
1. INTRODUCTION 

Recent trends in geotechnical design and analysis have 
emphasized the importance of spatial variability of rock 
and soil properties.  The properties of in-situ rock 
masses are governed by diverse depositional processes, 
stress history, groundwater behaviour, and differing 
mineralogical makeup.  Because of these natural factors, 
properties are difficult to measure and exhibit 
considerable spatial variation even within small fields of 
study.  The cost and effort required for exhaustive 
sampling and study force the geotechnical engineer to 
make design decisions based on sparse data. Numerical 
methods for continuum models such as the Finite 
Element Method (FEM) and the Finite Difference 
Method (FDM) require good knowledge of material 
properties if their results are to be of practical use.  
Traditionally, numerical analysis has been dependent on 
average or representative rock mass properties, and has 
compensated for inherent variability using healthy 
factors of safety (FS).  Neglecting the effect of spatial 

variability can lead to underestimation of the true risk 
associated with a design. 
 
The strength of spatially variable materials has been 
studied extensively by various authors [ 1- 4] using the 
principles of geostatistics (see [ 5] for an overview).  The 
geostatistical approach assumes that a spatially variable 
rock property such as shear strength or hydraulic 
conductivity is a realization of a random field, denoted 
by a random variable  that follows some known 
statistical distribution.  The degree of spatial correlation 
exhibited by  is quantified by the variogram 
function , where  is a vector separating two points 
in the field.   
 
Kriging is a linear interpolation method that estimates 
unknown values based on a weighted linear sum of 
unknown values (see e.g. [ 6]).  A kriged point  is 
calculated as: 

 

 

            
ARMA 12-432                                                                
 
 

On Using Spatial Methods for Heterogeneous Slope Stability Analysis 
 

Allan, F.C. and Yacoub, T.E. 
Rocscience Inc., Toronto, ON, Canada 

Curran, J.H. 
University of Toronto & Lassonde Insitute, Toronto, ON, Canada 

 

Copyright 2012 ARMA, American Rock Mechanics Association 

This paper was prepared for presentation at the 46th US Rock Mechanics / Geomechanics Symposium held in Chicago, IL, USA, 24-27 June 
2012.  

This paper was selected for presentation at the symposium by an ARMA Technical Program Committee based on a technical and critical review of 
the paper by a minimum of two technical reviewers. The material, as presented, does not necessarily reflect any position of ARMA, its officers, or 
members.  Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of ARMA 
is prohibited.  Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied.  The 
abstract must contain conspicuous acknowledgement of where and by whom the paper was presented.   

 

ABSTRACT: Kriging is a well-documented spatial interpolation technique used in geotechnical engineering problems where a 
material property is governed by an unknown spatial distribution. This paper studies the effect of kriging on slope stability 
analysis and compares it to other interpolation methods.  Statistical distributions describing the factor of safety (FS) of a trial slope 
are generated.  For reference, purely random Gaussian fields with increasing variance are examined first.   Kriging and other 
spatial interpolation methods are then introduced using subdomains of the random field as input points.  The number of known 
points is found to have a significant effect on the FS distribution, underscoring the importance of good sampling methods.  
Kriging has a smoothing effect on the input data and kriged predictions revert to the mean of the input points when no input points 
are nearby.  The interpolated fields it produces tend quickly to the reference value of the FS as the number of input points 
becomes larger.  In this respect, kriging outperforms other interpolation methods by supporting the results of homogeneous 
analyses while accommodating measured deviations from the mean rock properties.  However, the smoothed field generated by 
kriging does not reproduce the statistical features of the original data.  It may omit potential failure mechanisms due to localized, 
probabilistic weakness in the rock mass.  Several representative examples of rock slopes are presented in this paper to illustrate the 
effects of using kriged estimates to calculate the overall FS for a slope stability problem.   
 

 



where , …  is the vector of weights that 
minimizes the variance of the kriged estimate based on a 
known spatial correlation structure. The simplest form of 
kriging is ordinary kriging, which assumes that a field 
has an unknown but spatially constant mean.   
 
The major drawback to kriging is the difficulty of 
developing a reliable variogram  – experimental 
variograms are grid-dependent, site-specific, and require 
large sets of data.  Journal and Huijbregts [ 7] found that 
the results of kriging are resilient with respect to the 
choice of variogram. From a design standpoint, a 
desirable variogram is not necessarily an accurate 
depiction of the true field of rock properties, but one that 
minimizes the effect of this uncertainty on the predicted 
factor of safety.  Based on this premise, only analytical 
variograms are used for kriging in this paper.  For most 
simple variogram models, the specification of a suitable 
correlation length is all that is required; the nugget 
parameter is assumed to be zero and the sill equal to the 
field variance.  
 
