
will be shown later that they depend on 
factors such as incident angle, frictional 
characteristics of the falling block-slope 
contact, and on the point on the falling 
object (for non-circular shapes) that collides 
with a surface [15]. 



Simply put, the particle models widely used in 
today’s practice are too simplistic, ignoring 
important facets of the problem. However, in the 
absence of better active computational tools, they 
are the tools for practical application. 

There are a number of approaches that better model 
the true physics of the rock fall problem. One of 
them is the powerful discrete element method 
(DEM). It can accurately model rock-slope 
collisions and can even simulate breakup. The main 
drawbacks of the method though are its slow 
computational speed, which rules out probabilistic 
simulations, and the number of input parameters 
required. Some of these parameters, such as spring 
stiffnesses, are not observable, and therefore not 
easily measured.  

The slowness of the DEM arises mainly from the 
need to detect contact and the smallness of the time 
steps required to adequately model impact 
interactions. If care is not exercised with time step 
magnitude, the resulting behaviour might be 
incorrect. Unfortunately very few practitioners have 
enough experience with this intricacy to be able to 
specify correct time steps. 

An alternative approach that is less sophisticated, 
but sufficiently captures the essential behaviour of 
rock falls, is rigid body impact mechanics (RBIM). 
RBIM models the impulses (but not the contact 
forces) that develop during collisions and the 
dynamic response of the colliding bodies [15]. It 
uses the equations of kinematics and motion. Unlike 
the DEM, it assumes the period of contact during 
which the velocities of bodies change to be 
instantaneous. 

The term RBIM is an oxymoron. Ideal rigid bodies 
do not deform. However, for the method to 
adequately model impact behaviour (namely the 
impulses arising out of collision that change the 
velocities of colliding bodies), it assumes the region 
of contact between colliding bodies to be a very 
small (localized) region.  

In RBIM, collision is characterized by two phases – 
compression and restitution. The compression phase 
occurs when a falling body first impacts a surface. 
During this phase the kinetic energy of the body is 
converted into internal deformational energy due to 
the contact force that develops. The compression 
phase is followed by restitution, a phase during 
which the elastic component of the internal 

deformational energy is released and converted into 
an exit kinetic energy.   

The input parameters required for RBIM analysis 
are all observable and measurable. In addition to 
shape, mass, initial velocities, etc., it requires the 
friction coefficient of the contacting surfaces, and 
an energetic coefficient of restitution. The energetic 
coefficient of restitution is simply the square root of 
the ratio of the elastic energy recovered during 
restitution to the internal energy of deformation 
absorbed during compression. It can be readily 
measured or estimated. A value of 1 indicates a 
perfectly elastic collision in which no energy is lost, 
while a value of 0 implies a perfectly plastic 
collision in which the impacting body does not 
separate and fly off.  

From its description, it can be seen that the 
parameters of RBIM, in addition to being 
measurable, are very intuitive to engineers. Tests 
have also shown that it models the real behaviour of 
falling objects very well. Upon impact objects can 
bounce, slide, rotate or stick, or exhibit 
combinations of these behaviours. 

To illustrate the advantages of RBIM over 
stereomechanical modeling of rock falls, we will 
consider the example of a falling rock impacting a 
horizontal surface. The normal component of the 
incoming velocity ( ), the tangential component 
of the incoming velocity ( ) and angular velocity 
(

,ini NV

,ini TV

iniω ) of the rock are -10m/s, 10m/s and 0rad/s, 
respectively (Fig. 7). (Rotation is assumed positive 
in the clockwise direction.) 

α

Vini,T = 10

Vini,N = -10

 
Fig. 7: The behaviour of a falling rock upon impact with a 
horizontal surface. 

