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1. INTRODUCTION 

Rock masses are formed under wide-ranging 
complex physical conditions. As a result, the 
engineering of excavations in rock involves 
uncertainty. In such an environment, predictions 
based on single evaluations (typically using 
averaged values) have practically zero probability 
of ever being realized, and conclusions based on 
them are therefore open to question. The risks 
(which we will define as the probability of 
unpleasant circumstances) associated this 
uncertainty must be managed. 

Uncertainty can be dealt with in different ways. 
Parametric and scenario analysis – the assessment 
of possible ranges of behaviours through variation 
of input properties and consideration of different 
conditions – can be applied. However statistical 
simulation is even more powerful. In addition to 
identify possible outcomes, it can quantify 
uncertainty and estimate the likelihoods of 
outcomes occurring. As a result probabilistic 
simulation helps engineers to develop more robust 
and economic designs and solutions.  

The geometric layout of networks of joints and 
other types of discontinuities in a rock mass is a 
significant contributor to rock mass behaviour and 
uncertainty. This geometry causes rock mass 
strength and deformation properties to be 
directional, and influences the manner in which 
excavations fail.  
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Numerical methods such as the Finite Element 
Method (FEM) and the Discrete Element Method 
(DEM) have been successfully applied to slope 
stability analysis [1-4]. This is achieved through the 
Shear Strength Reduction (SSR) approach [5-11] 
for calculating factor of safety.  

A primary advantage of these methods is their 
versatility. They can model a broad range of 
continuous and discontinuous rock mass behaviours 
without a priori assumptions on failure 
mechanisms.  

Their capabilities have helped soften the boundaries 
between the classification of rock slope stability 
problems into categories such as wedge-type 
failures controlled discontinuities, step-path failures 
that combine slip along joints with shearing through 
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intact material, and rotational-type failures in which 
rock masses essentially behave as continua. 

This paper intends to evaluate the impact joint 
network geometry randomness has on the stability 
of slopes in blocky rock masses. It will analyze a 
slope example using the FEM-based shear strength 
reduction approach, which in the rest of this paper 
this approach will be referred to as FEM-SSR 
analysis. 

The paper will provide overviews of methods for 
performing engineering probabilistic analysis. It 
will then examine their applicability to the analysis 
of joint network geometry induced slope risks.  

2. PROBABILISTIC METHODS FOR SLOPE 
STABILITY ANALYSIS  

The ultimate goal of a probabilistic slope stability 
analysis is to obtain the complete distribution of 
factor of safety values given a set of random 
(uncertain) input variables with specified statistical 
properties. In this case, factor of safety is known as 
the response variable, the functional form that 
relates input to factor of safety termed the response 
function. From the distribution of factor of safety 
values, probability of failure can be determined.  

It is generally difficult to obtain an output 
probability distribution when the response function 
is complex or implicit. In such cases, attempts are 
made to only determine statistical moments of the 
output distribution, and not the distribution itself. 

Statistical moments are quantities that capture both 
overall and in-depth information on the geometry 
(location and appearance) of a probability 
distribution function. The mean is the first statistical 
moment. It provides information on the location of 
a distribution. The other moments, which are of 
higher order, are commonly taken about the mean. 
The second moment of a statistical distribution is 
variance. It describes the spread or dispersion of the 
distribution about the mean. The third and fourth 
moments, skewness and kurtosis, respectively, 
provide further information on distribution shape. 

We will investigate probabilistic methods used in 
engineering risk analysis, and assess how applicable 
each is to modelling rock slope uncertainty due to 
joint network geometry.  

2.1. Reliability Methods 
Given an explicit response function, it is relatively 
easy to use the first two moments – mean and 

variance – to estimate the statistical moments of the 
response variable [12]. Methods based on this 
approach are termed first order second moment 
(FOSM) methods [12]. The most popular FOSM 
methods approximate the response function through 
partial derivatives or Taylor series expansion (about 
mean values) truncated to low order terms. They 
then compute statistical moments from these terms. 

Reliability methods have the advantage of being 
fast and compact, because they use few evaluations 
of the response function to estimate moments [12]. 
Their main drawbacks are that they require partial 
derivatives, which may not be easily attainable. 
Also they cannot be applied to response functions 
that are not explicit.  