This paper tests the application of kriging to rock slope 
stability problems, with the goal of assessing the 
robustness and accuracy of kriging as an interpolation 
method to map the shear strength parameters to any 
point in a continuous rock slope.  Kriged values of rock 
shear strength parameters are mapped to individual 
nodes on a FEM mesh.   

2. SPATIAL METHODS AS APPLIED TO 
HETEROGENEOUS SLOPE ANALYSIS 

2.1. Spatially Variable Materials 
It has been observed [ 8] that increasing the variability of 
a soil, as quantified by the coefficient of variation 
(COV) of its strength properties, lowers the mean FS of 
a slope stability problem, as well as increasing the COV 
of the output FS distribution.  Effectively, this implies 
that large degrees of rock heterogeneity produce designs 
that are both statistically weaker and more susceptible to 
outlying values of the FS.  
 
A major consideration in slope stability analysis is the 
choice of correlation length (also referred to as the scale 
of fluctuation or the range of correlation).  Correlation 
length is mathematically defined as the area under the 
correlation function, and can be thought of as a measure 
of the “roughness” of a rock property.  A material with 
zero correlation length is purely random – unknown 
properties cannot be predicted even in very close 
proximity to known points.  A material tends towards 
homogeneity as its correlation length approaches 
infinity. 
 

The effect of correlation length on the strength of 
spatially random materials is an open question.  For 
some classes of problems, a “worst-case” normalized 
correlation length of approximately 1 exists, i.e the 
probability of failure (PF) reaches a maximum when the 
scale of fluctuation is approximately equal to the 
nominal size of the problem.  This can be explained in 
the context of slope stability problems by the tendency 
of the failure surface to seek areas of localized 
weakness.  For very short correlation lengths, a potential 
failure path connecting adjacent weak zones becomes 
prohibitively long and tortuous.  For very high 
correlation lengths, the soil approaches homogeneity and 
no preferred failure paths exist.  For correlation lengths 
on approximately the same scale of the problem, areas of 
localized weakness can lead to preferential, local failure 
paths and a lower FS.  Spatially random materials can 
also introduce asymmetry to normally symmetrical 
problems such as footings. 
 
2.2. Interpolation of Spatial Variables 
The focus of this paper is the interpolation of spatially 
variable rock properties for slope stability problems.  
Both kriging and inverse distance weighting (IDW) are 
applied to test slopes and the resultant factors of safety 
are compared. IDW is a conceptually similar linear sum 
method that assigns weights to know points based on 
absolute distance from the unknown point.  The two 
methods are usually compared using jackknifing or 
cross-validation.  Results have been mixed – some 
authors [ 9] found that kriging reproduced known 
measurements with greater accuracy than IDW, while 
others [ 10] have found IDW to be superior or that 
neither is more effective to a practical degree. Both 
interpolation schemes address rapid, discrete fluctuations 
in soil properties poorly.  This had led to some hybrid 
methods [ 11] that use a priori knowledge regarding 
material constitution to categorize data and krige within 
local regions.   
 
 It stands to reason that kriging produces more accurate 
maps of unknown variables when there is significant 
spatial correlation within a rock mass. With this in mind, 
this paper will consider purely random slopes where 
rock properties have a known mean and variance but no 
spatial correlation (zero correlation length).  With 
regards to the accuracy of kriging in predicting the 
random field, this is a worst-case scenario.  Essentially, 
the sampled values randomly seed the kriging process, 
which then produces a smoothed field of rock properties 
with some degree of spatial correlation.  In this way, a 
correlation length is artificially induced by the 
interpolation method.  It should be noted that the 
smoothing effect produced by kriging is undesirable – 
kriged fields underestimate the true variability of rock 



masses and leading to an inherently unconservative 
approach. 
 
IDW also performs relatively poorly when no spatial 
correlation exists.  In this respect, the cases studied will 
put both methods on a level playing field. It should be 
noted, however, that there is some local averaging on an 
element-by-element basis required for the FEM.  This 
artificially induces some spatial correlation, but with a 
suitably fine mesh this is negligible with respect to the 
correlation length studied.   
 
Ordinary kriging was used in all cases.  The correlation 
length chosen for kriging was a fixed multiple of the two 
most distant points within the basis, a reasonable proxy 
for the characteristic size of the problem.  This is similar 
to the scaled ranges used in literature [ 1].  The default 
scaled correlation length was 1.5, and the effect of 
modifying this parameter was also tested.  The nugget 
parameter has been set to zero; the sill is equal to the 
field variance. 
 
