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ABSTRACT

Many problems in engineering geology are fundamentally problems in three
dimensional geometry. Spherical projection is a time t€sted technique by means of
which complex and arbitrary orientation problems can be solved manually with
relative ease. ln spite of rapid developmens in computing hardware, no analytical
software has been created which seems capable of adequately replacing spherical
projectioo techniques. Therefore, maDy attempts have been made to computerize
ihis method. The majority of these attemPts have resulted in programs which are
static and inllexible in nature. DIPS, a program which was developed as the main
compoDent of this wor! duplicates, on the comPuter, the flexibility, graphical
visualization potential and interactive nature of the original spherical projection
tecbniques.
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1.0 INTRODUCTION

The study of geological structure is a fundamental component of any study of

stability characteristics for rock slopes and underground excavations. It is also an

idportant step in the assessment of general deformation chamc-teristics and fluid

cooductivity. As well, identification and extsapolation of geological structue oftetr

forms a basis for preliminary mineral prospecting.

While scalar properties such as lengtb and separation are often considered, many of

the problems which are encountered in these studies are fundamentally problems in

three-dimensional geometry, and focus primarily on orientation relationships. Even if

the problem involves only a few distinct or repres€ntative orientations, it's tbree

dimensional nature leads to difficulties in visualization and in the solution of

arbitrary interrelationships. While some nblack box' techniques exist for the solution

of specific types of three dimensional structural problems, a techniquc is required

which permits the analysis to progress in a non-prescribed fashion as the problem

dictates, while allowing simultaneous yisualization.

Before analysis crn proceed with representative structural orietrtations, however,

simplified models must often be reduced Aom multiple field measurements. Unless

the regional or local structue is already well cstablished, the syst€matic collection

of field data is a key first step in any analysis of tlree dimensioDal structural

relationships. Because the historical factors zuch as stress, which contribute to th€

formation of geological structure are often consistent 1fu6'ghsut a volume of rock,



natural discontinuities or rock fabric can frequently be represented by several

dominant orientations. The three dimensional nature of the data as well as the

natural variance of geological sEucture make this reduction process difEcult unless

an appropriate visualization and analysis tool is available.

The most appropriate tool for both srages of orientation analysis is, in the opinion

of this author, spherical projection. Fint used in the second century B.C by

crystallographers for the study of crystal morphology and optics, this technique has

been adapted in the last century for use in structural geology (phillips, 1971).

This technique considers only the orientations of linear or planar features. planes

and lines are assumed to int€rsect the centre of a sphere. This sphere is often called

the primitive in crystallography. The term reference qthere, however, is used by this

author. The circle and point naces formed as the planes and lines intersect the

surhce of the sphere ue prqiected by means of one of two methods to form the

spherical projection which is the basis for this worh

The pro.jection can be used in a time tested manual process, utilizing reference grids

and rotating overlays to perform a wide variety of otherwisc complex geometrical

calculations with relative ease. The method's power lies in its interactive and

graphical nature. These techniques are described throughout the literature (Goodman

1976 Hoek and Bray 1974, Hoek and Brown 1980, phillips 1971, priest 19g5,

Ragan 1973) and are summarized in chapter 3 of this work
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Lines plot as poinrs on the spherical projection as do normals to planes, often

referred to as poles. This allows large numbers of linear or planar features to be

plotted oD a projecred stereonet in a rclatively uncluttered fashion. Dominant

orientations can be derived from apparent clusters or ser visible on such a plot.

The visual impact of this clustering may be further enhanced by a orientation

density contour plot This technique is also described by the above authors as well

as by CANI{ET 1977, Denness 1972, Statffer 1966 and Tanb* 1977. SiDce there

do€s not exist a reliable mathematical proc€sri to reduce a large multimodal (having

more thaD one dominant orientation) orientation data set to representative featureq

spherical projection is a unique and vital part of such an analysis.

The process can prove tedious if performed manually, bowever. The development of

compute$ has not, in turn, led to the development of a replacement for spherical

projection. It has, on the other hand created the possibility of drastically increasing

the speed and power of the existing process. There have been many attempB in

recent years to adapt the process for use with a computer. Some of these are

discussed in chapter 4 of this work. Most of these attempts, however, have focused

on generating static output of pole plots, contoured density ptoB or stcreonets with

prescribed distinct platres. Further analysis must then be carried out by hand froE

the computer screen or from paper output. These early attemptq in the opinion of

this author, fail to capture the powerful visualization features and interactive nature

of the manual spberical projection techniques.



1.1 DIPS - An interactive toolkit using spherical projection

The purpose of this work was to develop a computer package for orieDtation

analysis which would dynamically mimic the original techniques involving spherica^

projection and cover all phases of the analysis from data reduction to analysis of

distinct features. The program was to possess many interactive features in addition

to producing high quality gaphical output. It was also to accept a wide variety of

data formats and conventions. ln addition, siuce orientation data is often associated

with other information (spacing, continuity and ro"gfiness of rock joints, for

example), the program was designed to allow several means of simulroneous

processitrg this additional data. The progn|m was designed to access a data file

which could act as a single database with the ability to interactively screen and

process data subsets as the analysis warranted.

The resulting package is called DIPS - Datr Int r?rctation packagc using

stereographic projection. The program disk and user manual can be found

appended to this thesis"

The rest of this thesis deals with the design philosophy and rationale for the

program DIPS. chapter 2 of this work discusses a variety of orientation

nomenclature and measurement conventions. chapter 3 summarizes previous work

dealing with orientation analysis including the development of spherical

(stereographic) projection. chapter 4 deals witb previous attempts at computerization

of stereograpbic techniques. chapter 5 describes tbe various features of tbe DIps

package.



2.0 ORIENTATION NOTATION AND
MEAST]REMENT

Few aspects of orientation analysis create as many difficulties as the initial

recording of the data itself. This arises from rhe great variety of conventions and

methodologies which are in use at present. This chapter outliDes co[rmon

conventions and identifies thos€ us€d throughout this work.

2.L

2.L.L

ORIENTATION NOMENCI.ATURE

Vectorlal Notation

A vector in three dimensional spac€ can be described using tbree cartesian

coordinates based on some arbitrary origin and three mutually perpendicular

(orthogonal) reference axes. The samc vector may also be described using

independent measures of magaitude, or absolute lengtb, and of oricntation. This

orientation can be expressed in terms of the cmrdinates of a collinear unit vector

(vector of lengh 1). It may also be described using a combination of angles in

mutually orthogonal platres. The horizontal and vertical angles between a vector

and a reference line, for exrmple, uniquely describe an orientation.

Thc three coordinates of a unit vector, arc also termed dbection cosires. This term

arises from the fact that each coordinate repres€nts the cosine of the minimum angle

betveen the udt veclor and the axis in question. This form of notation is the most

convenietrt for analytical manipulation of orientations using linear algebra and is
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ideal for use in computer programs. It is not, however, the most appropriate means

of intuitive visualization for the engineer or geologist. It is often difficult for the

human brain to process three dimensional cartesian expressions. The use of two

dimensions, however, rarely presents a problem (which explains our attachment to

two dimensional forms of analysis and pres€ntation). For this reason, geologists and

eDgineers have traditioDally dealt with information in planar s€ctions.

When describing orientatioDs in the field, a rcference vector is chosen, such as true

or magnetic north, aDd all orientations or attitudes are expressed in terms of a

horizontal arogle (azimuth) and vertical angle (inclinatioz) from this reference. This

convention is the most conveDient for the surface geologis! for example, who

typically treads upon a horizontal plane armed with a bubble level clinometer and a

compass which references magnetic or true north. Different reference angles may be

adopted in other circumstances, as when suweying in a magnetic orc body ( where

compasses may prove unreliable and other references must be adopted) or when

coring underground with equipment standardized for subvertical drilling ( making a

venical reference direction more convenient ).

Geological convention and convenience of expression have led to the development

of many different terms for describing the orientation of linear and planar features

and their interrelationships. Before proceeding with furthe r discussion, it is

worthwhile to describe some of the more widely used orientation terminology. These

descriptions are based on generally accepted definitions q/hich can be found in a

variety of sources ( Ragan 1973, Phillips 1971, hicst 1985, Hoek & Brry 1974,

Hoek & Brown 1980 ).



BEARING

AZMUTH

INCLINATION

DECLINATION

ZEMTH ANGLE

NADIR ANGII,

PLUNGE

2.r.2 Orientations of Linear Features

The acute horizontal angle between a line and a reference
direction (usually one of the four major directions N,S,E or
\V).

The clockwise horizontal angle between a line and the
north reference direction.

The angle between a line and the horizontal plane,
measured downward.

The angle between a lioe and the horizootal plane measured
upward. It is important not to confuse this measure with
magtetic declination which will be defined in the next
section.

The angle between a line and the vertically upward
direction or Zenith.

The angle between a line and the vertically downward
direction or Nadh.

TREND

This is the term used most often in geological references
and by this author to define the downward angle of a
lineation measured ftom the horizontal plane. This term is
equivalent to inclination. Negative plunge is equivalent to
positive declination.

This is the term used most often in geological references
and by this author to define the horizontal angle betrveen
true or apparent (ie. magnetic) North and the direction of
pcitive plunge of a lineation. Ncverthelesg if this
measure is associated with a negative plunge, the trend is
the azimuth of the negative vector described and not of is
positive counterpart. Trend is equivalent to lhe azimuth of
a vector.



vertical
Plane

--?

horizontal
plane AZIMUTH

or
TREND

INCUNATION
or

PLUNGE

NADIR ANGLE

Figurc 2.1: Orientations of vectors in 3-D space

2.13 Relationship of Trend 8nd Plunge to Cartesian
Coordinates

For implementation in analytical analysis or computer processing it is efEcietrt, as

discusse4 to convert the above angular relationships into cartesian coordinates or

direction cosines (the two tem$ are equivalent if the vector described is of unit

lengh). If a sct of axes is adopted, represcnted by the north, eest and dowtr
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direaiong tbeo the respective direction cosines, I , of a vector can be calculated as

(Priest 1985):

L* = cos( trend ) * cos( pl"nge )
I.- = sin( trend ) x cos( plunge )
L- = sin( plunge )

(eq. 21)

Not€ that only two angular paramete6 arc rcquired to uniquely define an orietrtation

in three dimensions. The same is true for direction cosines since the cartesian

coordinates of a unit vector are related by the relationship:

\ . * '+L - '+ \ . . , t=1 (eq.2.2)

nd

unit vector
( length = 1)

Down

Figurc 22: Angular and Cartesian exprcssion of veclors
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Attitudes of Planes

The plunge of a vector representing
downward angle betwecn a plane and

the
the

maximum
horizontal

DIP DIRECTION

STRIKE

reference plane. Occasionally the term hade may be used
by gcologists in defining a planc. This is the complement
of dip and is the nadir angle of the dip vector.

Thc azimuth of the dip vector. Unless otherwise state4 rhe
two above definitions will be used in this work Note,
however, that the t€rms dip and dip direction are used
occasionally to rcfer to other relationships. For slample, the
'maximurn dip' vector or 'core dip angle' of a discontinuity
in a drill core is the maximum angle between the plane and
the downhole corc axis. The 'core dip direction' is then the
clocklise angle between the core dip vector and some
reference line such as the top of core.

The azimuth of a horizontal linc in a plane. The strike will
always be perpendicular to lhe tnre dip of a plane.

Figurc 23: Attitudes of Planes (after ltroek & Bray 1974)



2.r.5

APPARENT DIP

PITCH OT RAKE

SOLID ANGLE

CONE ANGLE

l1

Orientations of Plane-Plane and Line-Plane Relationships

The plunge of a line of interseclion between a plane and a
vertical reference plane not parallel to the maximum dip
vector. This value will always be less than the true dip of
the plane being measured. In other words this measure is
the inclination of a plane measured in a direction not
perpendicular to the strike of the plane.

The angle of a lineation (ie. a slickenside or shear etching
on a plane) or of an intersection line as measured in a
plane from the plaoe's recorded strike direction. Note that
apparent dip is a special case of pitch where the reference
plane is vertical.

Tbe minimum angle between any two linear or planar
features.

The minimum angle between the surface of a mne and its
axis of radial symmetry.

Pitch of IDtersecuon
Line in Plane A

STRIKE OF B

Apparent Dip of
Ple!€ A id PlaDe B

Figurc 2.4: Interplane relationsbips (after Phillips 1971)
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22 NORI\{AL VECTOR OR POLE TO A PIANE

While the planar definitiols of. st/ileldip ot of. dipldip dbection are sufficient to

uniquely define the orientations of planar features, many analysis procedures are

more effectively carried out by dealing \tith poles or normal vectors to plaDes.