We will consider two shapes of the falling rock: a 
sphere and an ellipsoid (with major axis of 2m and 
minor axes of 1m). The rock/surface contact is 



assumed to have a friction angle of 25° (coefficient 
of friction μ  = 0.47) and the energy coefficient of 
restitution assumed, , assumed equal to 0.8.  *e

We would like to draw attention to the intuitiveness 
of the parameters friction angle and energy 
coefficient of restitution. Given the conditions 
prevailing at a field site, it is much easier to 
estimate these values than to guess values for the 
conventional normal and tangential coefficients of 
restitution (  and ) used in stereomechanical 
analysis. 
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Fig. 8: Plot of normal coefficient of restitution, , with 
impact angle for an ellipsoid. 
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Fig. 9: Plot of tangential coefficient of restitution, , with 
impact angle for an ellipsoid. 
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The equations of RBIM enable prediction of the 
outgoing normal, tangential and angular velocities 
after impact. Using these values, the conventional 

 and  can be easily calculated with the 
equations described earlier. For the case of the 
sphere, the RBIM calculates  = 0.8,  = 0.71, 
and recovery of 68% of the total kinetic energy 
prior to collision. 
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In the case of the ellipsoid we discover that the 
outgoing velocities, and thus the conventional 
coefficients of restitution, as well as the energy 
retained are found to strongly depend on the 
orientation of the ellipsoid (α on Fig. 7) at impact. 
Figs. 8, 9, 10 and 11 show plots of , , the 
rebound rotational velocity, and the percentage of 
energy retained, respectively, as functions of impact 
angle α.  

NR TR

-6

-4

-2

0

2

4

6

8

10

0 45 90 135 180 225

Impact angle 
 (r

ad
/s)

 
ω

 (r
ad

/s
) 

Impact angle (α) 

Fig. 10: Plot of angular rotation with impact angle for an 
ellipsoid. 
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Fig. 11: Plot of the ratio of total energy retrieved (Eret) after 
collision to total energy before impact (Eini) against impact 
angle for an ellipsoid. 
Figs. 8 through 11 show that, for the ellipsoid, , 

, the rebound rotational velocity, and the 
percentage of energy retained are all highly 
nonlinear functions of impact angle. The plot of  
on Fig. 9 reveals that the tangential coefficient of 
restitution initially increases with increasing impact 
angle, attaining a maximum at α = 55°. Thereafter 

 begins to decline and reaches a minimum at α = 
125°. The behaviour of the curve after that point is 
also highly variable. Similarly, the behaviour of the 
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normal coefficient of restitution, , shown on Fig. 
8 varies nonlinearly with impact angle. 

NR

Fig. 10 shows that the magnitude and direction of 
rotation is also highly dependent on the angle of 
impact. On Fig. 11 it can be seen that the energy 
retained in eccentric collisions can be as high as 
85% and as low as 22%.  

These analyses of impact behaviour of a relatively 
simple ellipsoidal shape clearly demonstrate that  
and  vary in complex manners with impact angle 
for non-circular shapes. They are definitely not the 
constants input into stereomechanical models. An 
attraction of RBIM for practical rock fall analysis is 
it predicts all this irregular behaviour without 
asking users for unusual inputs or a greater number 
of parameters. 
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Another attractive feature of RBIM is that it has the 
potential to be sufficiently fast so as to be used for 
practical probabilistic analysis. Currently, research 
is being done at the University of Toronto to 
develop an active computational algorithm that 
performs RBIM analysis of rock falls. The results 
so far are quite promising.  

Some issues however remain to be resolved. Two of 
them concern how to deal with sharp corners in 
order to eliminate spurious bounces, and how to 
speed up computations. The University of Toronto 
research team is experimenting with different 
schemes, simplifications and assumptions that will 
address these questions.  

Several of the lessons learned from geomechanics 
software development are epitomized in this 
discussion of rock fall analysis. The example 
illustrates how the gap between research and the 
state of geomechanics practice can be narrowed 
through software development. It shows how the 
RBIM, from the user perspective, is no more 
complicated than existing stereomechanical models, 
but offers significantly better replication of true 
behaviour. At the same time, through the example 
we obtain glimpses of the creative and hard work 
required to make theory active. 

 

4.3. Shear Strength Reduction Method of Slope 
Stability Analysis 

The assessment of the stability of slopes is a very 
common problem in geotechnical engineering. The 
most popular measure of the stability of a slope is 

the factor of safety. Traditionally it is computed 
using limit-equilibrium method-of-slices analysis. 