Because the FEM, as well as the SSR, is an 
algorithm, and not an explicit response function, 
reliability methods cannot be applied to our rock 
slope problem. 

2.2. Point Estimate Method (PEM) 
The Point Estimate Method (PEM) was originally 
developed by Rosenblueth [13, 14]. As the name 
suggests, the PEM uses a series of point estimates – 
point-by-point evaluations of the response function 
at selected values (weighting points) of the input 
random variables – to compute the moments of the 
response variable. The method applies appropriate 
weights to each of the point estimates of the 
response variable to compute moments. The 
weights can differ for different points. Although the 
method is very simple, it can be very accurate [15, 
16].  

The PEM requires the mean and variance (and 
sometimes the third moment, skewness) as input 
variables. Unlike reliability methods, it can be used 
when partial derivatives are difficult to evaluate or 
obtain. It can be readily applied to response 
functions that are not closed-form or explicit, and to 
the results of existing deterministic programs. As a 
result of the latter benefit, it was considered for the 
analyses in this paper.   

The PEM uses two weighting values – typically one 
standard deviation to each side of the mean – for 
each input random variable. Since the choice of 
weighting points is strictly dictated by the random 
inputs to a problem, the PEM different response 
variables (e.g. factor of safety of particular slope 
benches, displacements at specific locations, etc.) to 
be changed in an FEM analysis, without having to 
re-compute point estimates.  
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The main disadvantage of the PEM is that it suffers 
from the ‘curse of dimensionality’ – as the number 
of random variables increases the number of point 
evaluations increases exponentially, significantly 
increasing computational effort. Modifications have 
been made to the method [17, 18] that reduce the 
number of point evaluations. However, these 
modifications move weighing points farther from 
mean values as the number of dimensions increases, 
and as a result can lead to input values that go 
beyond valid domains [16].  

2.3. Response Surface Method (RSM) 
Like the PEM, the Response Surface Method 
(RSM) is based on point estimates of the response 
function. After calculating these point estimates, the 
RSM computes a polynomial response surface that 
approximates the original response function. This is 
usually accomplished through least-squares linear 
regression. The RSM then applies the conventional 
reliability method to this explicit polynomial 
approximation. 

The manner in which the RSM selects points at 
which to estimate response functions differs from 
that employed by the PEM. The RSM uses design 
of experiment techniques to best locate the points at 
which experiments (response function evaluations) 
will be run so that the fit of the polynomial surface 
to the true response surface meets specified criteria 
[12].  

The RSM becomes less accurate when the region of 
interest is expanded, unless more point estimates are 
employed [12].  

2.4. Monte Carlo Method 
The Monte Carlo method is very powerful and 
flexible, and can be applied to a very wide range of 
problems. It is also very simple to use and accurate. 
In the Monte Carlo method samples of probabilistic 
input variables are generated and then used to 
perform a number of deterministic computations. 
Information on the distribution and moments of the 
response variable is then obtained from the resulting 
simulations.  

Because Monte Carlo simulations can be used on 
existing deterministic programs without 
modifications, they are popular for probabilistic 
FEM analysis [19]. Like the PEM it allows for 
multiple response functions in a single model. 
Unlike the PEM and RSM, it is not affected by the 
‘curse of dimensionality,’ since the number of 

simulations required is independent of the number 
of input random variables.  

The primary disadvantage of the Monte Carlo 
method is that it can be computationally expensive, 
requiring many simulations in order to achieve 
desired accuracy [20].  

2.5. Latin Hypercube Method (LHM) 
Latin Hypercube sampling is a technique for 
improving the efficiency of Monte Carlo 
simulations [19]. It achieves this efficiency through 
better selection of input samples. Whereas the 
Monte Carlo method randomly selects samples from 
the valid domain of a variable, which results in an 
ensemble of numbers without guarantees, the Latin 
Hypercube method (LHM) adopts a more 
systematic sampling approach. It first divides the 
domain of an input variable into a number of equal 
sized bins. It then obtains a random sample from 
each of those bins. This ensures an ensemble of 
random numbers that more accurately conforms to 
the input probability distribution over the domain. 