The normal or pole to a plane is a line which is perpendicular to the plane. The

orientation of this line expressed in trend and plunge also uniquely define the

attitude of its associated plane. While every plane has two associated pole directions

(emanating from either side of the plane) it is more common to refer to the

downward normal to a non-vertical plane. This is the convention used by the author

to define the positive pole or normal.

Pol. PluD8. = mo - Pl.n. Dip

Polc Tr.Dd = Pl.D€ Dip Dlr. + 18o'

DllccUoD

tr'igurt 2.5: Pole - plane relationships
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23 PI.ANAR RET.ATIONSHIPS AND DIRECTION
COSINES . DOT AND CROSS PRODUCTS

While the orientation definitions discussed are convenient for measurement and

visualization of planar relationships in the fiel4 they do not provide convenient

expressions for the analytical calculation of such relationships. Vector analysis of

orientation requires an altemative forrn of expression. The conversiorl for example,

of a planar orientations, expressed in tcrms of dip and dip direction, to a triplet of

direction cosines for the pole or normal vector to the plane, permis efficient

calculatiou of relationships such as angle of intersection between planes and

orientation of tbeir line of intersection (Spiegel 1974, Goodman 1970. It also assisrs

in efficient statistical analysis of orientation trenG.

Once the pole vecors for a set of planes have been converted to direction cosines

()') as discussed earlier, the angle of intersection betu/een any two planes A and B

can be detemrined, for example. This angle is equivalent o the solid angle between

the poles. This can be determine d graphically or analytically from the following

relationsbip:

Pole to plane A = { }'^..." , 1".- , I* }

Pole to plane B = { L* , L- , 1".-, }

A B = I,.-..' L-" + 1..,-' L.- * l.*"' t* = cos E

wherc I is the solid rngle betweeo normals
(and also between planes) A and B.

(eq. 2.3)

Notice how this relationship, called the dol prduct of A and B, resembles equation

2"2 Sioce thc angle between a normal asd i6clf is Q the cosine on the right side

of the equation is equal to 1.
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The direction cosines can also be used to compute the orientation of the line ol

intersection between two planes. This formulation is called the cross producl and is

somewhat more involved. The cross product of two vectors (in this case the poles to

planes A & B) is defined as follows:

AxB=
(eq. 2.4)

The above resultant triplet comprises the direction cosines for the line of intersection

between planes A and B. If desired, the equations 2.1 can be used to obtain the

trend and plunge of this calculated linear orientation.

It is important to note that these relationships are for unit vectors. Vectors with

magnitudes greater than one can be dealt with in a similar fashion as would be the

case when dealing with vectors representing forces in an analytical rock-wedge

stability analysis. The cartesian coordinates in these equations would no longer be

equivalent to the direction cosines The right hand side of equation 2.2 would be

equal to the square of the vector magDitude. Similarly, the right hand side of

equatiotr 2.3 would become lAllBlcosf; where lAl and lBl are rhe scalar magnitudes

of the two vectors.

For complcx analysis of geometrical relationships, cartesian vector notation is very

useful. It does Dot, however, easily facilitate intuitive visualization or field

measuremetrt.

{ }'^-L-,.
i',**L-"
l^-tL-

- t^r-' L.- '
- I^-n 1".-. '
- l".-L-o )
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2.4

2.4.1

ORIENTATION MEASUREMENT

Field Measurement

There are a number of metbods for measuring the orientations of linear and planar

features in the field. The prefened technique will depend to a large degree on the

type of survey and the reasons for performing the survey.

The first stage in measurement is the selection of two reference datums. The first

datum will usually be the horizontal plane. This plane can easily be referenced with

a bubble level or a plumb-bob. Altemative selections for this datum include the

zenith or nadir directions (vertically up or vertically down respectively). An

analogous leference for measurement of drill core discontinuities would be the doryn

core a:ds.

The selection of the second datum can be more involved. True nonh is the most

common reference. Alternatives include magnetic north, mine grid north (an arbitrary

reference for mine plans) or a tunnel aris or surveyed lineation. Drill core

measurements can be made with respect to a top of core marker line. Selection of

this datum will be governed by situation restrictiong convenience and measuring

equipEent us€d. It is useful, however, to statrdardise the notation of an orientation

database after the measuremetrts are made,

The reference orientations which will be used in most of this work will be true

nofth and the horizontal plane. A summary of conventional methods for measuring
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orientations of planar features is given in Hoek & Bray 1974. Orientations may be

obtained ftom st€reoscopic examination of aerial or ground based photographs and

computer enhancement of video or still photography (Franklin and Dusseault 19g9,

Peaker 1990). Tbe experience of tbis author is primarily with manual mapping using

a variety of magnetic compasses or a carpenter's rule (clinorule).

A pocket transit such as tbe Brunton coEpass is well suited for measuremenb of

litreations. It is composed of a magnetic compass with articulated sighting arms for

improved accuracy- It also has a number of bubble levels and a clinometer (dip

indicator) with vernier precision. This device is also well adapted for the

measurement of plane orientations on a large scale since is operation is very similar

to the vorkingS of a complete surveying trensil Measuremenb of strike can be

made by sighting along a horizotrtal line through the plane being measured. Dip

measureEents can be made with the cliDoEeter.

When a large number of planar measur€ments is required, a CIar typ, compass, zts

described in Hoek and Bray 1974 , is more convenient. It possesses a folding planar

back with an angular Eeasure on the hinge. Placing this back against the plane

being measured and lwelling the conpass allows measurement of dip and dip

direction in one step instead of the two required with the Brunton or Silva type

compas€s.

Whcn suneying in map.etic envfuonmentq cornpasses will not gve corred azimuth

readings. In this case a devie catled a clirande should be eoployed, This device is

compcs€d of two straight rulers which are johed by a hinge centred on the pivot
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point of a protractor or angular measure. one of the ruler units should also have a

bubble level. A suweyed reference line of lnown orientation is marked with a tape

or string. Relative strike is measured ftom this line and oompensated later. Dip

measures are recorded using the clinorule as a clinometer. It is iEportant to measure

dip in a consistent direction such as positive dip in thc direction of the recorded

scanline trend.

Thc anount of accwacy and precision i[herent in each measuremetrt should be

determined by the importance of the individual measure. For example when tsacing

a ftult over tbe ground surhce for the purpose of predicting is position at depth, a

very precise and accurate measure with a Bruuton type compass is in order. When

mapping several hundred joint planes in a mine drift network for statistical

determination of dominant trends, quick and numerous measurements, possibly at the

expense of accuracy, are more appropriarc and a Oar type compass should be used.

ln general however, selection of the measurenent tool may be simply a matter of

personal preference.

Magnetic Declination

It is importatrt, when using 1 6aernetic compass for determination of trend, strike, or

dip direction (ie. azimuth or bearing measuren€nts), to be aware of. magetic

&clitution and its sipificance. since magr€tic north and true north are not always

coincident, a coEection must be made to all compass measurements. The convention

used in this work is as follows. The mapetic declination c:n be calculated by

subhacting the apparent azimuth (with respect to magnetic north) from the true

2.4.1
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azimuth. From this definition, west magnetic declination is positive and is added to

all compass readings while east magnetic declination is negative.

2.43 Notation for Orientation Measurements

There are Dum€rous conventions for the numerical recording of orieDtation data. One

source of variation is the use of either bearing or azimuth notation for records of

horizontal angles such as trend, strike and dip direction. Traditionat bearing notation

utiliz€s a combination of refereuce compass poinB and numerical values to express

relative orientation, while azimuth is usually expressed as a single numerical value

(from 0 to 360) representing the clockwise angle tom true north- For example, the

beariag measure of Szl0W (read south 40 degrees west) is equivalent to the

azimuth meisure 220. Similarly the bearing NNW (read north-northwest) is equal to

the azimuth 337.5 (halfway between trorth and northwest compass poins). When the

uscr is accustomed !o bearitrg measnre, the notatioo is very effeaive in facilitating

visualization of the oriented features. Azimuth measwe, however, is less susceptible

to misinterpretation by the unacquainted and is less cumbersome when processing

large amounts of orientation data or utilizing analytical methods or computer

prograns" Azimuth notation will be used throughout this worh

The vertical angles of plunge or dip arc usually expressed as a single nrrmedanl

value betwe€n 0 and 90 (angle with respect to the horizontal). There are some
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exceptions such as the vertical angle in borehole orientation. This is typically

measured from the zenith and ranges from 0 to 180.

The azimuth measure is usually expressed as a three digit irteger with leading zeros

if necessary (if the azimuth is less than 100). Likewise the vertical angle is recorded

as a two digit integer with leading zeros for values less than 10. This notation

distinguishes between horizontal and vertical angles in orientation pairs (ie use

O73145 iastead of.73/45). Note that the degrec symbol (") is left out in this notation.

If a higher degree of precision is required, a division of the degree udt into

minutes and seconds may be used as an alternative to decimal expression (ie. either

075" 15' 36' or 075.26"). Such precision is only used in very accurate surveying or

specific geological analysis. Natural lineations and planar features poss€ss too much

spatial variability, however, to make measurement precision gr€ater thatr d).5"

meaningful. Integer azimuth and integer vertical engle notation will be used

throughout most of this work-

Variability in orientation expression arises from differences in the way planar

feahues are measured. While linear features are expressed primarily using trend and

plunge in geological worh planar features are comruonly measured using dip and

dip direction or one of two strike and dip conventions. Table 2.1 describes the

different conventions.
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ORIENTATTON CONVENTIONS
FOR LINEATIONS AND PI-{NES

BEARING
NOTATION

AZMUTH
NOTATIO

TREND/PLI]NGE
(Linear features)

s60E/35
(eg. pole to
a plane)

r20135

DIP/DIP DIRECTION
lo this work dip will proceed dip
directiotr in all planar measures to
avoid confirsion with strike and dip
notation. This is, however, only the
convention of this author. other works
may use other conventions.

STRIKE/DIP -generic-
In this notation, a plane can have one
of two strike measures, independent if
the dip orientation. The nearest
compass point to the dip direction is
therefore appended to the dip to
prevent ambiguity.

STRIKE/DIP -right hand rule-
The handedness indicated can be
hterpreted as follows. The hand
indicated is held outstretched with the
palm down, fingers extended and
thumb held at 90 degrees to the
fingers. If the fingers point down dip,
the thumb indicates the direction of
strikc. Alternative ly, if a compass is
held in the palm-up hand with the
fingers pointing in the direction of
snike, the thumb will point in the
dircction of dip.

STRIKE/DIP -left hand rule-

55N60W 55/300

N30ry55NW
-or-
s30w55NlV

030/55NW
-or-
210/55Nw

s30w55 2L0155

N30W55 030/55

Table 2.1. In this work, the azimuth conventions of trend/plunge, dip/dip direction,
and right handed strike/dip will be used for lineations 1nd 

-planes. 
Othei

easuremeDls such as interplane angle, and apparcnt dip will be expressed as simple
degree me asures
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3.1

SPHERICAL PROJECTION

INTRODUCTION

Direction cosines and angular relationships in plan and section both provide

effective means for visualization of single lineations and planes in space. Vector

analysis using the cosine approach permits more complex analyses of interplane

relationships when two or more planes or lines are involved. When many planes are

involved, however, or when very aditrary relationships need !o be determined, even

vedor algebra proves inadequate, particularly when one considers this method's lack

of visualization appeal.

Traditional graphical solutions prove useful for resolving certain orientatioD

relationships. Consider the following slernple solution for determination of a line

and angle of inters€ctiotr betweetr two planes:

tr'igurc 3.1: Graphical Determination of Line of Intersection for Two
Planes (after Ragan 1973)
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compare this solution to equations 2.3 and 2.4 using direction cosines. For more

complex and arbitrary problems, such graphical solutions are more versatile than

analytical methods but can prove to be prohibitively cumbcrsome. A more adequate

two dimensional graphical tool is required for solving three dimensional

relationships.

Such a tool was developed in the second century B.C and revived by modem

crystallographers for the study of crystal morphology and optics (phi[ips 197f). The

method of spherical projection is now a fundamental tml of geoscientists and

engineers, who use it for statistical reduction of orientation trends (priest 19g5,

Hoek & Bny 1974, Ragan 1973, Za\bak 1977), kinematic and srabitity analysis for

blocky ground (Priest 1980, Priest 1985, McMahon l97l) solution of arbitrary

geological relationships (Ragan 1973, Goodman 1976) and studies of in situ stress

tields and seismic behaviour (Park f983, Markland 1974).

Figure 32:
t97r)

POIIII TR^CE OP POI.E VECIOR
.,.,,.

Spherical traces of planes and normals (afler Phillips
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The general principles of the method are based on the concept of a sphere with a

centre poitrt tbrough which all lineations and planes are assumed to pass (remember

that it is the orieDtations which are to be studied and not the spatial relationships).

