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ABSTRACT: This paper explores application of the Finite Element Method (FEM) and Shear Strength Reduction (SSR) analysis 
to compute probabilities of failure for slopes. It does so using two probabilistic approaches: the Point Estimate Method (PEM) and 
limited numbers of Monte Carlo simulations. The paper explains why probabilistic analysis with numerical methods such as the 
FEM is challenging, and how the PEM and Monte Carlo simulations can be used to calculate the statistical moments of output 
variables and to estimate slope probability of failure. One of the paper’s two examples describes application of probabilistic FEM 
analysis to determine slope probability of failure due to the random distribution of joints (joint networks). 
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1. INTRODUCTION 

Due to rock masses being formed over large time 
periods under wide-ranging, complex physical 
conditions, their properties can vary significantly 
from place to place, even over short distances. As 
well the measurement of rock mass properties, 
especially in situ, is a very challenging undertaking. 
Except at exposed surfaces (which are generally 
limited compared to the volume of rock impacting 
design and which may not be representative of a 
volume of geologic material), rock mass features 
such as networks of joints are not directly 
observable. Even when properties can be readily 
determined, inaccuracies in measurement and 
differences between laboratory- and field-scale 
behaviour introduce significant error. As a result the 
engineering of excavations in rock involves large 
uncertainties.  

In such an environment, predictions based on single 
evaluations (typically average values) have 
practically zero probability of ever being realized, 
and design decisions based on them are therefore 
open to question. It is better to evaluate and manage 
risks (the probability of unpleasant circumstances). 

Statistical simulation offers a means for dealing 
with uncertainty. It can quantify uncertainty and 
estimate the likelihoods of occurrence of different 
outcomes. It can thus help engineers to develop 
more robust and economic designs and solutions.  

Numerical methods such as the Finite Element 
Method (FEM) and the Discrete Element Method 
(DEM) have been successfully applied to slope 
stability analysis [1-4]. This is achieved through the 
Shear Strength Reduction (SSR) approach [5-11] 
for calculating factor of safety.  

A primary advantage of numerical methods is their 
versatility. They can model a broad range of 
continuous and discontinuous rock mass behaviours 
without a priori assumptions.  

The capabilities of numerical methods have helped 
soften the boundaries between the classification of 
rock slope stability problems into categories such as 
wedge-type failures controlled discontinuities, step-
path failures that combine slip along joints with 
shearing through intact material, and rotational-type 
failures in which rock masses essentially behave as 
continua. 



Application of numerical methods to probabilistic 
analysis in rock engineering has challenges 
however. Because numerical methods are more 
computationally intensive than limit-equilibrium 
approaches and thus relatively slower to compute, 
their application in probabilistic rock engineering 
requires careful thought and implementation.   

The paper will provide overviews of two methods 
of probabilistic analysis that can be applied to the 
numerical modelling (FEM in combination with 
SSR analysis) of rock slopes.  It will evaluate the 
probabilities of failure of two slope examples. The 
first example will involve uncertainty associated 
with strength parameters. The second will evaluate 
the impact of joint network geometry randomness 
has on the stability of a slope in blocky rock.  

2. PROBABILISTIC METHODS FOR SLOPE 
STABILITY ANALYSIS  

The ultimate goal of a probabilistic slope stability 
analysis is to obtain the complete distribution of 
factor of safety values given a set of random 
(uncertain) input variables with specified statistical 
properties. From the distribution of factor of safety 
values, probability of failure can be determined. In 
this case, factor of safety is known as a response 
variable, and the algorithm used to calculate factor 
of safety as a response function.  

It is generally difficult to obtain the complete output 
probability distribution when the response function 
is complicated or implicit; the best that can be done 
is to determine statistical moments of the output 
distribution, and not the distribution itself. 

Statistical moments are quantities that capture both 
overall and in-depth information on the geometry 
(location and appearance) of a probability 
distribution function. The mean is the first statistical 
moment. It provides information on the location of 
a distribution. The other moments, which are of 
higher order, are commonly taken about the mean. 
The second moment of a statistical distribution is 
variance. It describes the spread or dispersion of the 
distribution about the mean. The third and fourth 
moments, skewness and kurtosis, respectively, 
provide further information on distribution shape. 