As a result of these improvements, the LHM 
produces accurate estimates of response variable 
distributions and their moments with fewer 
simulations. This speeds up computations. 

3. APPLICABILITY OF STATISTICAL 
METHODS TO UNCERTAINTY INDUCED BY 
JOINT NETWORK GEOMETRY 

There are challenges in applying most of the above-
described methods to modelling uncertainty arising 
from joint network geometry. For blocky rock 
masses, the locations of the discontinuities relative 
to each other and relative to slope geometry have 
significant impact on how failure mechanisms form 
and propagate.  

This is best illustrated with a simple example. 
Imagine a joint network consisting of two joint sets, 
each of equal, constant spacing. We will also 
assume that the joints are infinitely long. Lastly let 
us assume that we are analyzing a slope with height 
five times the spacing of the joints. Even for this 
very simple model, we can see that the location of 
joints and rock blocks relative to the slope toe 
would make a difference in how the slope fails. 

Let us now assume that the spacing is stochastic, 
with a known mean and standard deviation (square 
root of variance). If we were to apply the PEM, for 
example, we would evaluate point estimates of 
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factor of safety at two spacing values: (mean – 
standard deviation) and (mean + standard 
deviation). As discussed above, although these 
spacing values are fixed, they each do not lead to 
unique values of factor of safety. Completely 
different factors of safety can arise depending on 
the locations of generated joints. This is not the 
situation in the PEM with non-geometric random 
properties such as strength and deformation 
parameters. 

The randomness induced by joint network geometry 
even for constant network parameters makes it next 
to impossible to apply several of the probabilistic 
methods discussed above. It eliminates reliability 
methods and the RSM. Reliability methods are 
ruled out both by the inability to calculate partial 
derivatives with respect to joint network parameters 
(and by the use of the FEM).  

It makes it difficult to implement the PEM and 
LHM. For the PEM, as illustrated above, point 
estimates at weighting points are not unique, but are 
dependent on geometry. The authors decided 
however to investigate whether there was any 
possibility of the PEM’s ensemble adequately 
describing statistical moments of responses on an 
example to be described in the next section.  

The difficulties in applying the Latin Hypercube 
method lie in the requirement to divide the domain 
of a variable into a number of bins. In many models 
for simulating joint networks, the number of times 
random variables such as spacing and orientation 
have to be sampled is not known a priori (not 
known ahead of time). Even if a number of Latin 
Hypercube samples larger than would be required in 
a simulation were to be generated, some of them 
would not be used, reducing the effectiveness of the 
method. 

Monte Carlo simulation is the only method that can 
readily handle this problem without any special 
treatment or adaptation.  However, it has the 
primary disadvantage (mentioned previously) of 
being computationally expensive, requiring many 
simulations in order to achieve desired accuracy. 
The authors found though that, if the goal is to use 
the method to estimate the moments of the response 
variable, and not to acquire detailed information on 
the response distribution, then it can give adequate 
results without too many simulations.  

Some tests conducted for factor of safety 
computations with a limit equilibrium program, 

Slide [21], indicated that sample sizes around 40-50 
give adequate estimates of the mean. Such sample 
sizes generally overestimate the second moment 
(variance) slightly. A functional form can then be 
assumed for the response distribution and a 
probability of failure calculated based on this 
assumption [22]. The overestimated variance used 
in these functional forms lead to conservative 
estimates of probability of failure. This is not 
necessarily an unfavourable outcome.  

4. EXAMPLE – ESTIMATION OF ROCK 
SLOPE PROBABILITY OF FAILURE  

The performance of the PEM and Monte Carlo 
simulation on the evaluation of slope stability 
uncertainty due to rock mass jointing was evaluated 
on a simple, homogeneous rock slope with a 
network of joints. The FEM program Phase2 [3], 
which performs SSR analysis and simulates joint 
networks, was used. The goal was to estimate the 
first two moments – mean and variance – of the 
distribution of factors of safety for the slope. 

 
Fig. 1. Basic geometry of the slope. The figure also depicts a 
realization of the stochastic joint network. Notice the 
irregularity of joint spacing and length. 