A third interpolation method first developed by Chugh 
[ 12] was also tested.  This method makes no 
assumptions regarding the spatial structure of the rock 
and performs extrapolation very poorly.   
 
2.3. Slopes with Random Mohr-Coulomb Strength 

Properties 
A rock slope subject to the Mohr-Coulomb failure 
criterion was modelled in the two-dimensional plane-
strain FEM program Phase2 [ 13].  Figure 1 shows the 
model geometry, material properties and boundary 
conditions. 
 

 
Figure 1: Two-dimensional rock slope model. 

These properties have been drawn from a slope studied 
using the FEM in previous work [ 14]. Both c and φ were 
assumed to be purely random spatial variables with zero 
spatial correlation. 
 

Three levels of soil variability were considered.  Table 1 
summarizes the properties of each random field.  Both 
Mohr-Coulomb parameters were assumed to follow 
normal distributions truncated at three standard 
deviations. 
 
Table 1: Standard deviation  and coefficient of variance of 

shear strength parameters for test rock masses. 

Rock 
Type 

Cohesion (c)  
(MPa) 

Friction Angle (φ) 
(°) 

 COV  COV 
I 0.025 4.3% 2 3.7% 
II 0.05 8.7% 5 9.3% 
III 0.10 17.3% 10 18.5% 

 
The FS of each test slope was calculated using the shear 
strength reduction (SSR) method [ 15, 16].  The primary 
advantage of SSR is that it does not require assumptions 
about the shape and position of the failure surface.  
While the limit equilibrium method would be much less 
computationally demanding, it is probable that potential 
failure mechanisms due to complex slip surfaces through 
heterogeneous rock could be ignored. 
 
As a preliminary check, 100 realizations of each random 
rock mass were tested. Figure 2 shows the resultant 
distributions of the FS.  The homogeneous factor of 
safety µ0 = 1.34 is shown for reference.  
 
For all three spatially variable materials, the observed 
mean FS is well below the homogeneous FS of 1.34, as 
can be expected.  Increasing rock COV both lowered the 
mean FS and increased the variance of the FS 
distribution.  Figure 3 shows a sample random map of 
rock properties; Figure 4 shows two characteristic failure 
mechanisms 
 

 
(a) Rock Type I 
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(b) Rock Type II 

 
(c) Rock Type III 

Figure 2: FS Distributions of randomized slopes and fitted 
normal distributions. 

.  

 
Figure 3: Friction angle contour map for a representative 
random slope of Type III. 

 

 
 

Figure 4: Shear strain contour map at failure for two sample 
slopes of rock type III. 

Generally, there was little variation in the position of the 
mechanism; most failure surfaces were nearly circular 
and fairly shallow.  Most passed through the toe of the 
slope.  The left slope in Figure 4 is an example of 
shallower failure due to local weakness. 
 
Findings in literature regarding the strength of spatially 
variable materials indicate that the cases tested – which 
have only short, contrived correlation distances due to 
FEM mesh local averaging – may not represent the 
worst-case effect on the factor of safety.  However, the 
random slopes are significantly weaker than the 
homogeneous, deterministic slope and provide a good 
basis for comparison with interpolated slopes. 
 
2.4. Randomly Seeded Interpolated Rock Slopes 
For the purposes of this paper, the fully randomized 
slopes such as Figure 3 are assumed to be representative 
of worst-case (from an interpolation standpoint) in-situ 
rock conditions.  It is not expected that kriging or other 
methods will accurately predict the random field; this 
paper seeks instead to examine the effect of kriging on 
the output FS distribution and whether it is comparable 
or conservative relative to the fully random slopes.   
 
Further experiments will operate under the premise that 
a random subset of known points has been drawn from 
the random slopes.  The set of known points will be 
referred to as the basis for interpolation.  The size of the 
basis was varied from 10 to 200 points, simulating 
different extents of sampling.  Kriging, IDW and the 

µ0 = 1.34

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

R
el

at
iv

e 
F

re
qu

en
cy

Factor of Safety

µ0 = 1.34

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

R
el

at
iv

e 
F

re
qu

en
cy

Factor of Safety



modified Chugh’s Method (MCM) were all applied to 
these subsets.  For each realization, random bases were 
drawn from the random in-situ field.  A total of 100 SSR 
realizations were conducted for each combination of 
rock type, basis size and interpolation method.   
 
Figure 5 shows a representative test slope for rock Type 
III, as mapped using the three interpolation methods. 
The basis (set of ten known points) for all three cases is 
the same. 