Limit-equilibrium analysis makes a number of 
simplifying assumptions including: 

• A priori judgments on the shapes or 
locations of failure surfaces 

• Assumption that the sliding mass moves as a 
rigid block, with the movement occurring 
only along the failure surface 

• Assumption that the shear stresses are 
uniformly mobilized along the entire length 
of the failure surface, and  

• Various assumptions on interslice forces. 

The power of limit equilibrium methods lies in the 
fact that they are very simple, produce very 
reasonable answers in short computational times 
and require relatively small numbers of input 
parameters. In addition, engineers have acquired 
great experience with these methods over decades 
of use. As a result the conditions under which the 
answers of different limit-equilibrium techniques 
can be trusted are well established. 

The primary disadvantages of limit-equilibrium 
analysis stems from its a priori assumption of a 
failure surface, and omission of stress-strain 
behaviour. As a result of the omission limit-
equilibrium analysis cannot reveal the development 
of the critical failure mechanism and cannot predict 
deformations at failure.  

A more complete solution of slope stability can be 
determined if the boundary conditions of the 
problem and constitutive laws of materials are 
known, and the conditions of equilibrium and strain 
compatibility enforced. The finite element method 
(FEM) is the most common numerical technique for 
performing such analyses.  

A method known as the Shear Strength Reduction 
(SSR) method originally devised in the mid-1970s 
[16, 17], enabled FEM analysis to be used in 
calculating slope factors of safety. It overcomes the 
liabilities of limit-equilibrium methods described 
above, and is more readily extended to three-
dimensional analysis. 

Conceptually, the SSR method is very simple: to 
determine the factor of safety of a stable slope, 
systematically reduce (divide) the shear strength of 
its material by factors until the slope is brought to 
complete failure [18]. The reduction factor that 
brings the slope to the verge of failure is then the 



factor of safety. For the linear Mohr-Coulomb 
strength envelope the method is very 
straightforward. 

 
Fig. 12: Finite element model of an open pit slope consisting 
of three zones of material. 

 
Fig. 13: Plot of the contours of maximum shear strain at 
failure. This model assumes all three materials to have the 
same stiffness. The failure surface obtained from conventional 
limit-equilibrium (Spencer) analysis is superimposed. 

 
Fig. 14: Plot of the contours of maximum shear strain at 
failure for the model that assumes the toe material to be stiffer 
than the other two. The failure surface obtained from 
conventional limit-equilibrium (Spencer) analysis is 
superimposed. 

The solution of an FEM model is stable when all 
equilibrium conditions are satisfied, and unstable or 
non-convergent otherwise. (The transition from 
stable to unstable behaviour is often characterized 
by a sharp increase in displacements.) As a result, in 

the SSR method solution convergence is used as the 
criterion for determining the onset of slope failure.  

As an example, SSR analysis reveals that when 
there is great contrast in the stiffnesses of the 
materials in a slope, although the factor of safety 
predicted by the SSR method does not differ much 
from that obtained through conventional limit-
equilibrium analysis, the location and shape of the 
failure mechanism can be quite different [19].  

Material 1 

Material 2 

Three images are provided below that show the SSR 
analysis of a slope with multiple material zones. 
The finite element model of the slope is shown on 
Fig. 12.  

Material 3 

If all three materials are assumed to have the same 
Young’s modulus, the factor of safety and failure 
mechanism (band of highest maximum shear 
strains) predicted by SSR analysis and conventional 
limit-equilibrium analysis with the Spencer method 
are very similar. These results (the contours of 
maximum shear displacements and the slip surface 
predicted by limit-equilibrium analysis) are shown 
on Fig. 13.  

Failure surface 
from Spencer 
method

The stiffness of the material at the toe (Material 3) 
of the slope was then increased a hundred times and 
the analysis re-run. The new slope failure 
mechanism is visible on Fig. 14. Although the 
factor of safety remained the same, the shear strain 
pattern changed, especially in the toe area. 

The SSR results are very intuitive. They show that 
the shear deformations tend to concentrate in the 
softer materials. These results can have quite an 
impact, for example, on where to place instruments 
in order to monitor the onset of failure. 

