
1. INTRODUCTION

Discontinuities, such as fractures and joints, are surfaces
that represent a jump in the displacement field as well as 
stress and strain fields. The presence of these surfaces 
reduces the elastic and strength properties of materials, 
and introduces directional preference, i.e., anisotropy, in
material response. When prevalent, discontinuities form 
a microstructure or fabric and introduce scale effects 
(behavior governed by the size of discrete bodies relative 
to the overall scale of a problem).

Three approaches are commonly used to model the 
discontinuous behavior of jointed rock masses. These are 

1. Cosserat continuum methods,

2. Combined continuum-interface methods, which 
are continuum methods with special 
joint/interface elements that model
discontinuous behavior, and 

3. Discrete element techniques. 

This paper compares the formulation of combined 
continuum-interface numerical methods to that of 
discrete techniques, when both are applied to jointed 
rock problems. It intends to show the similarities and 
differences between these formulations, and to provide 
guidelines on how to choose between discontinuous 
techniques (namely, the distinct element method [1-4], 
discontinuous deformation analysis [5]) and combined 
continuum-interface methods in jointed rock analysis. 

The governing equations and kinematics of both joint 
elements and contact enforcement are discussed. An
example of an edge-to-edge contact is solved in closed-
form using both techniques. 

By comparing results of these methods to closed-form 
solutions, and discussing the kinematic assumptions of 
the techniques, the paper concludes that the 
mathematical terms of FEM interface elements are
equivalent to those of contacts in the discrete element 
models. For a specified input geometry and set of 
assumptions on the deformability of intact material, 
combined continuum-interface methods and discrete 
techniques yield similar results, provided contacts
between elements remain unchanged throughout the 
solution process. If the contacts change, then discrete 
element techniques provide more realistic results. 

For practical geotechnical modeling, the FE-interface 
model is more desirable because of its ability to quickly 
analyze several models with varying network geometries 
and material properties. This feature allows engineers to 
explore the effects of parameter uncertainty on potential 
mechanisms, and to develop more robust slope designs 
and stability measures.

ARMA 10- 336                                                              

Limits of Applicability of the Finite Element Explicit Joint Model in the 
Analysis of Jointed Rock Problems

Riahi, A. and Hammah, E.R.
Rocscience Inc., Toronto, Canada
780-439 University Avenue, Toronto, Ontario M5G 1Y8

Curran, J.H.
R.M. Smith Professor Emeritus
Civil Engineering Department, University of Toronto,
Toronto, Ontario M5S 1A4
and Rocscience Inc.

ABSTRACT: This paper compares the governing equations and kinematics of joint elements used in continuum numerical 
methods to those of contact enforcement methods used in discrete element techniques. It provides guidelines for choosing between 
discontinuous techniques (namely, the distinct element method and the discontinuous deformation analysis) and continuum 
techniques (such as the finite element method) with joint elements in the analysis of problems with pre-existing discrete fractures.



2. GOVERNING EQUATIONS

2.1. Governing equations of solid continua

In continuum solid mechanics, the motion and 
deformation of a characteristic volume of material – an 
infinitesimal, homogeneous volume free of gaps, 
discontinuities, fractures, or inclusions – is described by 
the linear and angular momentum equations.

The linear momentum equation is expressed as
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where u is the displacement, σ , the Cauchy stress 
tensor, b , the body force, and  , the density of 
material, respectively.

In the absence of inertial and damping terms, Equation 
(1) reduces to the static equilibrium expression

, 0ij i jb  . (2)

In the classical theory of elasticity, conservation of 
angular momentum for the characteristic volume 
requires symmetry of the Cauchy stress tensor and minor 
symmetry of the elasticity tensor. Thus angular 
momentum is implicitly satisfied at each material point 
when the components of the Cauchy stress tensor are 
reduced to 6.

There are two equivalent forms of expressing the linear 
momentum equation. The first form, which comprises 
Equation (1) and traction boundary conditions, is called 
the strong form. The second form, known as the weak or 
variational form, is derived through application of the 
principle of virtual work. Some numerical techniques, 
such as the Finite Difference Method (FDM), directly 
discretize and solve the strong form of the governing 
equations, while others such as the Finite Element 
Method (FEM) discretize and solve the weak form. 

In the analysis of discrete problems three aspects need to 
be recognized. These are

(i) Simulation of the deformability of a block, i.e., the 

,ij i term in Equation (1), requires a continuum 

method such as the FEM, FDM, or boundary 
element method (BEM) [6-9].