 

 
 

Figure 5: Friction angle contour maps for one randomly 
seeded slope interpolated using kriging, IDW, and MCM (top 
to bottom). 

When either kriging or IDW is used, local maxima and 
minima correspond to known (and randomly generated) 
basis points.  In areas that are relatively distant from 
known points, the interpolated estimate reverts to the 
mean, as shown by the leftmost two figures.  This 
smoothing effect does not exist for MCM, resulting in 
the more poorly defined plot at bottom.  Note that the 
lowermost plot has necessarily been drawn using a larger 
scale, and the real discrepancy between MCM and 
kriged maps is even larger than shown. 
 

To illustrate the smoothing effect of kriging, consider the 
four representative surface plots shown below.  All four 
are plots of randomly seeded friction angle fields that 
have been smoothed using kriging and mapped onto the 
finite element mesh. 
 

 

 

 

 
 

Figure 6: Surface plots of Type III rock cohesion for sample 
randomly seeded, kriged fields.  Seeded (known) points 
appear as local extrema.  Fields have been seeded with (top to 
bottom) 10, 50, 100, and 200 points. 

For fields with small bases (few known points), the 
smoothing effect of kriging is very pronounced.  
 
In general, it was found that increasing the size of the 
basis both lowered the mean FS and decreased its 

Y

Z

X

Y

Z

X

X

Y
Z

X

Y
Z



variance.  Figure 7 shows normal distributions fitted to 
the output FS distribution for kriged Type III slopes 
using each interpolation method.  
 

 
 

(a) Kriging 
 

 
 

(b) MCM 
 

 
 

(c) IDW 

Figure 7: Fitted normal FS distribution for Type III slopes 
seeded with 10, 50, 100 and 200 random points and three 
interpolation methods. 

These two trends are common to all interpolation 
methods and rock types tested and in accordance with 
previous literature. Because introducing more random 
points to the field counteracts the smoothing effect of 
interpolation, increasing the size of the basis increases 
the spatial variability of the soil.  This is analogous to 
decreasing the correlation length in that it produces a 
rougher field, which has been shown to decrease the FS 
within a certain range of correlation lengths.  The 
decrease in the variability can be attributed to the high 
dependence of the kriged FS on the mean of the basis 
points. Because the seeded points are a subset of a larger 
field with a known constant mean, larger bases will tend 
to have a sampled mean that approaches the global 
mean. 
 
Figure 8 and Figure 9 show the normalized mean FS  
∗ /  and coefficient of variation as a function of 

basis size for each rock type. 

 
(a) Type I Rock 

 
(b) Type II Rock 
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(c) Type III Rock 

Figure 8: Normalized mean FS as a function of basis size for 
three interpolation methods.

 

(a) Type I Rock 

Type II Rock 

 
(b) Type III Rock 

 
Figure 9: FS coefficient of variation as a function of basis size 
for three interpolation methods. 

For rock with low variability, little deviation from the 
deterministic FS was observed and the FS variability 
was low, as would be expected.  For rock with moderate 
variability, little FS deviation was again observed.  
Interestingly, the FS variability decreased for 100-point 
bases relative to 10-point bases before increasing again 
for 200 points. This can be explained with reference to 
the two opposing sources of variability for the FS 
distribution, being variability in the mean of the sampled 
basis and variability due to increasing the number of 
random local extrema.  It would seem that for the Type 
II rock, the stabilizing effect of a larger basis is offset by 
the increasing roughness of the field. 
 
Overall, both IDW and kriging performed much better 
than MCM in producing a consistent estimate of the FS.  
This is most pronounced for the third (high-variability) 
rock type.  MCM performed more poorly for Type III 
rock, producing FS results that were both less accurate 
and less precise than kriged estimates. Differences in FS 
distributions using kriging and IDW were not 
significant; the two methods seem equally suited to this 
class of rock slope stability problem. 
 
The differences between the FS distributions for each 
interpolation method decrease as the number and density 
of sampled points increases.  Differences between 
interpolation methods are within the bounds of statistical 
sampling error when the number of sampled points is 
100 or 200.  From a geotechnical engineering standpoint, 
it is most useful to compare the performance of 
interpolation methods for slopes with the sparsest data.   
 
 Figure 10 compares the FS as calculated using kriging 
and IDW for 100 sample slopes, using a random basis of 
10 points. Points between the two dotted lines 
correspond to slopes with an FS that diverges by less 
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than 0.05 for the two methods.  Neither method appears 
to be conservative relative to the other.  For comparison, 
consider Figure 11, which plots the kriged FS against 
that of MCM. 
 