The rock mass was assumed to have two sets of 
parallel joints, each of which has stochastic spacing 
and joint lengths (in Phase2 such joint sets are 
termed ‘parallel statistical’). The properties of these 
joint sets are shown in Table 1. All the joints had 
constant Mohr-Coulomb strength, with 0.01 MPa 
cohesion and 20o friction angle. They also had a 
constant normal stiffness of 100,000 MPa/m and 
shear stiffness of 10,000 MPa/m. 

The intact rock was assigned Mohr-Coulomb 
strength as well. It had zero tensile strength, 1 MPa 
cohesion and 30o friction angle. 
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Table 1. Parameters of Joint Network 

Joint Set Parameters 
Set 1 Orientation 

    Inclination to Horizontal: 40o 
Spacing 
    Distribution: Normal 
    Mean (µ1): 5m 
    Standard deviation (σ1): 1m 
    Minimum: 1m 
    Maximum: 9m 
Length1 

    Distribution: Normal 
    Mean (µ2): 10m 
    Standard deviation  (σ2): 3m 
    Minimum: 1m 
    Maximum: 19m 
Persistence2 
    Distribution: None 
    Mean: 0.8 

Set 2 Orientation 
    Inclination to Horizontal: 85o 
Spacing 
    Distribution: Normal 
    Mean (µ3): 4m 
    Standard deviation  (σ3): 1m 
    Minimum: 1m 
    Maximum: 7m 
Length 
    Distribution: Normal 
    Mean (µ4): 4m 
    Standard deviation  (σ4): 1m 
    Minimum: 1m 
    Maximum: 7m 
Persistence 
    Distribution: None 
    Mean: 0.5 

1. Parallel statistical joints are coplanar, separated from each 
other by intact rock bridges. Length refers to the total length 
of a joint the rock bridge to it. 
2. The ratio of joint length to the sum of joint length and rock 
bridge length is the (length) persistence. 

 

 
Fig. 2. Example of joint network generated for PEM analysis. 
Notice the regularity of joint spacing and length in this model. 

Since there are four stochastic variables in the 
example, the PEM evaluation of factor of safety 
moments involved 24 (=16) point estimates. For 
each combination of weighting variables, we 
generated parallel joints with constant 
(deterministic) spacing and joint length.  

Table 2. Two sets of point evaluations of factor of safety 

# Weighting 
Point 

Factor of 
Safety (1) 

Factor of 
Safety (2) 

1 ++++ 1.16 0.95 
2 ---- 1.54 1.74 
3 +++- 1.68 1.26 
4 ---+ 1.71 1.5 
5  ++-- 1.06 1.07 
6  --++ 2.02 2.53 
7  +--- 1.43 1.81 
8  -+++ 1.06 1.07 
9  +--+ 1.65 1.47 
10  -++- 0.92 1.17 
11  ++-+ 1.02 1.03 
12  --+- 2.09 2.05 
13  +-++ 1.29 2.56 
14  -+-- 0.88 0.84 
15  +-+- 1.93 2.06 
16  -+-+ 0.99 0.93 
 

Mean Factor 
of Safety 

1.402 1.503  

Variance 0.157 0.298 

Because the location of joints in a network changes 
factor of safety results, and we wanted to check 
whether the ensemble the PEM adequately 
estimates the moments of the factor of safety 
distribution, we performed two sets of 16 point 
estimate calculations. (The networks realizations in 
the two sets differed completely from each other.) 
The results of the PEM computations are shown in 
Table 2. 

We adopted the following widely-used naming rules 
for our PEM combinations listed in Table 2: 

1. For any given stochastic variable, a 
weighting value of (mean + one standard 
deviation) is denoted with a “+”, while 
(mean – one standard deviation) is denoted 
with a “–”.  

2. In all inscriptions for weighting points, the 
symbols for the stochastic variables appear 
in the same sequence in which the variables 
are listed in Table 1. 

For example, ++-+ refers to the weighting point 
[ ] [ ] [ ] [ ]( )1 1 2 2 3 3 4 4, , ,μ σ μ σ μ σ μ σ+ + − + . 
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Fig 2 illustrates a joint network realization 
corresponding to this weighting point. The first and 
second moments were calculated from the PEM 
[23] according to the following equations: 

1. The mean ∑ , where the iP s 

are the weights. For our example the weights 
have a constant value equal to 1/16. 