(ii) Continuum methods have the ability to 
accommodate both small and large deformations.

(iii) To relax the assumption of continuity intrinsic to 
the governing equations for a characteristic volume, 
continuum methods need special formulations. 

1 Throughout this paper, bold fonts refer to vector or matrix 
quantities, while components of these quantities are described 
with non-bolded, italicized fonts with sub-indices.

In continuum-based methods, two main approaches are 
used to reflect discontinuous material behavior: (1) 
interface or joint elements [10-15], and (2) micropolar or 
Cosserat theory [16-19]. This paper focuses on the
explicit simulation of interfaces through joint elements. 

2.2. Governing equations of joint elements

The governing equations of a joint element are derived 
from Equation (1). In most cases, it is assumed that an 
interface has negligible thickness. In this work, we will 
focus on the deformation response of the joint element 
developed by Goodman [10]. We disregard the inertial 
and damping contributions of interface elements to 
Equation (1). The virtual work, W , or potential 
function,  , for this element is obtained from Equation 
(1), as
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where  means variation,  is the small strain tensor, 
and the superscript int refers to internal energy or work. 

By assuming infinitesimal thickness for the joint 
element, kinetic (stress) and kinematic (strain) terms 
associated with the thickness can be disregarded. 
Therefore, Equation (3) can be expressed in terms of two 
kinematic variables, which represent sliding and normal 
displacement along the joint (see Fig. 1), as follows:
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where nk and sk are the normal and shear stiffness of 
the interface in dimensions of force/length, and u , the 
displacement vector. K , the stiffness matrix and F , the 
internal force vector for the joint element, are derived 
from the minimization of potential energy as
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Equation (4) indicates that a joint element provides 
relaxed connectivity between two adjacent surfaces in 
contact (Fig. 1). It accomplishes this through force-
relative displacement (of the surfaces) relationships. The
degree of proportionality between force and 
displacement is captured through the normal, nk , and 

tangential, sk , stiffness coefficients.



Fig. 1. Geometry and node topology of the Goodman FE 
interface element (1968) with four nodes and eight degrees of 
freedom: (a) in the original configuration nodes 1 and 4 share 
one position, while nodes 2 and 3 share another; (b) in the 
displaced configuration the nodes can move both normally and 
tangentially from each other.

2.3. Governing equations of discrete element
techniques

In the mechanics of discrete assemblies of bodies, the 
governing equations of each discrete body follow from 
the linear momentum equation together with the traction 
boundary condition, which incorporates contact forces. 
Similar to continuum methods, discrete element 
techniques can be formulated based on the strong or 
weak form of Equation (1).

In a two-dimensional framework, for each discrete 
element, e , direct integration of the linear momentum 
equation over the area, eA , leads to the following integral 
form
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How the above expression is integrated depends on the 
spatial discretization technique used. Nevertheless, 
Equation (8) and its boundary condition reduce to the 
following system of equations at the nodes of the 
problem domain:

0i i i i im u c u F    , (9)

where im represents the mass associated with the thi

degree of freedom, ic is a damping term, and iF includes
the external loads, contact forces, damping forces and, if 
block deformability is considered, elastic deformation 
loads.

In energy-based discrete element methods, integration of 
the weak form of Equation (1) requires addition of a 
term representing the potential energy of the contact to 
the potential function obtained from Equation (1), i.e., 
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The potential energy of the contact will be discussed in a 
subsection below. Minimizing this energy leads to a 
system of equations of the following form:

Mu+Cu+Ku F  , 
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2.4. Governing equations of contact

Mathematically, contact is treated as a constraint on 
displacements at the interface of two objects. A normal 
contact condition prevents interpenetration of objects, 
while a tangential constraint enforces sticking/slipping.

Various numerical techniques have been developed to 
satisfy contact constraint conditions [20, 21]. The most 
widely-used methods are the Lagrange multiplier and the 
penalty approaches. The Lagrange approach strictly 
enforces impenetration and sticking, while the penalty 
method satisfies these constraints approximately. 

The approximate enforcement of constraints by the 
penalty method is achieved through a proportionality 
law or penalty function that relates the degree of 
constraint violation to the size of the corrective measure. 
Any penetration violates the impenetrability constraint,
and invokes contact forces that tend to return the 
surfaces to a state of compliance. Similarly, tangential 
penalty forces are developed as a result of relative 
tangential displacements at the contacting surfaces. 