This is called the reference splEre. V@tots or linear orientations can then be

represented by their points of intersection with the surface of the sphere. Similarly,

planes ciln be represented by the circular traces created as they intersect the surface

of the sphere. These traces are called great cinles. One of two procedures may then

be used to transform these poins and traces into two dimensional projectio$.

32.L Equal Angle Projection

This method of projection also known as the Wulff projection begins with the

arbitrary division of the reference sphere into two hemispheres. Since every vector

and plane has equivalent and diametrically opposite traces in each half of a divided

sphere, only one half is required to express all orientation information. This work

will follow common geomechanical convention and utilize the lower hemisphere.

The same general principles apply to any arbirary hemisphere.

An imaginary ray emanating Aom the zenith (or its relative equivalent if the lower

hemisphere is not being used) traces the points and great circles of intersection on

the lower hemisphere. The conesponding points and curves, traced on the horizontal

dianeter plane as ir intersecis this ray, form the equal angle projection or stereonet.





This process can be expressed mathematically by the following retationships:
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Figurt 3.4: Eeual angl6 relationships (after Priest 1985)
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This term eEul angle is derived from the preservation of angular relationships

which this metbod ensures. This property is reflected in the fact that e small circle,

or the trace of a cone on the surface of the reference sphere, is represented by an

undistorted circle on the projection. The relative size of the projected circle with

respect to is associated cone trace, however, will very depending otr the proximity

of the circle to the centre of the projection (ie. the angle of the cone axis with

respect to the nadir of the sphere). As the small circle's distonce from the centre of

the stereonet ircreases, the larger the projecrcd circle becomes with respect to the

real coue trace on the reference sphere. It is important to note that the centre of the

cooe trace on the reference sphere will not plot as the centre of the associated

projected small circle unless the cone is centred about the vertical axis. The

constructiotr of a projected small circle is described in Priest 1985, along with proof

of angular preservation. It should be not€d that this specific method was originally

called s'Ercographic projection. This term has come to describe any form of

spherical projection and will be so used throughout the rest of this work.

32.2 Equal Area Projection

In this metho4 pole points, great circles and small circle traces in the lower

hemisphere are rotatd tkough a circular arc, centred on the nadir of the sphere, to

the horizontal plaDe tangent to the base of the sphere. Tbe resuh'nt projection is

then normalized to the radius of the reference sphere to form the equal area

stereoDet.



--

EOUATORIAL

PLANE

Flguro 3.5: Thc cqrul erea projcaim



The equal area or Schnidt projection follows the

relationshiPs:
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following transformation

azimuth = tretrd

r = R'(r'2)'cos(45+plungeZ) (eq. 3.2)

where R is the radius of the stereonet

r is the radial distatrce of the projected poitrt

y'2 is a scaling factor

The equations for the curve of a projected great circle are mote complex in this

method. The great circle does not plot as a circular arc in this projection unlike the

equal angle procedure. Ukewise, cone traces do not plot as small circles except in

the case of cones centred otr a vertical axis. Both features plot as higher order

curves which will not be derived here. The main advantage of this projection

method is that it does not suffer from the areal distortioD of the equal angle

projection. This means ;61 gaample, that an area such as that enclosed by a circle

of consr4nt radius on the projection, represents the same amount of area on the

reference sphere regardless of its position. The circle will not however represent a

geometrically similar circle on the sphere unless it is positioned at the centre of the

projection. In other words, areal relationships ate presewed in this method while

geometrical relationships are distorted; the opposite is true of tbe equal angle

projection. Attewell and Farmer (197Q give an analytical proof of the areal

preservation inherent in the equal ar€a stereonet.
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Reference Grids

It is common to plot poles and planes on projections using a stereonet grid overlay.

Two main typ€s are used in this case . The first is the polar net. This grid is

composed of radial lines representing azimuth increments and a set or concentric

circles representing increments of plunge or dip. The second is the equatorial net.

This net includes a set of great circles of equal azimuth (ie. strike) and incremented

dips. A set of small circles centred about the strike linc of the great circles

represents incremens of apparent dip or pitch in each of the great circle planes. The

terms polar and equatorial can be misleading. Both trets are generally us€d ro

represent the same hemisphere (the lower hemisphere in this work) and the real

equator of the reference sphere is represented by the perimeter of the projected

stereonet. The polar net is more convenient for ploning of poles and other

lincations, while the equatorial net is us€firl for the plotting and manipulation of

planes. Figure 3.6 shows the graphical origins of the two overlay types.

Figurt 3.6: Origin of r€ferenc€ stereonets (after Hoek
and Bray 1974)
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Hock & Bray (197a) as well as Priest (1985) cotrtain high quality tull size reference

grids which can be reproduced and used fot accuate manual stereonet manipulation.

They are shown here reduced for comparison.

Pohr dud{qE !6. Poh aqual.rEa acl.

E4r||ro.id .qrd{r.|. !s. EquSorial aCud-ara n€.

Figurc 3.7: Reference stereonets for manual calculations (after Priest 1985)
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33 USES OF STEREOGRAPHIC PROJECTION

Stereographic projection can be used to facilitate analysis of any physical problem

where orientation is an important factor.

Principle in-situ stresses may be presented as points (vectors) on a stereonet. Where

large amounts of measurements have been taken and measurement variability makes

analysis difficult, the stereonet may be used to visually resolve principle stress

directions (Markland 1974).

Stereographic projection can be used in a similar fashion to resolve orientation

trends in the fields of structural geolog5r (Ragan 1973, Hoek & Bray 1974, Zaabak

1977, Priex,t 1985) or any other field where large amoutrrs of highly variable

measurements have been made and where the analytical resolution of multimodal

orientation trends becomes prohibitive. The stereonet makes use of the human

brain's facility for pattern recognition which is difficult to dupticate gyga tfu'orgh

the use of computer tecbnology. Relationships which can be resolved from the

stereonet plots of multiple data units include maximum conc€ntrations of poles or

mean poles for clusters of orientations as well as the fold axis determined by the

conesponding plane of best fit through joint or bedding poles on the arms of the

fold. Contouring methods which aid in the reduction of orientation trends from large

samples of higbly variable data will be discussed in the next sectioD.

The stereonet can be used in analysis of seismic data. For example, the orientations

of the primary slip planes responsible for a seismic event catr be resolved by
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plotting vector orientations representing the orientation of the epicentre with .respect

to the recording locations and using symbols to indicate the compressive or

expansive nature of the first wave arrival at each location. A pair of perpendicular

great circles are then manipulated to sepante the regions dominated by either so-

called 'push' or 'pull' vectors. These planes then repres€nt the surface of slip and

the plane normal to thc direction of slip @ark 1983).

Analysis of a number of geological phenomena such as oriented elongation of

conglomerate pebbles, oriented clast fabrics in glacial tills, and acicular crystal

fabrics in igneous and metamorphic rocks can be carried out using stereographic

projection for determination of previous stress and flow histories @ark 1983, Ragan

Lnq.

Goodman (197Q gives a coDstructioo for the direction of greatest compressive

strength of a jointed rock mass A number of poles representing normals to joint

planes are plotted on a stereonet. Small circles with cone angles representing the

friction angle oo the resp€ctive joint planes are drawn, centred od the associated

pole orientations. The centroid of the region on the projcction which is common to

all small circleg if such a region exists, represents the direction of maximum

compressive strength since full intact strength may be mobilised in this direction

without inducing joint slip.

Relationships between distinct planes and lineations which can be analytically

complex are graphically simple using the stereonet. The following is an analysis of

the relationship between two planes:
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Figurc 3.t: C,alculation of angle and line of inters€ction using stereonets (after
Priest 1985)

Compare this solution to equations Ll - 2.4 and the graphical solution in figure 3.1.

The opposite calculation (that is, determination of a plaaes tnre orientation from

apparent dip or inrcrsection pitch in anothcr plane) is possiblc with no increase in

complexity (Priest 1985, Phillips 1971), Tbe same cannot be said for the analytical

solution.
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Another example of the flexibility of stereographic projection is illustrated in the

following example. A marker horizon such as a consolidated volcanic ash layer is

found in two non-parallel and non-oriented drill cores. The true orientation of this

bed catr easily be derived using the procedures outlined in Ragan 1973 and Priest

1985. These references, as well as, Pbillips 1971, Goodman 1976 and Hoek &

Bny 1974, all contain many other examples of graphical solutioDs usitrg stereonets.

One application of srcreographic projection of particular interest to rock mechanics

and excavation engineering is the method's suitability to multiple plane wedge

stability analysis for slope faces or underground excavations @riest 1980 ,Hoek &

Brown 1980, Lucas 1980, McMahon 191).

The geaeral principle of kinematic assessment of rock wedges above an underglound

excavation is illustrated in figure 3.9.

The great circles to a group of planes can be plotted on a lower hemisphere

projecrion as shown. If the wedge indicated by the shaded region between the

planes encloses the centre of the net, the wedge is free to fall without sliding under

the influence of gravity. If the wedge does not contain the centre but poss€sses a

side or edge (vertex of the projected wcdge) which falls inside a small circle whose

radius represents the compliment of the friction angle, the wedge will fail by sliding

along tbe respective edge or side. If none of the above cases are true, the wedge

will be stable (under gravity loading).



Failure by gravity fall

Failure by gravity sliding
( 0 = tirqtroN ^Ncu )

Stable Wedge Conditions

Figurc 3.9: Kinematic and stability ass€ssment of rock wedges (after Hoek and
Brown 1980)
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Similar methods may be used for analysis of sliding and toppling poteDtial iD

jointed rock slopes (Hoek and Bray 1974, McMahon L971, Lucas 1980) and on

ngn-horizontal faces of surface and underground excavations. This latter tecbnique

utilizes inclined hemisphere projection (the projection uses a hemisphere with a non-

horizonlal equator) and is discussed in detail in Priest 1980 & Priest 1983.

This construction can bc used in conjunction with standard gfaphical techniques to

recreate actual block geometry and prop€rties such as volume and weight Qloek and

Brown 1980).

Thc combination of graphical stereonets and vector algebra for analysis of stability

involving non-vertic{rl loads (eg. cable forces) is discussed in Priest 1985 as well.

Examples of problems with more than three planes and complex loadings are also

solvcd in Priest 1980.
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3.4 REDUCTION AND ANALYSIS OF MULTIPLE
ORIENTATION MEASTIREMENTS

3.4.r Introduction

Tbe previous section dealt with means of analyzing relationships between distinct

tinear and planar features. On their own, these methods are usefi on a very local

scale if the features involved are small, or on a regional scale in the case of well

defined fault or intrusion features for example. In many caseg however, reliable

analysis can nrely be performed using a few isolated measurements due to the

variability of in-situ prop€rties atrd structue found in most natural systems. In the

case of in-situ stress determination, many measuremeDts may be required before a

reliable estimate of magnitudes and orieDtation of regional principle sEesses can be

made. Similarly, the determination of regional or even local structural trends in rock

masses may require hundreds of measurements to be statistically acceptable.

Regional orientation trends cen be estimatcd:

- by visual determination on site

- analytically using a nnmber of statistical vector methods

- by visual analysis of stereonet pole plots

- by visual analysis of contoured stermnets

- using a combination of the above techniques
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ln the case of structural analysis of rock masses, the first approach can be utilised

in situations where well conelated joint s€ts are present and the working space

allows for several viewing points in order to objectively ass€ss the dominant

orientations. This method must inevitably involve a great deal of subjective

judgement. The orientation of an tunnel or mining drift for example will have a

profound effect on the frequency of outcrop and the visual dominance of a

particular set of similarly oriented planes. This makes objective visual assessment

of primary orientation trenG difficult atrd often unreliable.

3.4.2 Analytical Methods

A number of analytical means have been developed for the statisticat reduction of

orientation data. The methods described in the literature (CANMET 1977, priest

1985, Markland 1974, Fisher 1953) deal primarily with orienration data which is

monomodal or clustered about a single mean direction. Some deal with several

mutually ortbogonal orientations. In general no methd was found in the literature

which seemed capable of resolving multiple independent orientadon sets from a

5ingle database. Nevertheless, several of these methods prove effective in analyzing

single orientation clusters and will be described here.

The simplest computation which can be performed on a cluster is that of mean

orientation by vector addition (Priest 1985, Fisher 1953, Golder Ass. 1979). This

oethod involves the conversion of angular measurements to direction cosines
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(equation 2.1) and the summation of the respective componenrs ( >L* , >f* ,

>\-, ) to form a resultant vector. Each component of this resultant is then

normalized (divided by the total length of the vector) yielding the direction cosines

of the mean vector.