 
Figure 10: Comparison of calculated FS values from kriging 
and IDW for Type III rock slopes with bases of 10 points. 

 
Figure 11: Comparison of calculated FS values from kriging 
and MCM for Type III rock slopes with bases of 10 points. 

There is very poor correlation between the FS as 
estimated by kriging and MCM.  This also holds true for 
IDW and MCM. 
 
To this point, the effectiveness of each interpolation 
method has been defined relative to the homogeneous 
factor of safety.  It is desirable that the FS calculated 
from a randomly sampled basis be robust with respect to 
the choice of basis.  According to this criterion, the 
lower variances for the FS distributions observed from 
IDW and kriging are advantageous.  However, relative 
to the purely random slopes previously considered, both 
methods overestimate the mean and underestimate the 
variance of the FS.  This is a result of smoothing and 
suggests that interpolation based on small numbers of 
samples does not conservatively address rock variability.  
A kriged estimate of the FS can thus be thought to 
partially account for spatial variability, accounting for 
measured deviations from mean properties without fully 

capturing the heterogeneity-induced failure that can 
occur in spatially variable rock masses. 

3. SUMMARY & CONCLUSIONS 

For slope stability shear strength reduction (SSR) 
analysis, mapping random, spatially variable shear 
strength properties on to finite element method (FEM) 
meshes has a significant effect on the predicted factor of 
safety, producing a mean FS lower than the 
homogeneous value. This effect is more pronounced the 
greater the variability of the rock mass studied.  From a 
design standpoint, this is advantageous in that it allows 
the designer to anticipate failure due to localized 
deviations from mean rock properties. 
 
This paper tested only one example slope geometry, and 
assumed that some properties (e.g. elastic modulus, 
Poisson’s ratio) were homogeneous.  Only ordinary 
kriging with a fixed scaled correlation length of 1.5 was 
applied.  The SSR method identifies only bulk rotational 
failure mechanisms with a well-defined shear surfaces.  
The coefficient of variation (COV) of rock properties 
ranged from 3% to 18%.   
 
Kriging, inverse distance weighting (IDW) and the 
modified Chugh’s Method (MCM) were used to 
interpolate fields of shear strength properties from sets 
of sample known points.  The effect of rock COV, 
sampling density, and interpolation method on the output 
distribution of the factor of safety were examined.  It 
was found that all methods performed reliably at large 
sampling densities and/or low rock mass variability.  For 
sparse data and high rock variability, kriging and IDW 
produced output distributions with the lowest variability 
and most accurate mean.  Both methods were judged to 
be effective, while MCM was deemed inadequate at low 
sampling densities.  Direct comparison between IDW 
and kriging revealed that the factors of safety (FS) 
calculated for test slopes by each method were highly 
correlated.  
 
Kriging and IDW were found to be relatively robust with 
respect to the sampling basis.  While this is a desirable 
property, the consequent mean FS values remain higher 
than for the purely random slopes.  This suggests that 
kriged rock property distributions may not fully account 
for the weakening effects of high spatial variability. 
 
Under the conditions studied, kriging did not perform 
significantly better or worse than IDW. Kriging has the 
additional capabilities of estimating the uncertainty of 
predicted values, accommodating spatially varying 
means for rock properties, and capturing the spatial 
correlation of random fields.  For these reasons, it is of 
the most use to the geotechnical engineer, especially 
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relative to geometric methods such as MCM.  The 
results of this paper support the use of kriging as a tool 
for probabilistic slope stability analysis. 
 
The current paper did not explore the effect of modifying 
kriging or IDW parameters.  Effectively, the random 
fields studied were a “worst-case” scenario for both 
methods.  This was thought to be a necessary first step. 
Were spatially correlated slopes to be tested, it is 
expected that kriging and IDW would be more accurate 
relative to the purely randomized fields. 
 
The number of SSR trials tested for each case (100) may 
not be enough for good statistical reproducibility.  A 
convergence test and/or corroboration with simpler limit 
equilibrium methods would support the findings of this 
paper. 
 
All interpolation methods suffer from an undesirable 
smoothing effect.  Because higher degrees of 
heterogeneity tend to weaken rock masses, this makes 
for an unconservative process. Future work will examine 
the effect of more advanced probabilistic methods such 
as sequential Gaussian simulation (SGS), which 
preserves the statistical properties of measured natural 
fields.  As with all shear strength reduction (SSR) and 
Monte Carlo (MC) studies, computational expense is a 
major difficulty.  More refined sampling methods such 
as Latin Hypercube sampling (LHS) could mitigate this 
problem. 
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