From the approximate enforcement of the normal 
impenetrability and tangential sticking constraints, the 
following potential energy terms arise:

contact
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where n and t are the normal and tangential penalty 
coefficients, respectively, in dimensions of force per unit 
length.

Another technique for simulating contact is the soft 
(compliant) contact approach. This method does not 
constrain penetration displacements2. It assumes that 

2
In the hard contact approach no penetration is permitted. 

This definition becomes ambiguous in methods that satisfy the 
no-penetration constraint approximately. Therefore, we 
suggest defining a hard contact as a contact in which the 
penetration displacements are restricted to a specified 
tolerance.
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springs exist at the contacts, and therefore infinitesimal 
penetration is permitted, and associated forces are 
calculated using the constitutive laws of the springs [22-
24]. Assuming a linear constitutive spring relationship, 
F k l  , the potential function for each contact point 
becomes 
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where nd and td are the normal and tangential 
displacements of a contact point on the boundary, 
measured with respect to the target surface with normal 
n , and nk and sk are the normal and shear stiffnesses at 
the contact. Given that the penalty coefficients and the 
spring stiffnesses have the same dimensions, Equations 
(12) and (13) are equivalent. 

To represent the energy contribution of contacts to a 
discrete system, Equation (13) can be arranged in the 
following vector-matrix form for all degrees of freedom 
related to all contacts:

contact 
1 1

2 2
d d d dT T

n n n t t t  . (14)

Equation (14) is the potential function term described 
earlier in Equation (10). 

Minimization of the total potential energy with respect to 
displacements, gives the stiffness and force terms of 
Equation (11). By enforcing normal and tangential 
constraints, contact surfaces contribute force and 
stiffness terms, which can be expressed as
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By disregarding the second term of the stiffness 
matrices, the combined forms of Equations (15) and (16) 
become
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and the potential function is
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where u is the displacement vector, K, the n n linear 
symmetric contact stiffness matrix, F, the applied load 
vector and n, the number of degrees of freedom 
associated with the nodes that are in contact.

2.5. Comparison of governing equations

The previous sub-sections showed that the linear 
momentum equation, expressed by Equation (1), is the 
governing equation for both combined continuum-
interface techniques and discrete element techniques. 
The linear momentum equation leads to a spatially-
discretized system of equations of the form 

Mu+Cu+Ku F  or 0i i i i im u c u F    . These equations 
are nearly identical with the only difference being that,
in the latter, the governing equations are decoupled for 
each degree of freedom i. 

Both contact enforcement and the joint element define
normal (impenetrability) and tangential constitutive 
responses at the interface between two objects. 
Approximate enforcement of the contact impenetrability
condition and tangential constitutive law results in force 
and stiffness terms expressed by Equations (4-7). 
Similarly, a joint element – an entity that represents a 
continuum with negligible thickness in one direction –
enforces the normal and tangential constitutive responses
at the interface as expressed by Equations (17-18). 

Numerical evaluation of the stiffness and force terms 
arising from the contact enforcement approach and joint 
element will be discussed in Section 4. However, 
comparison of Equations (4-7) to Equations (17-18)
shows that the stiffness and force expressions represent 
identical physical responses at an interface. These terms 
contribute to the global stiffness and force components
for the system of discrete objects. It is worthy to note 
that the spring-type stiffness k and the penalty 
parameter  have similar dimensions. They both
represent constants of proportionality in the laws that
relate forces to normal and relative tangential 
displacements. 

In addition to conservation of linear momentum, the 
governing equations of discontinuous media, require
conservation of angular momentum. In continuum-based 
methods, angular momentum is implicitly satisfied 
through stress tensor symmetry at every point in a body. 
For methods, such as discrete element techniques, in 
which the forces acting on a body are resolved only at 
the body’s centroid, angular momentum needs to be 



explicitly represented in the system of equations. This is 
required to satisfy the laws of vector translation. As a 
result, the explicit representation of angular momentum
in the equations of discrete techniques should not be 
viewed as an advantage over continuum-based methods.

3. KINEMATICS

It has been shown in this paper that both contact 
enforcement and joint elements contribute to the force 
and stiffness terms of a discontinuous problem.
However, the manner in which these terms are evaluated 
differs. Terms for joint elements are generally evaluated 
based on the same standard space-discretization methods 
used in continuum methods such as the FEM. Since 
contacts change with time, evaluation of these terms 
depends on contact kinematics at the moment of 
evaluation.