When using the lower hemisphere conventio ; for orientation measurement (plunge

and dip) there is an important point to remember. When the cluster of vectors

represents a mean orientatioD which is subhorizontal, an extra step must be taken

before calculating the mean as described above. If, for example, part of the

orientation data rrnges between trends of 120 atrd 160 and ranges between plunges

of 0 and 2O while the rest of the data ranges in trend from 300 to 340 and in

plunge ftom 0 to 15, one of these two groups of vectors must be reversed

(multiplied by -1) before performing a summation of cosines. If this is not done, rhe

mean vector will be directed downwards, midway between the two clusters. To

better visualize this problem, imagine a group of subvertical planes striking in the

same general direction - nonh, for example. Some of the platres dip steeply to the

east, while others dips steeply to the west. They all, however, represent the same set

of discontinuities. If the downward normals are used in the mean vector calculation

described here with no convcrsion, the mean normal wilt point downwards and the

mean plane will be subborizontal, atr obviously incorrect solution. The direction

cosines conesponding to the normals of either the east or the west dipping planes

must be multiplied by -1 beforc summation with thc rest of the group in order to

achieve the correct result. This limitation" which is not mentioned in any of the

rdcrenccs liste4 mates this method diffrcult to implemen! even for monomodal

distibutions, in a non-subjective, 'black box' analysis.
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An altemative and more flexible approach is outlined by Markland 1974. This

method employs a procedure called eigenanalysis (Speigel 1974, Watson 1966).

Eigenvectors, [X]"r, and their associated eigenvalues , p , for a general n x n

matrix Ml are determined by satisfying the equation:

lMln^ [X]"* = FlXl"n (eq. 3.3a)

the three eigenvalueq I are therefore the roots of the cubic equatiotr derived from:

det (p [ ] - t l v f l )=0 (eq. 3.3b)

where det is the determinant and [] is the identity matrix. Tbe eigenvector for

each associated eigenvalue can be back calculated from equation 3.3a.

For the analysis of poles clustered about a pa icular axig Markland assembles the

maEix M:

tMl = )-,' )m,nt (eq. 3.4)

)qt )qq )q'

where l,m,n are the direction cosines of each sample orientation.

The matrix M has three possible eigenvalues and associated eigenvectors. Markland

describes the significance of the threc eigenvectors in the following way. If each

measured pole is assumed to bave a particle of unit weight attached to its axis

where it intersects the unit reference sphere, the eigenvectors repres€nt the axes

)l'4)Lm,>l'

)mJ'
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wbich provide the maximum, intemediate and minimum moments of inertia when

the sphere is spun about them. The moment of inertia for a given pole, is calculated

by multiplying the mass of the bead (which can be one or some representative value

for stresg force, etc.) by the square of the distance between the unit pole vectors

head and the axis of rotration. The total moment of inertia for the whole data set

would be the sum of these values. Markland's analogy is incorrect in that it is

inplied that the maximum eigenvalue conesponds to the axis of maximum moment

of inertia in this system. The opposite is in fact the case.

The eigenvector associated with the maximum eigenvalue, conesponds to the axis of

minimum moment of inertia and therefore, represents the mean vector for the

cluster. This method should yield the same mean orientation as the vector addition

method described earlier. The advantage of this method is that there is no need to

convert any vectors to their negative equivalents for subhorizontal data clusters. The

moment of inertia of a pole vector with respect !o an arbitrary axis is the sarne as

the value for the negativc pole vector.

This method also allows for the calculation of a best fit plane tbrongh vectors

wNch have a girdlc distribution such as the normals to bedding or joints on a fold.

The eigenvector associated with the minimum eigenvalue (and the maximum

moment of inertia) for such a data s€t represents the normal to the best fit plane. In

the casc of a fold, this vector repres€nts the fold axis.

For complete analysis of a pole cluster, the maximum eigenvalue is associated with

the mean vector, while the minimum and intermediate eigenvalues conespond to
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eigenvectors normal to the planes repres€nting the maximum and minimum axes of

the elliptical cone defitring an asymmetrical pole concentration. The relative

maglitudes of the eigenvalues reveal information about the degree of clustering of

the orientation data. Three identical eigenvalues indicate a uniform distribution with

tro clustering. One small value and two fairly similar large ones indicate pole data

distributed about a plane (normals about a fold). One large value and two much

smaller ones indicates clustering about a mean vector. In this case equivalence of

the two smaller values indicates a symmetrical cluster about the mean while a

difference between the two smaller values gives a measure of asymmetry of the

distribution.

Once these axes have been determined, then a number of methods may be used to

describe the distribution in detail. Tbe most common statistical analysis procedure is

based on a radially symmetrical Frsfrer distribution, an adaptation of two

dimensional nomral distribution to data on the surface of a sphere (Fisher 1953,

Priest 1985). Bivariate normal distributions can also be used when the data is

asymmetrical (CANMET L977, Zafiak 1977, McMahon 1971).

Markland discusses other uses for the eigenanalysis method such as the reductios of

multiple iD-situ stress DeasureDenls inlo mean principle stress directions and

magnitudes. Although there are three orientations being solved for here, they are

assumed to be mutually ortbogonal. This method still suffers from the inability to

solve for mean orientations in a system with multiple and independent orienlation

clusters
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It is clear then, that even if these analytical methods are to be used for the analysis

of field data, another procedure must first be performed which can group orientation

data into clusters of association (about a mean pole or best fit plane as the case

may be) and, as will become apparent, rank clusters in order of relative dominance.

3.43 The Use of Stereographic Projection in Statistical
Analvsis of Orientation Data

The use of stereographic projection in the statistical reduction of orientation data

relies on the '...powerful human ability for pattern recognition and, therefore, ...has

considerable practical advantages over methods based on vector procedures which

are purely mathematical and difficult to envisage.' (McMahon 1971)

Such analysis begins with the plotting of vectors on a stereonet. For analysis of

planar orientations it is convenient to plot the normals rather than the plaoes

themselves. Visual analysis of multiple planar measurements is far too cuEb€rsome

when the planes themselves are plotted (figure 3.10).

The poles or normals are used in preference to the maximum dip vectors for

reasons of convention. There is another practical reason for doing so, however.

Consider a series of similarly oriented subhorizontal planes. The maximum dip

vectors will all plot as poinls near the p€rimeter of the net but will have widely

varying trends b€twe€n 0 and 360 degtees. This wide variation in azimuth makes

visual analysis less effective. If the poles are plotte4 however, the pole poins will
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be tigbtly clustered about the centre of the stereonet, making visual estimation of

meatr orientation simple and reasonably accuate. Conversely, consider a set of

subvertical planes of varying strike or dip direction. where the subhorizontal planes

could be considered as related family in spite of a wide variation in dip direaion,

the same cannot be said of the subvertical planeg from a practical point of view. If

dip vectors are plotte4 however, the resultant clustering about the centre of the net

gives the visual impression that such a family exists. The poles would be distributed

about the perimeter of the net and would not cause such a confirsion.

Figurc 3.10:
(after Phillips

Stereographic projeclion of numerous
1971)

planes
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A plot of lineations or of normals to planes is terme4 simply, a pole plot.

Additional information may be combiDed with the plotting of pole orientations.

Thougb the use of symbols or colourg informatjon such as joint coDtiDuity, surface

typ€, or, in the case of stress data, map.itudes of stress can be plotted at each pole

point. This provides a visual comparison of attributes to supplemeDt or assist in the

determination of orieDtation clusters.

When a large number of data has been laken or when a number of closely aligned

orientafion measuremeDts have been made, it may become difficult to assess

dominant trends from the pole plot alone. Many of the pole points will overlap. A

similar plot may be created, usitrg symbols to represent the quantity of simitar

measuremeDts represented by each pole poinl This cleans up the polc plot and

rweals multiple measuremeos otherwis€ concealed by overlapping pole points. This

form of pres€ntation is oftcn refened to as a scotter plot.

From these two plots, varying degrees of success can be achieved in visually

distinguishing dominant orientation trends.



Figurc 3.11: Manually generated plot of 3(X poles on equal area stereotret
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3.4.42 Density Contouring on the Stereonet

If concentrations of poles are well defined on the pole plot or scatter plot, no

further processing need be carried out to separate the data into orientation sets ard

to estimate approximate mean or modal directions. It is often difficult to accurately

define dominant pole concentrations tom a pole plot if a large quatrtity of data has

been collected or if more thatr tbree clusters are pres€nt. Such clusters become more

clearly defined if the pole concenfation is contoued over the stereonet.

The conect interpretation of such contours is as follows. The concentration indicated

should represent the probability of pole occurrence within some specified angular

distance of the orieDtation in question. That is to say, if any oriented feature is

chosen at random from the data set (and implicitly therefore, ftom the total

population in-situ), this chosen orietrtation has a probability of lying within a

defined rcgion about a reference point on the stereotret, as indicated by the

contoured density value at that referenc€ point.

When contouring on a stereonet, it has proven efficient !o us€ a contouring region

as defined above, equivale to LVo of the area of the reference hemisphere (or 17o

of the projection area). A number of manual contouring methods have been

developed and are outlined in Phillips 1971, Pricst 1985, Hoek & Bray 1974, Hoek

& Brown 1980, Ragan 1973 and Denness 1972.
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The classic method is called the Schmidt method and involves the use of the equal

apa projection and a movable counting circle. This circle has an area equivalent to

Lvo of. the stereonet. The counting circle can be centred on an arbitrary point on a

steraoret containing plotted poles. All of the poles which fall within it are totalled.

This number becomes associated with the counting point and when divided by the

total number of poles in the data s€t, repres€nts the pole conoentration at that point

express€d as 'percentage of poles pt lVo arca'.

The counting points can be arbitarily and subjecrively determined. This method is

called the floating circle countiDg method. The circle would be us€d to scatr the net

utrtil a pole coDcentration conesponding to one of the predetermined contour

intcwals is found. lVo conc€nfiation intervals are convenient for manual contouring.

The concentration is recorded at this point. The counting circle is then moved about

the net, following a path which corresponds to this contour interval. The process is

repcated throughout the tret for different clusters and concentration intervals. This

method is very difficult and tedious as a first step in contouring. It is more useful

for refining a plot once crude contours have been generated using another method

(Hoek and Bray 1974).

A more comrnon method is the counting grid approach. A square grid is

superimposed on the pole plot. The counting circle is then centred on each of the

grid intersections and thc respective concentrations noted. The grid spacing should

be no more than half of the counting circle diameter to assure adequate overlap

(Priest 1985). The resultant matrix of concentration values must then be contoured.

This method is more efficient then thc floating circle approach but has some
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disadvantages. The grid point conc€ntrations are usually aactional concentration

vatues and contour lines must be subjeaively drawn between them. Additionally,

this method does not always capture maximum concentratiotrs rrnless the central Pole

of a density peak falls on a grid point.

Both counting circle techniques require special attention when counting near the

perimeter of the slereonet. Counting circles which extend Past the perimeter of the

net must partially reenter on the opposite side of the neL This is due to the fact

that this procedure is a simulation of a spherical surface counting procedure. Poles

trear the perimeter of tbe net (equator of the sphere) have negative counterPads on

the opposite side and therefore contribute to counting circle totals on either side of

the sbreonet.

This problem is overcome tbrough the usc of a twinned counting circle pair as

shown in figure 3.12. The twin circles arc kept at a fixed distance and pivot about

the centre of the stereonet. When one circle extends Past the perimeter of the net,

the area loss ouside the net is equivalent to the area of the opposite circle which

falls inside the oel There is an loss of area in this case, equivalent to

approximately 10 percent of the counting circlc area (Attewell and Woodman, 1972)

as $own in figurc 3.13. In practice, howcvcr, this loss of area is not considered

significanl 'f[6 arm[66 of poles falling inside of both circle are summed and

recorded at the countitrg circle centre which falls inside the net. This value is

recorded at both c€trtre poitrts if they fill on the circle perimeter.
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Figurt 3.12: C-ounting circle mcthod with perimcter countiDg tool
(after Phillips 1971)

AREA LOSS 
.

=  l O %
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//- 
COUNTING CIBCLE

OF COUNTING
CIRCI.E

STEREONET PERIMETER

Figure 3.13: L,oss of counting :uea neat perimeter of stereonet
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The following contoured stereonet was geDerated using tbe counting grid and circle

technique. The data is that shown in figure 3.11'

N

ol t r {

$
l\

+

lqra pottg. sot

Figurc 3.14: Stereonet with pole concentration contoured using 1 Vo cotratiag
circle (data as in figure 3.1.1)

A
I . \

\

a:

,



52

One disadvantage of either counting circle tecbnique is the areal distortion which

occurs due to the use of a counting circle of fixed radius. The radius of a lVo area

counting circle is equal to l0 Vo of the radius of the net from circular geometry.

Such a circle at the centre of the equal area projection subtends an angle of

approximately 16 degrees. At the perimeter of the net, this same circle subtends an

angle of approximately 22 degrees (Priest 1985). The use of an elliptical window

aear the perimeter would compensate somewhat for this distortion (Stauffer 1966,

CANME'T 1977). This is an unpopular procedural complication and is rarely done.