Failure surface 
from Spencer 
method 

The SSR method is a classic illustration of how 
wide the gap between research and the state of 
geomechanics practice can be. Although in 
principle SSR analysis could be performed with any 
geotechnical FEM program, it was not applied to 
routine slope analysis until quite recently.  

In our opinion, aside of computing speed in the 
past,   the primary reason was related to the manual 
effort involved in setting up the several models with 
different factored strength, especially for models 
comprising multiple materials. A user also had to 
properly keep records in order to know which file 
used which reduction factor.  

The SSR example also enables us to see how 
software designed to be simple for users can alter 



the state of practice.  Until the implementation of 
automatic meshing, the user who wanted to perform 
such analysis had to manually define meshes for 
each of the models. Upon running all models the 
user then had to open each model in order to 
determine the onset of instability and hence the 
factor of safety. And after all this work, it was still 
not easy to visualize the development of the failure 
mechanism. 

Itasca [20] and PLAXIS [21] were the first to 
develop commercial software that automatically 
performed SSR analysis. The latest release of 
Phase2 [22] includes many interface and 
computational engine additions that aid ready 
creation of SSR models and make interpretation of 
SSR results easier. It also allows SSR analysis for 
Hoek-Brown and Generalized Hoek-Brown 
materials, making the method readily applicable to 
rock slopes.  

Users have been also given the ability to seamlessly 
import limit-equilibrium models into the FEM 
program – the geometry is automatically meshed 
and each material in the model assigned a default 
stiffness value. As a result users can choose to 
analyze conventional models with the new tool at 
hardly any costs in terms of effort to set up models. 

Since the SSR method became accessible to 
practitioners, it has rapidly gained in popularity. 
Practitioners use it to gain insights into problems in 
ways previously not possible with limit-equilibrium 
tools.  

5. A MESSAGE TO THE ACADEMIC 
COMMUNITY 

In academia, rewards such as research grants, 
recognition, degrees, etc., accrue to those who seek 
for new knowledge as defined by traditional criteria 
used in science. The traditional assessment criteria, 
we believe, have not been very kind to software 
development.  

Through the arguments offered in this paper, we 
hope we have convinced the academic community 
that geomechanics software development is not a 
trivial and simple-minded exercise in transforming 
known theoretical concepts into computer 
algorithms. It is exciting work, integral to the 
practice and advancement of science and 
engineering. It generates new knowledge of 
significant scientific value in diverse ways.  

It is our hope therefore, that software development 
will receive greater attention and will be given 
greater support. This will go a long way in 
advancing the real-world practice of geomechanics. 
It has the potential to radically improve our 
solutions and widen the scope of problems we can 
tackle.  

6. CONCLUDING REMARKS 

In the 17th century, academia discovered the 
transforming influence of academic publishing, the 
formal process of subjecting new ideas to critical 
review and ensuring open, transparent and 
widespread sharing of ideas. Initially academic 
publishing was scorned, but today one cannot 
comprehend what the world would be like without 
this vehicle. Technological changes, especially the 
Internet, are rapidly changing the landscape of 
academic publishing as more and more publications 
move to the electronic format, and making the 
dissemination of ideas more widespread than ever.  

We believe that because software makes knowledge 
active it presents an even more powerful medium 
for disseminating scientific and engineering 
knowledge; it is a much more ready means for 
testing ideas. Reminiscent of the beginnings of 
academic publishing, in many important and 
influential establishments such as universities and 
funding agencies, user-friendly software 
development is not deemed an endeavour of 
scientific calibre.  

We hope that this paper will help the geomechanics 
community to better appreciate the impact software 
and active computational algorithm development 
can have on the state of our practice. They present 
incredible opportunity for transforming theory into 
practice. They offer means of gaining new insights 
and performing thought experiments.  

Most of the lessons we talk about, we learned from 
experience. We share them to encourage others to 
take up this enterprise, seeing it is as an exciting 
way of doing geomechanics. It contributes to the 
advancement of both research and real-world 
practice.  It is our hope also that these lessons will 
help people, who evaluate research proposals, to 
better appreciate the important position software 
development occupies in the science of 
geomechanics.  
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