3.1. Kinematics of the joint element

The following three assumptions are intrinsic to the 
kinematics of the Goodman joint element:

(i) The joint element is a reduced form of a 
quadrilateral solid element with negligible thickness,

(ii) The two sides of the joint element have equal length, 
and

(iii) The joint element defines an edge-to-edge contact in 
which connectivity (joint node pairings) does not 
change with time.

3.2. Kinematics of contact 

From a physical point of view, there are three 
kinematically feasible modes of contact between two 
objects (shown in Fig. 2). Different contact resolution 
techniques have been developed for evaluating the force 
and stiffness terms of Equation (17). Some techniques 
consider all three possible modes of contact depicted in 
Fig. 2, while others resolve mode (c) into two node-to-
edge contacts. A technique proposed by Munjiza can 
resolve contact terms without considering contact modes 
by evaluating areas of overlap instead [25]. 

In addition to contact kinematics, the contact resolution 
technique adopted in a discrete element technique 
depends on the shape (e.g., circles or polygons) it 
assumes for discrete bodies and the spatial discretization 
method it uses. For example, the Bonded Particle Model 
[24] assumes discrete objects to be circular disks or 
spheres. Therefore, contact resolution in the Bonded 
Particle Model becomes greatly simplified, and contact 
penetration displacement can be evaluated simply 
through the relative position of centres of adjacent 
objects. In techniques that discretize arbitrarily-shaped 
blocks into elements or grid points, penetration and 

relative sliding displacements can be evaluated for block 
vertices or mesh nodes that are in contact. 

Fig. 2. Three possible type of physical contact in a 2D 
framework.

3.3. Comparison of kinematics of contact and joint 
element

The Goodman joint element models the discontinuous 
displacement response that arises at an edge-to-edge 
contact or interface. The normal and tangential 
displacements at the interface are measured in terms of 
the relative displacements of the nodal pairs of the edges
(see Fig. 1). The Goodman joint assumes that, even 
though edges displace relative to each other, edge 
pairings remain constant.

Unlike joint elements, contacts in discrete element 
techniques are not restricted to edge-to-edge mode only
(see Fig. 2). Contact pairings can also change throughout 
the solution process. Therefore, discrete element 
techniques require algorithms for

1. Updating the positions of discrete objects, and

2. Determining newly formed contacts or detached 
contacts. 

4. EXAMPLE OF EDGE-TO-EDGE CONTACT

To demonstrate the similarities between mathematical 
terms arising from joint element and contact 
enforcement, the simple problem shown in Fig. 3, which 
represents an edge-to-edge contact, is solved using two 
different approaches: (i) two finite elements attached by 
a joint element, and (ii) two discrete elements with an 
edge-to-edge contact.

4.1. Stiffness and force terms of a joint element

The joint element applied in this paper is a four-noded, 
one-dimensional finite element designed to simulate 
shear and normal displacements of interfaces. Since the 
two sides of the joint element have equal length, the 
finite element shape functions for nodes 1 and 4, and 
nodes 2 and 3 (see Fig. 3) will be similar. Therefore, the 
displacement field can be interpolated as 

(a) node-to-node
contact

(c) edge-to-edge
contact

(b) node-to-edge
contact
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or in vector-matrix form
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Matrix B relates the displacement field u to the nodal 
degrees of freedom, u .

The stiffness and force terms can be determined by 
substituting Equation (20) into Equation (6), and 
integrating over the length, l , of the joint to obtain 
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4.2. Stiffness and force terms for discrete objects with 
edge-to-edge contact

To evaluate the contact stiffness matrix and force vector 
of contact as expressed by Equation (17) the term 

/d u  must be determined. We do so by applying a 
commonly-used technique that computes the distances 
over which a point on the object, x s , penetrates into and 
slides over the smooth and continuous boundary surface 
of the target object  . 

Edge-to-edge contact is treated as two node-to-edge 
contacts. Normal penetration, nd , and tangential 

displacement, td can be expressed as
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where x , the current position vector of a node, is given 
by

x=X+u , (24)

n is the normal to the contact surface, t is the tangent 
to the contact surface, X is the original position vector 
of the node, and u is the node displacement vector.

Fig. 3. Edge-to-edge contact, (a) penetration of the edge 1-2 
belonging to object i into object j, (b) penetration of node 1 to 
the edge 3-4, (c) penetration of node 2 into the edge 2-3. 