The area, however represented on the reference sphere, by a counting circle on the

equal area stereonet, is constant regardless of the location of the circle (Attewell and

Farmer 1976). The distortion in this case is merely geometrical and means only

that a concentration represented on a contourcd stereonet correctly describes the

probability of pole occurrence within an area surrounding the point in question. Thc

only problem is that for poins near the perimeter of the net, the counting poiot will

not represent the centroid of the area described. This will caus€ atr enor in location

but not in magEitude of the contour lines (Attewell and Woodman, 1972).

The same catrnot be said for the equal angle projection. A constant radius circular

window subtends an angle of 23 degrees at the c€ntre of the net and only 12

degrees at the periDeter. While this distortion is only slightly gteater than for the

equal aree projection, the areal disortion is directly related to this difference in

cone angle. This distortion generates inaccuracies in both location and magtitude of

density contours. If a circular countitrg window is used with equal angle projection,

the circle must be made to increase in size near the perimeter of the net and
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decrease in size near the ccntre. This is prohibitively bothersome for manual

contouring. The counting circle methods are therefore only efficient when used with

equal area Projection.

Other variations on cootouring methods employing counting circles are summarized

iD Stauffer 1!55. One of particular interest for later discussion is the Mellis

procedure in which circles of lEo area are drawn on the net centred on the plotted

poles themselves. The concentrations are then determined by the number of circles

wbich overlap at a given point. This method is similar to a reverse Schmidt floating

circle technique and the two procedures can be easily shown to be equivalent.

While there may be some statistical validity in the use of circular windows for

coDtouring stereonets, the method can be rathcr cumbersome. Several researchers

have dweloped other methods for contouring. These generally involve the use of

template overlays which are divided into regions of equivalent represeDtative area.

Thesc fixed cells are then used in a similar fashion to the circular window to count

poles within their areas. One such overlay is the Kalsbeek net described in Ragan

1973. Shown in figure 3.15, it is completely divided into triangles. Six of these

triangles fomr a hexagonal area which is equivalent to lTo of the total area of the

neL The total number of poles within each hexagon is recorded at the centre node

for later contouring as a percentage of thc total, Triangles at the pedmeter can be

coupled with triangles on the opposite side of the net to form complete hexagons.

This method has the advantage that daa insidc of each triangle is used by three

hexagons resulting greater continuity of concenration values from node to node.
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This is similar to the overlap achieved in the Schmidt counting grid method if the

grid spacing is less than one couDting circle radius.

Figurc 3.15: Kalsbeek counting net (after Ragan 1973)

For both efficiency and accuracy, the best couoting overlays for general field

aaalysis of orientations, in the author's opinion, are the Denness countiug grids

(Denness 1972).'I\e Denness grids are based on individual cells which vary in

shape and size over the stereonet, but which represent :ueas on the reference sphere

of not only constant area, but also of conslant shape. The poles inside each cell are

totalled and recorded at the centre of the cell for nanual cotrtouring. The grids have
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the disadvantage that each pole is counted in only one cell reducing continuity of

concentratioD values from cell to cell. For most field applications, however, this

deficiency can be overlooked in view of the grids' ease of use and the speed with

which contouring catr be performed.

The Denness Type A C-ouating Net is b€st suited for analysis of subvertical planes

or subhorizontal lineations. Notice in figure 3.16 that the outer ring of cells is

divided by a ring into equal halves. Thes€ outer cells are uscd as whole cells and

the halves outside this ring are used as pairs of opposing half cells to provide detail

near the perimeter of the net. The Type B net is designed for efficient contouring of

inclined strata. The selection of coutrting net is govemed by an initial subjective

appraisal of the data.

Where more accurate contour diagrams arc required, Hoek and Bray (1974) suggest

using the Denness Det as a first approximation and then refining the contours with

thc floating circle technique. This is an adequate procedure providing tbe user

consider that the inflexibility of the Denness net is compensated for by its lack of

areal distortion. The opposite is true for the floating circle method and combining

the two techniques may be of dubious value.
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Figurc 3.16: Denness Counting Grid A

Figurt 3.17: Denness Counting Grid B
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3.4.5 Interpretation of Stereonets

Oncc the stereonet has been contoured, the next step should be a purely visual

assessment of the clustering which m8y or may not be apparenL To plunge into

figther analysis without first qualitatively as.sessing the distibutions is very

dangerous. The stereographic technique is ideally suited to this very important stage

of assessment'

Figure 3.18 illustrates several idealised pole disuibutions corresponding to bedding

planes and their appearance oo a contoured stereonet. The shape of a concentration

indicates the nature of the cluster as either a centralised distribution conesponding

to a s€t of lineations or planar surfaces wbich can be approximated by a single

ureatr orientation, or a girdle distribution corresponding to a folded regional

geometry. The contoured stereonet also facilitates thc ranking of dominant

concentrations. ln some cases many peaks will be visible on tbe stereonet and a

decision must be made regarding which if any will be reduced to distinct

represcntative features for further analysis. In other cas€s, tro dominant trends will

be visible causing a great deal of conllict in thc mind of the geologist who has

gooe to all the trouble of collecting the data. Stauffer (1966) discusses some

guidelines for fabric analysis of contour plob and the definition of dominant

clusers His conclusions arc summarised as follows by Hoek and Bray (1974).
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1. First plot and contour 100 poles.

2, lf. no prefened orientation is apparent, p^lot an additional 300 poles and

iontour aU 400. If the diagram still shows no prefened orientation, it is probably a

random distribution.

3. If step l. yields a single pole concentratioo wilh a valuc of 2Wo or higher,
th. ,atu"rur" is probably truly repres€ntative aDd little could be gained by Plotting
more data.

4. ff step 1. results in a single pole concentration with a contour value of less
161at ?.UVo, the following total numbers of poles should be contoured.

12 - 2O Vo add 100 poles and contour all 2m
8-12Vo
4-8%

add 200 poles and contour all 300
add 5fi) to 9fi) poles and conlour all

600 to 10fi)
less than 4 Eo^t leasa 1000 poles should be contoued

5. If step l. yields a contour diagran with several Pole concentrations, it is
rsually best to plot at least another 100 poles and contour all 2fl) before attempting
to determine the optimum sample size.

6. If step 5. yields 196 contouts less thatr 15 degrees apart and with no pole
cotrc€ntrations higher than SVo, the diagram is pcsibly rePres€ntative of a folded
structure for which poles fall within a girdle distribution.

7. lf. step 5. yields a diagram with smooth l7a conlours about 20 degrees apart
with several 3-6Vo pole concentrations, then an additional 2fi) poles should be added
and all 400 poles contoured.

& If step 7. results in a decreasc in the value of the maximum pole
conccntrations and a change in the position of these concentrations, the apparent
pole concentrations on the original plot were probably due to the manner in which
the data wcre sampled atrd it is advisable to collect new data and carry out a new
analysis.

9. If step 7. gives pole conccntations in the same positiotrs as those given by
step 5, add a firther 2fi) poles and conlour all 600 to ensure that the pole
co[ccntrations are real and not a fuDction of the sampling Prcc€ss.

10. If step 5. yields several pole concentrations of 3 and 6Vo but with very
incgular 17a contourq at least another 400 poles should be added.

11. If step 5. yields several pole conc€ntrations of less than 3Vo which are very
sq tered and if thc lVo cxllour is very incgular, at least 1000 and possibly 2000
polcs will be required and any pole concentration of less than 2Vo should be
iporcd.
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These guidelines were developed during a study of statistical significance of pole

concentrations and are somewhat irnpractical for field analysis. The basic proccdurc

of stepwise refinement described is nevertheless sound. The numbers of poles

suggest€d in each step may not be realistic and can be reduced accordingly. For the

experienced user, it is usually sufficient !o analyze whatever data is available within

reason, which is usually much less comprehensive than stauffer suggests. The

importatrt thing to note is that the origin of the data should never be forgotten in

the analysis proc€ss and that interPretations should never be made more detailed

than the data warratrts. Similarly, if a very accurate and statistically sound selection

of representative orientations is critical to the problem at han4 a morc detailed

aualysis with larger quantities of data may be required' One rule of thumb used by

this author is that if an apparent dominant conc€ntratioD, ooc€ deliDeated with the

help of a contoured stereooe! does not visibly stand out in the original pole plot or

at least in a scatter plot, it is ignored altogcther or used with caution in any further

analysis. This is a major advantage of the stereographic procedure for reduction of

orientation data collected from a naurral environnent. The visualization inhercnt in

the method is a vital ingredient l3gking in Puely amlytical or statistical analysis.



60

Sets of 'Planar'

Joints

Folded Bedding
and/or Joints
Sympathetic ritJr Fold

Figurc 3.18: Interpretation of cotrtoured clusters
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3.4.6 Sampling Bias in Orientation Data Collection

In tbe preceding discussiong the orientation data has been assumed to be collected

without bias in a perfectly objective manner. In the case of data collection for

assessment of structural geology measurement error and data biasing can be

introduced in a number of ways. Terzaghi 1965, and Einstein and Baecher 1983

summarize a number of sources for enor and bias in joint surveys. Several of the

principle sources of bias are described here. Most of the enors inherent in an

individual measurement will average out to zero over an entire survey and will not

be discussed.

1. Open joints, a phenomena often govemed by localised stress directions, are

more likely to be recorded than tightly closed joints. This problcm can be overcome

by a purely objective scanline suwey. A tape line is stretch€d acloss a face of a

slope or along a drift underground and all planar features are recorded which

hters€ct this scanline. This will remove visual bias based on aperture. It could be

argued, however, that opeD joins indicate morc important features than closed joints,

just as persistent discontinuity planes are more importaat lhatr thosc which are

inpersistanL This view would make thesc forms of bias bencficial. This is a case

wberc judgement is required based on field sness data and whether or not the data

is bcing collected for tocal design or regional ass€ssmenl A useful rule of thumb

for practical joint suwcys for engineering design is "...If it is longer than [the

gcologistl and wide enough to itrserl a thin knife blade, measure iL Otherwise,

ignore it.n(Bawden 1989)
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of2. Magretic ore bodies in tbe vicinity will cause incorrect measurement

strike or dip direction. This problem is dealt with through the use of the clinorule.

3. Measurement variation due to wavin€ss of the feature being measured may

cause a dispersion of the recorded poles. It may be necessary to estimate an average

orientation of the surface, or in the case of stability surveys, to quantify this

waviness s€parately (Barton et al. 1974).

4, Measurement on a flat surface such as a slope face or along a linear scanline

or tunnel introduces a measurement bias in favour of those features which are closer

to beitrg perpendicular to the survey orientation. Features which are subparallel to a

tunnel or slope face are less likely to be recorded than those perpendicular to it. On

an irregular rock face, enough variation in mcasurement surface may be present to

allow outcrop of all features present. Over flat traverse planes or in borehole core,

this bias can be quite severe. If possible, joint surveys should be perfomed locally

on two or three approximately orthogonal travers€ orientations. This procedure

should reduce the overall bias in the suwey. If this is Dot possible, Terzagbi (1%5)

proposed a conection for sampling bias as outlined in figure 3.19.

I
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Figurc 3.19: Terzaghi correctiotr for sampling bias
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This weighting ,w, is applied to each pole bcfore contouring. A weighting of 2.7,

66ans that a given pole is interpreted as repres€nting 2.7 me:surements during

contouriog. Otherwise the contouring procedure is the same in all of the methoG

described. Wben expressing pole counts as a percentage of the total population, the

tolal used must be the weighted population, N-:

N

) * , (eq.3.s)

rieighted data point

Figurc 3.20: Weighted pole density contouring with couuting circle
(after Priest 1985)

When computitrg tneatr vectors this wcighting may be taken into ac4ornt by

multiplying the direction cosines for each pole by the weight for that pole before

pcrforming vector addition or eigenvector amlysis.

N-

p€rcentage of weighted
values, pcr 17" area
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Combination of Stereographic and Analytical Procedurrcs

Once a stereonet has been contoured it may often be sufficient to define

representative orientations corresponding to directions of primary concentration peaks

on the diagram. This acbnique is usually sufficient if the dominant concentsations

are reasonably symmetrical and normally distributed. In this case the direction of

maxinum concentration will be approximately equivalent to the mean orientation.

For field analysis of data, this approximation will usually be sufficient.

If the orientation is skewed or if a more statistically valid description of dominant

orientations is required, analytical post-processing of contourcd clusters may be

Deccssaly.