=

=
16

1
)(

i
ii FPFE

2. The variance [ ]2  2 )()()( FEFEFVar −=

Next, 40 Monte Carlo realizations of parallel 
statistical joint networks with the properties 
specified in Table 1 were generated. A factor of 
safety was then determined for each one of those 
models. The factors of safety ranged from a 
minimum of 0.93 to a maximum of 2.08. A 
histogram plot showing the distribution of the 
factors of safety is shown on Figure 3. The 
distribution is skewed to the right. The 40 factors of 
safety had a mean equal to 1.2803 and variance of 
0.0883. 

5. DISCUSSIONS 

From the differences in the results of the two sets 
(ensembles) of PEM calculations, it is evident that 
the method does not reliably estimate the moments 
of the factor of safety distribution, especially the 
variance.  This leaves Monte Carlo simulation as 
the only method that can estimate factor of safety 
uncertainty due to rock mass jointing with any 
consistency. 
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Fig. 3. Histogram plot of factors of safety from Monte Carlo 
analysis. 

The moments calculated from the Monte Carlo 
analysis can be used to determine a probability of 
failure assuming either a normal or log-normal 
distribution for factor of safety using equations 
described in Wolff, 1999. (Since the factor of safety 

distribution on Fig 3 is skewed, it would be more 
accurate to assume a log-normal distribution for 
factor of safety.) 

 
Fig. 4. Contours of total displacement for random joint 
network which gives factor of safety = 2.08. 

 
Fig. 5. Contours of total displacement for random joint 
network which gives factor of safety = 1.95. 

 
Fig. 6. Contours of total displacement for random joint 
network which gives factor of safety = 1.94. 
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Fig. 7. Contours of total displacement for random joint 
network which gives factor of safety = 1.35. 

 

Fig. 8. Contours of total displacement for random joint 
network which gives factor of safety = 0.95. 

The moments calculated from the Monte Carlo 
analysis can be used to determine a probability of 
failure assuming either a normal or log-normal 
distribution for factor of safety using equations 
described in Wolff, 1999. (Since the factor of safety 
distribution on Fig 3 is skewed, it would be more 
accurate to assume a log-normal distribution for 
factor of safety.) 

The ability of FEM-SSR analysis to capture various 
types of failure without special treatments is 
powerful. The interplay between excavation 
geometry, joint network geometry, and joint and 
rock mass strength and stiffness properties is 
complex and almost impossible to anticipate prior 
to analysis. FEM-SSR yields results that at the very 
least can serve as the basis for further investigation. 
They make it possible to examine different design 

ideas, and obtain meaningful results with a single 
tool. 

Monte Carlo with FEM-SSR is computational 
expensive. However it is very feasible with today’s 
multi-processor desktops. On a single desktop all 
the examples shown in this paper could be done in 
less than 48 hours. Because Monte Carlo 
simulations can be very easily computed in parallel, 
using a cluster of four desktops reduces 
computational time to only a few hours. 

Plots of total displacement contours at failure for 
each computed Monte Carlo model yielded rich 
insights into the range of possible slope failure 
modes. The failure modes, shown on Figs 4 – 8, 
range from near surface wedge failure to deep-
seated rotational-type mechanisms. Many of the 
failures exhibit step-path mechanisms that combine 
slip along joints with shearing though intact rock. 

The diversity of failure modes is true even of 
situations with similar factors of safety. For 
example, the mechanisms shown on Figs 5 and 6 
are very different in nature and yet have about the 
same factor of safety. 

These analysis results indicate the need to perform 
probabilistic analysis on excavations in jointed rock 
masses. Such risk analysis promotes greater 
understanding of problems. It increases the chances 
of success through more robust design of 
excavations, stabilization measures and improved 
monitoring decisions. 

Risk analysis permits assessment of relative 
increase (or decrease) in safety by different 
measures. The chances of successful design 
substantially improve when rock engineers can 
anticipate the range of different failures that can 
arise. 
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