The normal penetration distance for point 1 belonging to 
block i with respect to edge 3-4 belonging to block j
(see Fig. 3) can be obtained as 
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A similar derivation for node 2 leads to
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At any time t, the normal penetration distance is 
evaluated only using the current position of the 
contacting nodes of the two objects. This however is not 
the case with tangential displacements. Their evaluation 
depends on the displacement history of the nodes. In 
other words, the tangential displacement for each 
penetrating node is measured incrementally with respect 

object i
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(b)
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4 3
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to a reference point on the target object. This reference 
point is the point on the target object surface at which 
the penetrating node first makes contact (see Fig. 4). The 
total tangential displacement for a node is then the sum 
of incremental displacements it has experienced through 
time. 

The expression for td is derived assuming point 4 to be 

the target (reference) point for point 1, and point 3 to be 
the target for point 2. The expression for tangential 
displacement is then

1 1 1 3 3 1 1 3 3( )   ( ) .ttd X u X u Y v Y v         . (29)

A similar procedure is used to evaluate the normal 
penetration and tangential displacement of nodes 3 and 4 
with respect to surface 1-2, with the target and penetrator 
objects now switched around. 

To numerically solve the system of equations for a 
problem, nd and td must be expressed in terms of the 

unknowns associated with the degrees of freedom of the 
system.

If the blocks were to be discretized into an FEM mesh or 
FDM grid, then nd and td would be directly expressed 

in terms of the unknown nodal displacements. Therefore,
for the contact shown in Fig. 3, the displacement field 
over the contacting edges can be expressed in terms of 
the following nodal degrees of freedom:

1 1 2 2 3 3 4 4U u v u v u v u v    . (30)

Equation (17) for the contact results in an 8 8 stiffness 
matrix, and an 8 1 force vector.

In order to check the equivalence of the joint element 
formulation to contact enforcement, the variation of nd

and td along the penetration edge is considered. 

Using Equations (26) and (29), the normal penetration, 
x
nd , and tangential displacement, x

td , of a point x on 

edge 1-2 of object i can be expressed as

0 4 3 4 3
23

3 4 3 4 4 3 3 4

1
( ( ) ( )

( ) ( ) ( ) ( ) ),

x
n x x

x

d S X X v X X v
l

X X v Y Y u Y Y u Y Y u

    

       

(31)

and

( ) ( ) ( ) ( ) t
x penetrator target penetrator target target

t
d = X+u - X+u    Y+v - Y+v . 

  . (32)

In order to compare terms arising from the contact 
formulation with those from interface elements, we 
enforce the kinematic assumptions of the joint element 
and analytically resolve the contact terms. Although this 
approach is not used in numerical implementations, the 
conclusions drawn from it are general.

Without any loss of generality, an edge-to-edge contact 
involving two objects with different edge lengths can be 
discretized into a contact of two objects with equal edge 
size. In that case the locations of nodes 3 and 4 are 
placed at the points where nodes 1 and 2 first contact the 
edge of object j . It can also be assumed that the normal 
to the contact surface is parallel to the global Y 
coordinate axis.

To compare the stiffness and force terms of the joint 
element and contact enforcement, further assumptions 
need to be made. First, it must be assumed that edges 1-2 
and 3-4 are parallel at the instant contact occurs. This is 
compatible with the kinematics of a joint element. 
Although the assumption is physically meaningful, it 
may not be satisfied numerically in the approximate 
enforcement of impenetrability. 

Equations (31) and (32) then reduce to

34 4 3 3 4
23

1
( ( ) ( ) )x

n xd l v X X v X X v
l

     ,

and

1 1 4 2 2 3( ) ( )x
td N v v N v v    , 

(33)

(34)

where 1 1 2 2xv N v N v  .

The position vector x can be expressed in terms of 
nodal positions along the contacting edges (Fig. 4) as

4x x   and 3x x l    , 

where 0 l  .

(35)

Equations (33) and (34) become

1 1 2 2 3 4

34

1 1 2 2 3 3 4 4

1

,

( ) ( ( ) )

( ) ( )

nd N v N v v l v
l

N v N v N v N v

    

   

 

and

(36)

1 1 2 2 3 3 4 4( ) ( )td N u N u N u N u    . (37)

Finally, by assuming that the contacting lengths are 
equal (i.e. 12 34l l ), then 1 3N N and 2 4N N , and 

Equations (36) and (37) can be rearranged in the form

1 2 4 2

1 2 3 1

0 0 0 0
.

0 0 0 0

d

U=BU

t

n

d

d

N N N N

N N N N

 
  
 

  
   

(38)

Substituting (38) into the stiffness matrix of Equation 
(17) leads to

0

0
TK B Bt

l
n

dx
 

  
 





,

and

(41)



/2

/ 2

.K A
l

l

dx




  , with (42)
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Fig. 4. Distributed force approach to an edge-to-edge contact 
of two objects.