We will investigate two probabilistic methods – the 
Point Estimate Method (PEM) and Monte Carlo 
simulation –used in engineering risk analysis to 
calculate statistical moments. Each will be applied 
to FEM-SSR analysis of slopes in rock masses.  

2.1. Point Estimate Method (PEM) 
The Point Estimate Method (PEM) was originally 
developed by Rosenblueth [12, 13]. As its name 
suggests, the PEM uses a series of point estimates – 
point-by-point evaluations of the response function 
at selected values (known as weighting points) of 
the input random variables – to compute the 
moments of the response variable. The method 
applies appropriate weights to each of the point 
estimates of the response variable to compute 
moments. The weights can differ for different 
points. Although the method is very simple, it can 
be very accurate [14, 15].  

The PEM requires the mean and variance (and 
sometimes the third moment, skewness) as input 
variables. It can be readily applied to response 
functions that are not closed-form or explicit, and to 
the results of existing deterministic programs.   

The PEM uses two weighting values – typically one 
standard deviation to each side of the mean – for 
each input random variable. For all the different 
possible permutations of the input, full FEM 
analyses are carried. The calculation of statistical 
moments for outputs is based on the results of the 
computed FEM models.  

The main disadvantage of the PEM is that it suffers 
from the ‘curse of dimensionality’: as the number of 
random variables increases the number of point 
evaluations increases exponentially. This 
significantly increases computational time and 
effort. Modifications that reduce the number of 
point evaluations have been made to the method 
[16, 17]. However, these modifications move 
weighing points farther from mean values as the 
number of dimensions increases, and can lead to 
input values that extend beyond valid domains [15]. 
As a result, Rosenblueth’s original PEM will be 
used in this paper.  

2.2. Monte Carlo Method 
The Monte Carlo method is very powerful and 
flexible, and can be applied to a very wide range of 
problems. It is also very simple to use and can be 
quite accurate if enough simulations are performed. 
In the Monte Carlo method, samples of probabilistic 
input variables are generated and their random 
combinations used to perform a number of 
deterministic computations. Information on the 
distribution and moments of the response variable is 
then obtained from the resulting simulations.  



Monte Carlo simulations can be used on existing 
deterministic programs without modifications. As a 
result they are popular for probabilistic FEM 
analysis [18]. Like the PEM, they allow for multiple 
response functions in a single model. Unlike the 
PEM though, they are not affected by the ‘curse of 
dimensionality;’ the number of simulations required 
is independent of the number of input random 
variables.  

Other important advantages of the Monte Carlo 
method include: 

1. Flexibility in incorporating a wide variety of 
probability distributions without much 
approximation, and 

2. Ability to readily model correlations among 
variables. 

The primary disadvantage of the Monte Carlo 
method is that it can be computationally expensive, 
requiring many simulations in order to achieve 
desired accuracy [19]. As a result, with present 
computing power it is difficult to perform FEM 
probabilistic analysis (with hundreds of 
simulations) that produces detailed distributions of 
output variables.  

A few Monte Carlo simulations can be used to 
obtain ‘rough’ estimates of the statistical moments 
of output variables, however. Plots of number of 
samples against the mean and variance of factors of 
safety conducted with a limit equilibrium program, 
Slide [20], indicate that although such sample sizes 
can generally give reasonable estimates of the mean 
factor of safety, they underestimate standard 
deviation.  This in turn leads to the approximate 
Monte Carlo method overestimating reliability 
index and underestimating probability of failure.  

Using the moment estimates and assuming a 
probability density function (pdf), such as the 
normal or lognormal distribution, for an output 
variable, the distribution of the output variable can 
be approximated. Quantities such as probabilities of 
failure can then be estimated based on this 
knowledge. As an example, if in an analysis we 
assume factors of safety to be distributed according 
to a normal distribution, then we can use the 
following relationships [21] to calculate a 
probability of failure from mean, μ , and standard 
deviation, σ : 
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σ
−
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where Φ  is the standard normal cumulative 
distribution function. 