Tanbak (1977) de.scribes a method for statistical description of orientation mean and

variance which is pcrformed primarily on the stereonet itself and graphically on

canesian orientation - frequcncy plots. Two orthogonal great circles arc ovcrlain on

the contour plot corresponding to thc major and minor axes of atr elliptical

distribution. These planes are selected such that they interscct at the point of

naximum concetrtration for the cluster bcing analyzed. Concentration (probability of

occunence) values are taken directly from the stereonet along these axes a[d two

frequcncy ploB are generated corrcsponding to each axis. Standard statistical

analysis can then bc used to det€rmine means and variancc along these two axcs

assuming any form of distribution. Nonul or Poissn are suggested by Zanbak In

this reference Zanbak then uses these slatistical Parametes for a probabilistic slope
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stabiliry analysi* McMahon 1971 uses a similar approach. This method is often

called a bivariate d.istribution analysis.

More rigorous methods using vector addition or eigenanalysis can be performed on

the original data if the poles are first grouped into clusters based on the stereonet

contours. Such a combined procedure is descnted by Priest 1985. Oncc the Poles

are grouped iDto s€ts or clusters, each cluster is then analyzed separately' The pole

orientations are converied to cosine triplets and the mean is calculated using vector

addition. A symmetrical spherical normal distribution (Fisher) is assumed and

goodness of fit parameters are calculated. Fisher's corxitant I( for example is

calculated as:

K  =  (N-1 ) / (N-R) (eq.3.O

where N is the total length of Pole vectors and R is the lenglh of the resultant.

N-1
N{K= N-1

f-nK--

.'.x= fi = a .'.x=fr=2.7

N=7

Figurc 321: Sipificancc of Fisher consta[t K (after Peaker 190)
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If weigbted vectors are used to corect for sampling bias, R must be calculaled by

summing normalized weighted vect'on with w,':

wj'

such that:

* jN /  N. (eq.3.7)

N

I * i '=  N
i.l

It can be seen then ftom equation 3.6 that if the orientations within a set are

tightly clustere4 that is approxiEately parallel to the mean, R will approach N and

K will tend to infinity. If the data is widely scattered, Fisher's constant K will

become verY small.

This constant can then be used !o generate a probability firnction for a symmetrical

spherical distributioo known as a Fisher distribution:

(eq.3.8)P(e)

where: u

uK-e  d0

(Ks in0) / (e ' -e ' ' )

A complete discussioa of this method is found in Priest 1985, based oD the original

wort bv Fisher 1953.

.<, A method is outlined in the Pit slope Manual (CANMET 1977) which utilises a

special overlay, permitting a direct computational procedure for Fisher parirmeters

from pole plots. The grid, called a Braitsch overlay, closely resembles the Denness
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trets described earlier. The cells are identilied by codes which relate to a chart of

conesponding direction cosines. Each set of cosines is multiplied by the number of

poles falling in the respective cell and summed for a givea cluster. The summed

triplet is then normalized to give the direction cosines of the mean vector. Fisher's

constant can then be directly determined and a distribution specified.
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4.0 COMPUTERIZED STEREOGRAPHIC
PROJECTION

4.L COMPUTER GENERATION OF STEREONETS

fhe devetopment of comPuters anq h particular, microcomputers has prompted the

development of numerous cornputer Progntms involving srcreographic projection.

Computers permit the rapid calculation of complex analytical problems- As shown in

the previous chapter, however, most available analytical techniques for processing of

tbreedimensional orientation data suffer from an inability to reliably handle multiple

afiitrary clustering of deta and do not easily ftcilitate visualization. The most

logical altemative, therefore, is to use the computer's computational and graphica-

pocrer to streamline the process of orientatioD analysis using stereonets.

The fundamental equations for the computerizcd generation of ster@nets are the

napping functions ,converting trend and plunge values for a vector to a projected x

and y coordinate pair on the st€reoneL Thcse functions are outlined by Priest (f985)

and dcscribcd in sections 3.2.L md 3.2.2 of. this work- Priest (1983) also describes

plotting functions for great circles in the cqual angle projection as described in

figure 3.4 in the previous chapter.
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The improvement in programmable computer graphiqs in recent years permis the

rapid generation of computerized ploa of poles aod great circles as illustrated by

Priest (1983,1985).

,- .*---+-----'

' lt3

,1,- , i
I

t l ' ; t t" '

Figurr 4.1: Computer geDeration of projected poles and planes (after Priest
1e83)



42 COMPUTERIZED DENSITY CONTOT'RING

A number of otber gtoups have developed computer programs which perform pole

density contouring using a number of different methods.

Most of these existing programs allow for input of orientation pairs for each data

utrit and possibly one other identifying label such as discontinuity type. Static pole

plos are then produced along with plots of contoured pole density. Dominant

orientations can then be selected visually from the screen or Priotel/plotter output

and input separately into a great circle plotting routine as described in section 4'1.

lmprovements in subsequent efforts in computerized pole contouring have come as a

result of improved computer gapbics.

rrr- .ortrr . rr.u rtatr|

Figurc 4.2: Computerizdcontouring example (after Golder Ass. 1979)



Figurc 43: Computerized oontouring example (after Shi & Goodman
1989)

Figurc 4.4: Computerized contourirg example (after Tocher 1978)
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Another improvement has been in the contouring method itself. Early attemPts at

computerized contouring utilized the fixed grid counting circle approach. Poles were

locarcd on a two dimensional projection using equations 4.1 and 4.2. These

projected pole positions were then used in the contouring algorithm which was

simply a computerized version of the manual technique. This method involves some

very complicated logic and calculation, particularly around the perimeter of the

stereonet (Zhary & Tong 1988, Tocher 1978). Calculation of conc€trtrations near the

p€rimeter require duplication of either poles or counting circle on the opposite side

of the projection (ust as in the manual approach) !o conectly incorporate

subhorizontal Poles.

Data loss due to the two dimensional nature of the problem also occurs near the

perimeter. This loss is acceptable in the manual approach as described in the

previous chaprcr but would seem !o be avoidable in a computerized approach.

Tocher 197& propos€s a compensation tecbdquc to deal with this problem.

The computer approach also permits the use of a variable countbg circle to deal

with the angular distortion on the stercographic projection. Separate mapping

functions for this counting circle must be adopted depending on which projection is

being used (equal area or equal angle). Zbang & Tong (1988) describe such a

method for equal angle projections.

All of the above problems are eliminatcd entirely, however, if density contouring is

performed on the surface of the spherc iDstead of on the projection. This approach
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is obviously impossible to utilize manually. This ig however, the easiest method to

comPuterize.

Spherical contouring employs the mapping fiuctions described for either projection

method (equations 4.1 md 4.2) as well as the inverse of these functions for

napping ftom the projection back onto the sphere. A gild is first mapped onto the

surface of the sphere, either directly as regular spherical coordinate intervals, or

indirectly. The latter approach would involve a regular grid overlay on the

projection. Each grid intersection would then be transformed to an equivalent vector

poitrt on the sphere (using the inverse of the appropriate projection equations).

A floating cone is selected such that is circular intersectiotr on the surface of the

sphere encloses an area equivale b lqo of the area of one hemisphere. This circle

(or cone) is then centred on each gid vector and the pole vectors falling within the

cotre are counted and each grid total is divided by the total population. The

resultant concentration values are then associated with the corresponding grid point

on the stereonet plane and contoured accordingly.

This method will be described in more detail in the next chapter. This methods has

the advantages of eliminating any distortion and data loss since the counting circle

is used on the sphere and not on the projection.

Near the horimntal equator of the sphere, grid veclors just below the horizontal

planc have negative count€rparts jus above this plane on the opposite side of the

sphere. Poles vectors falling inside of cones centred on tbese negative grid vectors
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arc iacluded in the totals for the associatcd positive grid vectors. In this way, there

is no data loss at the perimeter, another advantage over contouring on the

projection.

From a programming point of view, this method has one very major advantage over

tvo dimensional contouring. The counting circle radius can be equated to a cone

aogle by the following relationship:

area of counting circle
area of reference hemisPhere

a
i rn  =  

e  
:

2 n 1 2

4 rRz

s i n c e R = 1 :

a  =  f i  1 2 ^

1 =  ( 4  r r R '

n =

n  =  . 0 1ie)  for

r = J-;t

Figur 45: Calculation 6f 6pas engl6 for spherical coutrting circle
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If pole and grid vectoN are expressed as direction cosines (equations 2.1), then the

dot product (equatiotr 2.3) of. a grid vector and a pole vector can be calculated-

Remember that the dot product of two unit vectors yields the cosine of the angle

between them. If this value is greater thatr the cosine of the counting circle cone

angle, then the pole is inside the counting circle and is included in the counting

total for that grid vector. This is a much simpler relationship than that wbich must

be used to determine the relationship between a pole and grid point on a two

dimensional projection. This dot product is also used directly in more complex

statistical contouring methods which will be discussed in detail in the next section.

Several recent contouring programs utilize spherical contouring (Golder Ass. 1979,

Diggle and Fisber 1985). Both of th€s€ programs utilize some form of probability

distribution associated with each pole. In thc Schmidt method on the sphere, as on

thc projection, a pole is counted as having full influence on a grid point (grid total

is incremented by one or the full weight of the pole if conected) if the pole falls

anywhere inside a counting circle centred on the grid point. The pole has zero

influence on the grid point if it falls immediately outside the circle. In a more

sophisticated statistical approach as employed by these and other authors' the

inlluence of the pole on a grid point decays continuously with angular distance from

the grid vector. These influence functions produces smoother and more statistically

valid contours, and better reflects the degree of measuemeDt enor inherent in each

measurement (Golder Ass. 1979). These functions are easily implemented in a

spherical contouring algoritbm since they are usually a direct function of the dot

product of the grid and pole vector.
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A number of different approaches can be used to determine the function used in this

type of density calculation. Diggle and Fisher (1985) describe one method in detail.

A different derivation is used by this author aad will be described in detail in the

next chapter.

CT]RRENT DEFICIENCIES IN COMPUTERIZED
STEREONETS

All of the programs evaluated as part of this study were found !o be deficient in

several areas'

Crmputer graphics, particularly for the pcrsonal computer have improved immensely

ir the last few years, Programs written several years ago are not up to date in their

gaphical presentatiotr.

Use of these programs was seen to be very cumbersome. Development focus was

placed on intemal procedures and statistical validity and very little emphasis plac€d

on usabiliw.

Most current programs are static. That is, they do not reproduce the flexibility and

interactive nature of the original manual stereonet. Most progams provide simple

Pole plots of data and then provide contour diagrams for this data. Altertratively,
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stereonet programs permit visualization of discrete planes in horizontal or inclined

projections. The paper output csD then be used manually to perform stability

assessments' for example (Priest 1983).

It qras apparent to this author, that a real need existed for a computer package

which could duplicate as much as possiblc the interactive nature of the manual

stereoDet, utilize modern graphical techniques to produce reportauality output, aDd

provide a direct bridge between statistical reduction of large data s€ts and the use of

dominant orientations in further analyses.

Other features which were seeD as important in a comprehensive stereographic

toolkit, were the incorporation of an easily accessible data base from which data

could bc selectively plotted and analyzed, as well as the ability to process and

visualize data attribut€s other than orientation such as discontinuity spacing or

scismic amplitude. These features are prescrt in some existing packages (CANMET

1977, Golder Ass. f979, Noranda 1989) but were found by this author to lack an

ecceptable degree of flexibility and ease of use.

The decision was made by this author, based on these deficiencies, to develop a

comprehensive package for stereographic analysis of orientation based data. The

resulting program, DIPS, will be described in the next chapter.
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5.1

A NEW APPROACH TO COMPUTERIZEI)
STEREOGRAPHIC ANALYSIS

REQUIREMENTS FOR EFFECTIVE
COMPUTERIZATION OF STEREOGRAPHIC
ANALYSIS

After examining previous attempts at computerized stereographic analysis as

presented itr the previous chapter and after discussions with practising engineering

geologists (Carter 198t Wood 1989, Noranda 1989, Bawden 1989) some mandatory

requirements were established by this author for an effective software tool for data

processing. These requirements catr bc sumnarized as follows:

-the program must utilis€ effective graphics.

-the program must be interactive both in preprocessing, and in data manipulation.

This would enable the program to effectively mimic the time tested manual process

of a6itrary analysis using stereonets.

-tbc program should support scvcral proc€ssing; projection and presentation

conventions in order to suit tbe diversified preferences of practitioners
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_the progam should permit proglessive analysis of data at a number of stages from

plotting of poles, to cluster analysis and manipulation of s€lected distinct

orientations.

_the program should include tools for both the itrteractive visual processing and

analytical analysis of orientation clusters'

-the program should accommodate processing of qualitative and quantitative non-

orientation data.

-the proglam should be as portable and hardware insensitive as possible without

sacrificing efficiencY.