Assuming that displacements over a contact length vary 
linearly according to the forms 1 1 2 2u N u N u  with 

1 2(1/ ) , and (1/ )( )N l x N l l x   , integration of Equation 
(42) results in

2 0 1 0 1 0 2 0

0 2 0 1 0 1 0 2

1 0 2 0 2 0 1 0

0 1 0 2 0 2 0 1

1 0 2 0 2 0 1 06
0 1 0 2 0 2 0 1
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0 2 0 1 0 1 0 2
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F=Ku or 
0

0
t

n

 
 
 

F=B u



.

(43)

4.3 Comparison of stiffness and force terms

In Section 2 it was concluded that contact enforcement 
and the joint element both result in stiffness and force 
terms. It was also discussed that the penalty parameter 
and joint stiffness have the same dimensions and 
represent identical physical behaviors. Comparison of 

Equations (21) and (43) shows that under the 
assumptions discussed in the current section, numerical 
evaluation of the stiffness matrix of an edge-to-edge 
contact is identical to that arising from an interface 
element. Similarly, it can be deduced that the force terms 
are identical.

5. CONCLUSIONS

This paper compares the combined continuum-interface 
and discrete element techniques in analysis of jointed 
rock masses. It examines the 

1. Governing equations and assumptions of 
continuum and discontinuum mechanics, 

2. Formulation of joint/interface elements, 

3. Mathematics and kinematics of contact, and 
interface elements.

The governing equations of both continuum and 
discontinuous mechanics are based on the conservation 
of linear and angular momentum. Both combined 
continuum-interface methods and discrete element 
techniques explicitly simulate discontinuous surfaces, 
using special joint elements and contact considerations, 
respectively. Both approaches can accurately capture the 
discontinuous changes in the deformation, stress, and 
strain fields of discrete objects.

This paper shows that the joint element and enforcement 
of contact constraints lead to stiffness and force terms at 
an interface. By enforcing kinematic assumptions of 
joint element on the case of an edge-to edge contact, we 
showed that both techniques lead to identical 
expressions for stiffness and force. 

The arguments in the paper emphasize that, at a specific 
instance in time, if an assembly of discrete objects with 
edge-to-edge contacts were to be replaced by a 
combined continuum-interface model, the resulting 
algebraic equations would be identical. (Clearly this is 
true only if both techniques adopt similar assumptions 
on the deformability of objects.)

Joint elements readily model the reduced normal and 
tangential resistances of contact surfaces. From a 
kinematic point of view, their most appropriate use is in 
the modeling of edge-to-edge contact. Because of the 
defined joint topology, they are also restricted to 
problems in which pairing between two contacting 
objects does not change. In combined continuum-joint 
problems, once interconnectivity between solid and joint 
elements is established upon meshing, it remains 
unchanged throughout the solution process, despite the 
displacements that occur. 

In contrast, when contacts are used (by discrete element 
techniques) to represent physical interfaces, their 

1
2

4 3



t

n

l

i



kinematics are completely unrestricted; old contacts can 
be broken and new ones established, and contact modes 
can change. As a result, discrete element techniques 
must check for released contacts and newly formed ones 
throughout the solution process. 

Due to the above-described characteristics, the choice 
between combined continuum-interface methods and 
discrete element techniques depends on the 
configuration of an assembly of discrete blocks, and how 
it evolves over time. Continuum-based methods that use 
joint elements are accurate provided changes in edge-to-
edge contacts are insignificant throughout the solution
[26, 27]. These methods can accommodate large 
displacements, rotations, or strains of discrete objects, so 
long as these mechanisms do not change contacting node 
couples. Discrete element methods, on the other hand, 
can accommodate problems in which block connectivity 
changes extensively.

It is hoped that this discussion clarifies some of the 
misconceptions in the geomechanics community of what 
the differences are between the numerical methods. It 
suggests that the term discrete element technique should 
refer to all numerical models that are developed with the 
primary purpose of modeling assemblies of blocks or 
particles. Aspects such as large deformation, freedom in 
contact modes, and change in contacting couples are 
three aspects deemed inherent to all discrete element 
models. However, they are also shared by some
continuum-based implementations [28]. Therefore, what 
differentiates the deformable-block discrete element 
techniques from continuum methods, which 
accommodate these assumptions, is merely the presence 
of algorithms that facilitate generation and analysis of 
large scale discrete problems.
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