The definition of the reliability index, β , when 
factor of safety values are assumed to be 
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The combined approach of using a few Monte Carlo 
simulations to estimate moments and assuming 
functional forms for output variables will be 
referred to as the approximate Monte Carlo method 
in the rest of this paper. Given that, for the small 
numbers of simulations currently feasible with FEM 
analysis, the variance of factor of safety can fairly 
differ from ‘true’ values, approximate Monte Carlo 
analysis only estimates probabilities of failure 
within about an order of magnitude. This 
nevertheless is useful information for making 
decisions, especially given the large uncertainties 
associated with geologic environments and their 
properties. 

3. EXAMPLES 

Two examples, which demonstrate the application 
of FEM to probabilistic rock engineering analysis, 
will be described next.  The first example examines 
application of both the PEM and approximate 
Monte Carlo method. The second involves only 
approximate Monte Carlo analysis (the reason for 
this will be given later). Both examples use the 
same overall slope geometry shown in Figure 1. 

3.1. Example 1 – Estimation of probability of 
failure DUE to strength Uncertainty  

This example examines a slope in a homogeneous 
rock mass that can be described with Mohr 
Coulomb parameters. The tensile strength of the 
material is assumed to be deterministic and equal to 
zero. The cohesion and friction angles of the 
material are assumed to vary according to normal 



distributions with the following means and standard 
deviations parameters: mean cohesion value = 0.5 
MPa, standard deviation of cohesion = 0.1 MPa, 
mean friction angle = 25o, and standard deviation of 
friction angle = 5 o.  

 
Figure 1. Basic geometry of the slope.  

FEM results for this model were validated through 
comparison to values given by non-circular failure 
analysis with the limit-equilibrium program Slide 
[20]. The limit-equilibrium analysis was based on 
Bishop’s method. To determine the probability of 
failure, 5000 Latin Hypercube simulations were 
performed on each of the non-circular surface used 
in the search for the critical deterministic failure 
surface. Slide produced the following results: 

1. Mean factor of safety  =  1.832 

2. Probability of failure  =  0.14%, and 

3. Reliability index (assuming factors of safety 
are normally distributed) = 2.863 

PEM Analysis 
Since there are two stochastic variables in the 
example, the PEM evaluation of factor of safety 
moments involves 22 (=4) point estimates using 
Phase2. We adopted the following widely-used 
convention for the PEM combinations listed in 
Table 2: 

1. For any given stochastic variable, a 
weighting value of (mean + one standard 
deviation) is denoted with a “+”, while 
(mean – one standard deviation) is denoted 
with a “–”.  

2. In all inscriptions for weighting points, the 
symbols for the stochastic variables appear 

in the same sequence in which the variables 
are listed in Table 1. 

For example, +- refers to the weighting 
point [ ]( ),cohesion cohesion friction angle friction angleμ σ μ σ+ −⎡ ⎤⎣ ⎦ . 

The first and second moments (around the origin) 
are calculated according to the following equations 
[22]: 

1. First moment (mean):  
4

1
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where the s are the weights. For our 
example the weights have a constant value 
of 1/4. 
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4

2

1
( )

ii
i

E F PF
=

= ∑ 2    (7) 

The variance (second moment around the mean) is 
then determined as  

[ ]22 )()()( FEFEFVar −= .    (8) 

The standard deviation is the square root of the 
variance. 

Table 1. Statistical Moments obtained from PEM 

# Weighting 
Point 

Factor of 
Safety  

1 ++ 2.17 
2 -- 1.42 
3 +- 1.65 
4 -+ 1.91 
   

Mean Factor 
of Safety 

1.7875 

Variance 0.0788 
Standard 
Deviation 

0.2807 

Reliability 
Index 

2.805 

 

Probability of 
Failure 

0.25% 

 

The factors of safety for the different PEM variable 
combinations, and the resulting mean factor of 
safety, probability of failure and reliability index are 
all shown on Table 1.  

Approximate Monte Carlo Analysis 
50 Monte Carlo simulations of Phase2 SSR analysis 
were used to estimate the mean and standard 
deviation of factor of safety, reliability index and 
probability of failure (see Table 2). 



Table 2. Statistical Moments obtained from Approximate 
Monte Carlo 

# Quantity Value 
1 Mean Factor 

of Safety 
1. 875 

2 Standard 
Deviation 

0.269 

3 Reliability 
Index 

3.255 

4 Probability of 
Failure 

0.06% 

 

Figures 2 and 3 indicate contours of total 
displacement and maximum shear strain, 
respectively, typical of all the runs in the analysis. 
These figures show the rotational-type failure 
predicted by FEM-SSR analysis. 