-the program should include a flexible data base to permit quick screening and

selection of data as the analysis progress€s'

.p rograminPutshou ldbeasf ree . fo rmasposs ib le toa l lowana lys iso fda ta f roma

widevarietyofapplications.Itshou|duseprimari lyarow+otumnentryfonnatand

should accept an Asc[ data file which would permit file qeation by other software

packages such as data collcction Programs or industrial databases'

-the program should generate report quality hardcopy output



82

52 PROGRAMMING PHILOSOPEY

Tbe Turbo - C programming language from Borland-Osborne was s€lected for this

project due to ib superior graphics capabilities and data handling features.

Turbo - C also includes compilation modes which creates one execulable program

capable of running on an XT, 286 or 386 system with or without an associated

math coprocessor. A wide variety of video grapbics drivers are supported by

Turbo - C, including Hercules, CGA EGA ,VGA and others. Again these can be

included in the executable program to permit autodetectioa and initialization of

many graphics system configurations. When designing software for field usg such

system portability is critical for the acceptance and usage of the product

Many prwious engineering software packages require specific system configuratiotrs

or require lenghy and complicated setuP atrd initialization proccdures. One major

goal of this project was to provide a single program, nload and run", package which

would be as system independent as possible. Tu6o - C permits this form of

programming.

C,onctrrent with the development of this author's stereographic analysis package, the

Rock Engineering group at the Univesity of Toronto was developing a Tubo - C

graphics interface tibrary, which it intended !o incorPorate into all subsequent

interface software. ln order to be coosisteut with future programs, the system

driverq screen layout routines and menu functions from this library (C,orkum 1990)
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srhich were available at the time of start-up of this project were used as a base for

dcvelopment. These permitted the support of multiple video modes, mapping of real

coordinates to screen device coordinates for a variety of video configurations, mouse

support, and the generation of the basic screen design including a prompt and input

bar, drawing region, status line, and a flexible cursor key or mouse driven menu

system (Figure 5.1).

Figura 5.1: Basic Screen Iayout for the DIPS package
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DIPS 2.1
Data Interpretation Package
Using Stereographic Projection

the software package which resulted from this work is called DIPS. AIt of the

requirements outlined in the beginning of this chapter have been satisfied in this

authors opinion. DIPS is viewed as an interactive toolkit containing a wide variety

of features enabling the user to customize the analysis process to accommodate the

needs of the problem at hand and the user's personal preferences regarding analysis

methodology. It was found that it was difficult, if not impossible, to find one

particular data processing format that would satisfy the requirements of enough

individual applications where orientation analysis is required. As mentioned, it was

thercfore decided to provide as broad a rangc of analysis tools as practical in one

intcractive package while maintaining thc program's ease of use.

Thc basic layout of the progra.m and the basic programming methodology will be

described in this chapter.

Data Input

Data input is, at prcs€n! performed by creating an ASCII text file which contains

some header information and the data in column format This format was designed

to allow easy file creation by another program such as a data collcction or databasc

53.1
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system (Noranda 1989, CANMET 1977) md to allow file crearion and ediring using

spreadsheet packageg word processors or text editors. At the time of this writitrg a

customized data file creation utility written in Turbo - C is planned.

The header infomration contains several pieces of information:

-Project titles for use in hard copy output

-Travene information for data organiz:tion and for bias correction

Several flags conceming the setup of the data portion of the file

-Mapetic declination data for automatic data conection

-lnformation regarding the n,,mber of data columns and their physical layout (order,

s6l',mn title and column width).

{ommetrls are allowed throughout the data file if the line begias with an asterisk

or if the commeDt follows required information in a line.

More detailed information on the data file makeup can be found in the program

manual in appendix B. This header section contains enough user specified

information to completely customize the format of the data portion of the file to fit

the user's requirements. Only three columns are mandatory - one nume rical

identifier for each row of data and two orientation parameters. Traverse identifiers

for each data unit must also be present if traverse information is to be used in the

file. A quantity column for nultiple orientation measurements catr be turned on or

off using a flag in the header file.

The data file can then contain up !o te'elve additional columns of data in qualitative

or quantitative form. For structural analysis these columns could be used to specify
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spacingF, roughness, discontinuity type, etc. (figure 5.2) For seismic data these

extra columns might contain infonnation on intensity, and directional sense of first

arrival for focal mechanism studies.

Tbis data can be processed in a number of different ways in DIPS. It can also be

used for data subs€t selection and screening. Tbese features will be discussed in a

latcr section.

The column widths are user specified in order to allow file creation from fixed

format column editors. The only limits on the quantity of daa in a file are imposed

by system restrictions. DIPS is curently coniigured for a system with 640 kilobytes

of random acoessi memory GAM). With averagc concurrent RAM use (mouse

driver, DOS shcll and screen save utility) 7000 - 9000 rows of data may be

processed. A row of data will hereafter be termed one data uniL

In addition" since no real consensus exists on proper data notation, DIPS permits

data input using one of five formats:

-TREND/?LUNGE may be used for direct plotting of pole vectors of lineations. No

further processing is required.

-DIP/DIP DIRECTION , STRIKE/DIP (left band rule) and STRIKE/DIP (right hand

rule) may be used for input of planar m€asuremenc. Intemal processing is required

to convert these data units to pole orientations. (Sce table 2.1).
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The desired input format is specified using a global orieotation flag in the dat1 file

headcr section. For data in a particular traverse as identified by its traverse number,

a traven€ orientation flag may be used to override the global flag for the traverse

involved. This is useful when combiaing data in DIP/DIP DIRECfiON format with

data from another source which may be in STRIKE/DIP format , for example.

-BOREHOLE DIP/ BOREHOLE DIP DIRECTION nay be used when inputtitrg data

from oriented core measurements. This data is identified by its traverse number

which references a traverse type spccified as BOREHOLE. The data is rotated using

the borehole reference directioos and the real orientation is calculated and specified

in the global orientation format. The rotation techtrique is the matrix transformation

equivalent of the procedure outlined in Golder Ass. 1979. A description of input

pammeters is grven in the manual in appendix B.

It was intended to include a clino-rule input formaL However, sincc the notation

and datum conveDtions used when measuring with a clinorule vary greatly, it was

decided that clino-rule data conversion is best done by the individual rqking the

measuremetrts in order to avoid serious error.

DIPS permits the crcation of several typcs of ouQut files containing information

about the original data (after processing), as well as calcularcd features such as

mean or represenlative orientations. The original data file, however, is ncver altered

within tbe DIPS program. This allows the data to be slored in a stable data base

which can not be altered by careless enors during the us€ of the prognm.
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53.2 Projection Options and Spherical Mapping

The heart of the DIPS computation and presentation algorithms is the set of

mapping routines which convert world coordinates to angular measures of trend and

plunge and vice versa. The conversion from dwice (ie. screen pixel) coordinates o

world coordinates is handled by the basic interface routines.

The angular to certesian mapping functions are based on those outlined in Priest,

1985. The two tunctions WORLDTORADIAL and RADIALTOWORLD are outlined

on the followitrg page. Note that both EQUAL AREA and EQUAL ANGLE

projections are supported. The projection type is seleaed from an options menu iD

the DIPS packagc. A flag is toggled and the apPropriate functions are executed by

these t*'o routines. Since all operations involving projections and user interactiotr

with the screen are directed though these two routine.s, this is all that is required to

support both projection methods in the progam.

Priest and others have outlincd functions for the computer gen€ratiotr of other

features such as gre3t and small circlcs. These involve analytical routines for

calculation of the circle centre and then the generation of arc segnents for the great

circle and small circle curves. Thesc routines are for equal angle only and are

difficult to program in a flexible fashion. The equivalent two dimensional curves for

equal area projection require complex fourth order functions to generate.
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The altemative is to map all pole points and vertices of polygon approximations of

great and small circles from the reference sphere to the projection and then connect

the vertices as required to form the projected features. The following routines from

DIPS are the mappiDg functions which form the basis for all projections in DIPS:

*d.6!c Pl 3.t1159b51
#dcIil. R@T2 1.414213562
tdc6r€ n(D (Gy51.2957n5D fd.grr.3 to |t dir6'/
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The two mapping routines oD the previous page, however, elimhate the need for the

projection-specific and feature-specific functions outlined by Priest 1985. The plane

and cone intersections on the surface of the sphere can be calculated by vector

rotittions in 3 dimensional space using direction cosines, matrix tra$formation, and

conversion to angulat measurements for a number of interval points on the curve,

These points can then be assigned world coordinates using the mapping routines

described and a polygon approximation can then be drawn on the screen. This

method is then projection independent and is very flexible. All great circles, small

circles and cluster definition windows are generated this way in DIPS.

The windows derribed do not require matrix rotation since they are defined by

plunge and trend limits and can be mapped directly to the screen using the

conversion routines. These are used to ioteractively sunound pole clusters for set

defnition and mean vector calculation for a given set. They can be moved and

stretchcd with the cursor keys or mouse in an interactive "rubber band' hshion.

These will be discussed in more detail in a later section.

Both polar and equatorial reference gnds can also be generated directly by drawing

great circles and small circles at appropriate intewals using the methods describcd

above. If adequate angular resolution is uscd when generating the polygon

approximations !o the great and small circles, the results are indistinguishable from

the results obtained using the arc functions outlin€d by Priest 1985. Since the

computer excels at tedious but simple iterative calculation, there is no real need for

computational elegance if the results are compatible.
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Presentation of Multiple Data Measurements

The Pole Plot

The simplest form of presentation in DIPS is the basic POLE PLOT. Data is read

from the file in a form specified by the global orientation flag or the traverse

orientation flag, and converted to equivalent polc orientations specified by trend and

pluoge. These orientations are then directly mapped onto the projection using the

RADIALTOWORID routine. The default plotting method involves the generation of

a simple pole symbol at the projected location of the pole. This would normally

represent the first step in analysis and reduction of multiple data measuremenB.

The database in DIPS can also be utilised at this stage !o provide additional

information. Any one of the col"rnns h the data file can be used to generate a plot

with symbols at the pole locations representing particular feature attributes such as

surface type, roughness or streDgth, or ranges of values for spacing continuity or

seismic intensity, for example. The symbols and colours used have been choscn to

create a gadient in colour (cold to hot) and in symbol complexity. For quantitative

dat4 the legend defining thes€ symbols and colours can be modified to higblight

either greater or smaller values, and to acceDtuate linear or log disributions.

Likewise, for qualitative data such as rouehness evaluation, the symbols can be

interactively selected to highlight desired properties The combination of pole

plotting and symbol representation permits a double purpose plot (fufte, 1983)

where visual dominance can result either from closely spaced data points or high

intensity symbols repr€senting undesirablc properties such as high cootinuity. Both
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forftdors must be considered in assessing critical surfaces for slope stabitty,

example.

Nonorientation dat4 loaded using the TRACX( DATA option in DIPS, can also be

pescnted usirg a histogram option in the program. This can be usefirl when a more

rigorous exa ination of the data is warranrcd as in the case of joint spacing

cvaluation- This hisogram can be generatcd for all data plotted or for data enclosed

by a sa window. This can be useful for examining in detail, the auributes of a

particular joint set as required when performing a Q rock mass classification (Barton

1974\, for example. The operation of windows will be discussed later.
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Figurc 55: DIPS Histogram of data atributes



Visuat Clarifrcation of Pole Distribution

The Scatter Plot

When multiple data measuremenB have been taken (one data unit representing more

than one similar feature) or when a large number of data measurements has been

takeq a single pole symbol in the pole plot may conceal many actual

measurements. A second plot is then needed to identify the n'mber of collinear or

similarly oriented pole vectors at a given location on the stereonet.

This plot is called a SCATTER PLOT. This plot uses a square grid pattem

superimposed on the stereonet. This is the same grid which is used for contouring

pole density as described in the next section. All poles which plot within one half

grid spacing (with a square region ccntred on thc grid point) are tallied and the

total assigDed to that grid poirt. A symbol plot is then generated which shows the

number of poles in tbe immediatc vicinity of each grid poinr This plot gives a

clearer picture of the pole distribution.

It is important !o note, however, that th€ symbol positions in the scatter plot are

determined by the grid point locations. Consequently, the scatter symbol positions

will differ from the pole positions in the pole plot. The scatter plot should not be

used for determinatiotr of exact orientations of features. It is only intended to clarify

the quantity distribution. The accuracy of the symbol positions iD the scatter plot

can" however, be improved if a finer computatioo grid is selected through the

options menu in DIPS.
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Figurc 5.6: DIPS Scatter Plot
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53.5 Contoured Pole Concentrations

The Contour Plot

A more statistically valid assessment of pole distribution is obtained using a contour

plot of pole density. The interpretation of such a plot is discussed in section 3.4.

The contours represent intervals of probability (in percent) of pole occurrence within

a specified angular distance of a given orientation.