 
Figure 2. Contours of total displacement, typical of the Monte 
Carlo simulations. 

 
Figure 3. Typical contours of maximum shear strain, showing 
the shear band that induces collapse. 

Discussion 

The results (mean factor of safety, reliability index 
and probability of failure) obtained from the PEM 
simulation (with FEM-SSR analysis) were quite 
close to those of the limit-equilibrium method. This 

confirms the observation that, despite its simplicity, 
the PEM is quite accurate under many conditions.  

The results also show that although the approximate 
Monte Carlo method overestimated the reliability 
index and underestimated the probability of failure, 
the answer was within one order of magnitude of 
the Slide and PEM values. This information is still 
quite useful given the large uncertainties of 
geotechnical engineering. 

3.2. Example 2 – Estimation of probability of 
failure DUE to Joint Network Uncertainty  

For blocky rock masses, the locations of the 
discontinuities relative to each other and relative to 
slope geometry have significant impact on how 
failure mechanisms form and propagate. It has been 
demonstrated [23] that, of the current methods of 
probabilistic analysis, randomness in joint network 
geometry can be modelled only through Monte 
Carlo simulation.   

 
Figure 4. A realization of the stochastic joint network with 
irregularly spaced joints of varying length. 

The performance of the Monte Carlo simulation on 
the evaluation of slope stability uncertainty due to 
rock mass jointing was evaluated on a simple, 
homogeneous rock slope with a network of joints. 
The FEM program Phase2 [3], which performs SSR 
analysis and simulates joint networks, was used. 
The goal was to estimate the first two moments – 
mean and variance – of the distribution of factors of 
safety for the slope, and then from these estimate a 
probability of failure. 

The rock mass was assumed to have two sets of 
parallel joints, each of which has stochastic spacing 
and joint lengths (in Phase2 such joint sets are 
termed ‘parallel statistical’). The properties of these 
joint sets are shown in Table 3. All the joints had 
constant Mohr-Coulomb strength, with 0.01 MPa 



cohesion and 20o friction angle. They also had a 
constant normal stiffness of 100,000 MPa/m and 
shear stiffness of 10,000 MPa/m. 

The intact rock was assigned Mohr-Coulomb 
strength as well. It had zero tensile strength, 1 MPa 
cohesion and 30o friction angle. 

40 Monte Carlo realizations of parallel statistical 
joint networks with the properties specified in Table 
1 were generated. A factor of safety was then 
determined for each one of those models. The 
factors of safety ranged from a minimum of 0.93 to 
a maximum of 2.08. The 40 factors of safety had a 
mean equal to 1.2803 and standard deviation of 
0.297 (variance=0.0883). 

Table 3. Parameters of Joint Network 

Joint Set Parameters 
Set 1 Orientation 

    Inclination to Horizontal: 40o 
Spacing 
    Distribution: Normal 
    Mean (µ1): 5m 
    Standard deviation (σ1): 1m 
    Minimum: 1m 
    Maximum: 9m 
Length1 

    Distribution: Normal 
    Mean (µ2): 10m 
    Standard deviation  (σ2): 3m 
    Minimum: 1m 
    Maximum: 19m 
Length Persistence2 
    Distribution: None 
    Mean: 0.8 

Set 2 Orientation 
    Inclination to Horizontal: 85o 
Spacing 
    Distribution: Normal 
    Mean (µ3): 4m 
    Standard deviation  (σ3): 1m 
    Minimum: 1m 
    Maximum: 7m 
Length 
    Distribution: Normal 
    Mean (µ4): 4m 
    Standard deviation  (σ4): 1m 
    Minimum: 1m 
    Maximum: 7m 
Length Persistence 
    Distribution: None 
    Mean: 0.5 

1. Parallel statistical joints are coplanar, separated from each 
other by intact rock bridges. Length refers to the total length 
of a joint the rock bridge to it. 
2. The ratio of joint length to the sum of joint length and rock 
bridge length is the (length) persistence. 

Assuming the distribution of factors of safety for 
this example to be normal a reliability index of 
0.943 and probability of failure of 17.3% were 
obtained. The probability of failure as the ratio of 
the number of Monte Carlo simulations with factors 
of safety less than 1 to the 40 cases gave probability 
of failure equal to 17.5% (=7/40). 

 
Figure 5. Contours of total displacement for random joint 
network which gives factor of safety = 2.08. 

 
Figure 6. Contours of total displacement for random joint 
network which gives factor of safety = 1.95. 

Discussion 

Examination of total displacement contours for this 
example reveals the interesting diversity in the 
possible modes of slope failure. A few of these are 
shown on Figures 5 – 8. They range from shallow 
step-path mechanisms to more deep seated modes. 
All of the mechanisms for the different Monte Carlo 
realizations involve slip along joints and shearing 
through intact material.The diversity of failure 
modes is true even of situations with similar factors 
of safety.  



 
Figure 7. Contours of total displacement for random joint 
network which gives factor of safety = 1.94. 

 

Figure 8. Contours of total displacement for random joint 
network which gives factor of safety = 0.95. 

4. SUMMARY 

Due to the large uncertainties in the properties of 
geologic materials and their measurement, it is 
imperative to apply statistical methods when 
analyzing or designing excavations. Whereas 
predictions based on single values of uncertain 
parameters are highly unlikely to be realized, ranges 
estimated from probabilistic analysis are much more 
likely to bracket real-world measurements. 

Probabilistic analysis helps to quantify risk and 
promotes greater understanding of problems. It 
increases the chances of success through more 
robust design of excavations, stabilization measures 
and improved monitoring decisions. 

In an analysis, such as the stability of slopes, that 
involves examination of failure, the ‘true’ or overall 

probability of failure can be determined only after 
studying all the possible failure modes. When a 
particular solution approach can analyze only a 
subset of the possible failure modes, then the 
probability of failure it computes is only partial. 
Because numerical methods, such as FEM-SSR 
analysis, do not require any assumptions on failure 
surfaces and modes, they more completely capture 
the range of likely mechanisms and thus calculate 
more encompassing probabilities of failure.  

It was discussed in the paper that to apply numerical 
methods to probabilistic analysis, the problem of 
their computational intensity has to be addressed. 
Approaches that compute reliable estimates of 
statistical outcomes without too many simulations 
or iterations are ideal for these methods. In this 
paper, two probabilistic approaches – the PEM, and 
the combination of limited Monte Carlo simulations 
(with assumed output distribution shapes) – were 
applied to the calculation of probabilities of failure 
for two slope examples.  

The PEM, although simple in formulation, can be 
quite accurate. Applied to Example 1, it gave good 
answers at very small computational cost. Its major 
drawback is that it suffers from the “curse of 
dimensionality”. Another disadvantage of the PEM 
in rock engineering is that it cannot be applied to 
uncertainty associated with joint networks [23]. 

Monte Carlo simulations offer a much more flexible 
approach than the PEM. They are easy to 
implement and readily applied to any algorithm. As 
a result Monte Carlo simulations can be used to 
capture the influence of joint network uncertainty. 
Also the method does not suffer from the “curse of 
dimensionality.” Generally however, it requires 
many computations than other statistical techniques, 
and therefore is very taxing when used with a 
numerical method, such as FEM-SSR analysis.  

A compromise approach is to use a few Monte 
Carlo simulations to  

1. Estimate the statistical moments of the 
distributions of model outcomes, and 

2. Combining these estimates with an assumed 
shape for the distribution of outcomes to 
infer other quantities of interest (e.g. 
probability of failure).  

This compromise approach was named the 
approximate Monte Carlo method. From the first 
example, it can be seen that it is not as accurate as 



the PEM. However, because it does not suffer from 
the “curse of dimensionality,” it can play a useful 
role in practical engineering. 

The Monte Carlo approach has a bright future in 
numerical modelling. It is becoming increasingly 
feasible to compute hundreds (if not thousands) of 
Monte Carlo simulations on multi-processor 
desktops that are networked together. Such 
networks exist in many of today’s workplaces.  

Given that geologic materials and environments 
offer so much uncertainty, it makes perfect sense 
for Monte Carlo simulations to become an integral 
part of rock engineering.  
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