DIPS features two options for contouring pole density on the sphere. The so-called

SCHMIDT method is similar to the manual grid counting circle approach and

assumes 100 percent confidence in each orienlation measurement. Each data unit

contributes either lfi) or 0 percent of its value to a grid point depending,

respectively, on whether or not it falls within defined angular limis of the grid

vector. In the FISHER method ( so-named by this and other authors because of its

use. of the probability function described in Fisher, 1953) each pole possesses an

bell shaped distribution which conEibutes a fiactional influencc on a grid point

which decreases with increasilg angular distance b€tween pole and grid vector.

Contouring in DIPS occurs on the surface of the sphere. A grid of user specified

resolution is generated which is square when projected in two dinensions. This is to

facilitate efficient generation of the continuous interpolated screen conlours These

grid points are converted to unit grid vectors in three dimensional space using the

WORLDTORADIAL mapping routine. The angular distances betvecn grid vectors

and pole vectors in the data set are then used to calculate concenfations. In order

n



99

to optimize the computation pr(rcess, DIPS calculates grid contributions at all grid

points for each successive pole in the data list, rather than cycling through the pole

list for each grid Point. The DIPS approach is optimized by processing only those

grid points within an angular distance as specified by the counting circle radius.

Only a small row/column defined cluster of grid points needs to be considered for

each data unit. This greatly reduces the computation time required.

After mapping the grid poins onto tbe sphere, the next step is to compute the cone

atgle, B, represented by the radius of the counting circle. Figure 4.5 illustrates this

relationship. The default area of the counting circle is I percent of the area of one

hemisphere. The user may alter this ar€a if desired.

Each pole vector is converted !o equivalent dircction cosines. Each grid vector is

also expressed as direction cosines. The dot product of the pole vector with each

succcssive grid vector yields the cosine of the angle betweeD them.

In the Schmidt metho4 if this cosine is gleater than cos p, the grid vector is within

thc cone corresponding to the counting circle centred on th€ pole vector. The grid

point conc€ntration is therefore incremented by the value of the pole (unity or

geate r if multiple Eeasurements are represented or if a weighted contour is being

calqrlated as described later in this section).

If the pole is within an angular distanc€ p of the st€reonet perimeter, it will have

an influcnce on grid poins on the other side of the net. DIPS mu$ then repeat this

proccss using the negative pole vector.



100

rlaD CouDUEf Orid PolDtt

PNOJECTED CRO POINI ON

ST'RFACE OF

CT[J]{DN OF INF1TIENCE

t - !l[.11 .Esl. DctEGE pol. Dol'n.I .nil ptojcctc.l Gi.t '.cto!
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In DIPS, for greater memory and computational economy, only one quadrant (north-

east) of grid information is stored in an array. Each grid point has four

concf,,ntration values coresponding to the symmetrically associated grid locations in

the other three quadrants. There are also redundant grid points in the upper right

corner of the grid array which are an artifrct of the row-column indexing of the

grid. Since only neighbouring grid points are process€d for each pole, these

redundant grid points pose no extra computational overhead.

The use r can select between SCIIMIDT and FISIIER distributions for density

cotrtouring. As discussed, the Scbmidt distribution is analogous to a cylinder on the

surfbce of the sphere and centred about the pole vector. The density cotrtribution to

each grid point inside the cylinder's radius is given by the height of the cylinder.

This height is unity 161 I single unweighted pole but can be a grcater integer or

rational value. The same analogy applies to the FISHER method used in DIPS,

though in this case the height of the disEibution surface above each grid point

varies with angular distance from the pole. This distribution is based on the

equatiotr for a normal distribution on a sphere:

P(0) uK.! 0 de (eq.s.l)

where:

(Ks in0) / (eK-e 'K)

This equation can be thought to repres€nt an assumed distribution of probable enor

inherent in the measurement of the orietrtation in question. tro this context, th€ above

equation expresses the probability that a measured orientation achnlly repres€nts a

U
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truc orientation which is an angular distance of between 0 and 0 + d0 of the

measured (recorded) vector.

I! DIPS, the constant K is calculated such that the value of the probability function

has a value equivalent to SVo of is maximum at a distance p corresponding to the

cone angle of the counting circle. ln other wotds, the counting circle represents the

95Vo c{nfidence limit of the Fishcr distribution. The function is truncated outside

this limit.

If this tnrncated function defines a distribution over the surface of the refereuce

sphere, the volume under the surface, enclosed witbin an equivalent and partially

ovcrlapping counting circle c€ntred on a grid vector, c€tr be calculated by numerical

integration. The ratio of this volumc compared !o the total volume under the

distribution cuwe defines the contribution of the pole to the concentration total for

the grid point. It can be seen that while the new distribution, formed by plotting

tbes€ integrated and normalised volume ratios with resPect to the disr^nce between

pole and grid vectorg extends to an angular distance of 2p Aom the pole centre, the

total volume is equivalent to a Schmidt cylinder (radius=p) of inlluence for the

samc pole.

Sincc the grid totals are now normalized with rcspect to the total volumes under

each pole distribution, the grid lotals arc merely divided by the total number of

poles (or total quatrtity or weighted total reprcs€nted by all the poles in thc data

group) to calculate the deDsities in percent. Thc derivation of the FISHER method

used in this program is outlined in appendix d
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Fisher Distr ibution
-.---b-

REFERENCE SPHERE

Pole Vector

Grid Vector

Schmidt
Inf luence Cyl inder

Fisher Inf luence
Dome

Tb.is volume (common to overlapping counting
circles) is calculated using numerical integration
for a range of { values to generate the influence
surface in botto-m figure

Figurt 5.10: Derivation of Fisher influence firnction in DIPS
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BELL DOYE OF INFLUEIICE

XAKIIIUX IlElCEr = r COINCIDEM I|TII POLE v8groR

BASE RADTUS 2 X SCEITDT CYUNDER RADruS

TOTAI VOLIJYE OF INFLUENCE |IINCTION IS EQUWALENT TO SCflXIDT CYUNDEB

Figure 5.ll: Calculation of influence contribution on sphere

The repetitive calculation of the influenc€ contribution for each pole - grid

combination would be extremely expensive. Fortunately, it was found that the ratio

of contributing volume (for a given grid - pole separation ,[) to total volume for a

pole was independent of counting circle size when compared to the associated ratio

of the dot product, cos l, of the grid and pole vectors, to cos p (where p is the

cone angle of the countiDg circle). This permitted the calculation, in advance, of

influence ratios for a set of 50 intervals of cos E / cos p. This list is then stored in

an array, and the actual values as required are interpolated from this list. This

geatly improves the efficiency of the Fisher couding algorithm without sacrificilg

measurable accuracv.
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Figure 5.14:Two & three polc testitrg and comparison of Schmidt and Fisher
density calculation.
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Terzaghi Weighting

When performing the contouring calculations described the resultant influences are

nultiplied by a quantity value for a given pole. This value can be unity for a single

unweighted pole, or a user specified value, corresponding to a nuEber of similar

features represented by otre measurement. This quantity can also be multiplied by a

weighting factor to compensate for measurement bias against planar features which

are subparallel to the outcrop surface where the measuremenB were made.

These weighs are calculated when the data file is loaded. The traverse number for

each data unit references a particular traverse orientation. The angle between the

line or surface of the traverse and the feature in question is calculated iu one of

tcro ways and used to calculate an appropriate weighting factor.

The weigbting is calculated as:

lo."-,r = cos(pole rend)'cos(pole plunge)
\*,".- = sin(pole trend)'cos(pole plunge)
\'.r.a*= sin(Pole Plunge)

For IJNEAR h?veses:

\*** = cos((traverse trend)+declination)'cos(traverse plunge)
\-".- = sir(travers€ trendlrdeclination)'cos(traversc plunge)
\-.a"." = sin(travers€ Plunge);

For PLANAR traverses:

lo--,t = cos((naverse normal trendFdeclinationlcos(traverse normal plunge)
L"- = sitr((traversc normal rendFdeclination)'cos(travene normal plunge)
\,-*- = sin(traversc normal plunge);

A = cosine of angle between pole and tsaversc orieDtation or
traverse normal (dot product)

A = plc'taverse =L"-.-.\,".-. + L*'\.*- + \.,.d*,'\,"...c"-
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w = weightitrg applied to tbe pole for weighted contouring
and mean calculation

For LINEAR travers€s:

w= l lA

For PI-ANAR traverses:

w= Ll , l ( r -A)

NOTE that in the above cases, w+@ as A+0 for a LINEAR
traverse and as A + I for a PL-ANAR traverre, This is avoided bv
specifying 1 !9yer or upper limit, respectively, on A. For a LINEAR
traverse in DIPS this limit conesponds to the sin€ of a user specified
minim"m argle. For a PLANAR traverse, the maximun A is
equivalent to the cosine of this minimum angle.

Density contributions calculated by the scbmidt or Fisher method for given pole -

grid vector combinations are multiplied by this weighting w, and added to the grid

point total. The individual grid point rotals are then divided by a weighred lotal for

the whole population to obtain the percentagc density values plotted.

Because the weighting tends to inlinity as the traverse and planar feature become

parallel a limit can be set by the user for minimum angle and therefore, for

maximum weighting factor. In addition" since judgement and care is required when

using a weighted plot, both utrwcighted and weighted conc€ntrations arc calculated

at the same time. Both plors can be itrstantly getrerated and compared. If a high

conc€ntration appears in the weighted plot, but is totally absent in the unweighted

plot, it is advised that the us€r interpret tbis cluster with caution. A single

Eeasurement which closely parallels the traverse can take on aa exaggerated

tmportance in the weigbted plot (figure 5.19). Thc user must decide whether such a

IneasuremeDt warranb serious consideration without the backing of other similar

measurements.
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Contouring the Grid Values

Once the weighted and uweighted grid point densities have been calcularc4 the

grid values are assiped to the associatcd projecfed poiDa on the stereonet overlay.

This square array of values is then contoured using linear interpolation in two

dirnensions to generate the continuous conlours shown in figures 5.14 - 5.15- A

simple line contouritrg routine (Bourke 1987) is also used to generat€ line contour

plos if desired- The line coDtour plot is shown in figure 5.16.
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Figurc 5.15: DIPS colour contour plot ( same data as manual plot in fig 3.14 )
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Figurc 5.16: Stippled contour plot ( data from Wallach 1990 )

Gi,lltGr ltattoa oahftqJR Pl4-

o
I

t . t

t . a

a . t

a . a
t . t

t

EqI\ 6.E
ur. tortt+.lEFE

3!: -.39hEi
r€ otat

coaEctto.

a@o tErEL

Figurt 5.17: Line contour plot ( data from De Azevedo1ee0 )



111

ott?Aall sdi E l.EEra Fttrcn aiD trclr[ Dt rEtr*Ds @N!!(XJR PlJOf

lc!.attDt n[E
ocGExrrt tq€
: .  o t  to t . l  F .

< o
< l

< a

< t

< l l

< t l

< l l

Eqn- m.l

Lre. l€tt 3P|.EE

la FtlEs
tl EtftilEt

ro gtas
ooFEct I (ta

Sq.TIDT G!ffTqJ'|l

q|'tgil3al lElraEEx FtaaGa -{o trqart Dt rGr}lD! cDNrooR Ftof

< o
( 3

< a

< t

< l a

< t t
( l l

Eqn- frLl
Lra. r€tt3acn€

I' FC-EI
3t EttitEl

rE gtt!
ooet-sr I ca

Fta,|EF ooarqxa

Figure S.lE: C-omparison between Schmidt and Fisher density contours



l;t_

+ . .  - r - +  - , . + .  \ .  - 1  . . . '
Pd.E (E |'HE'E

rc*rEFlE srFEE I a_ne

ta.rrasht  t .s t  fo.  F l rn-r  t ra€r3a @a{frxrR Pfr"

l|ot. istrD nl!,tti
ot clri.t o.r.ll.l to

FISIIEF PJOLE
errcExtRAt ! dB
, of tqlc.l ^.

< o a
<  7 . 5  ' e

< 5 ' /

(  t 5  z

<  t a . t  ,
EOIJfl- GT

ua. rcxttF GE
a Pd-E3
za ExrBtEt

fEF.tI/|t
cffigrtoi

n x iF.rr u€idftingl co?re4qd.L1 to t d.!gt.e 3cr5r.t i6

tr'igurc 5.19: Effect of TezagSt weighting



Reduction of Data to Doninant Orientations

The DIPS contour plot pemrits effective visual analysis of orientation patterns. Once

clusters of data have been identified, DIPS provides two methods of reducing these

to representative orientations. The first follows a methodolog5r similar to the manual

method.

The IOCATE POLES option allows the use r !o select with a cursor (using the

cursor keys or the mouse), distinct orientations from the stereonet. The density

contours can be used, for example to select the direction of maximum pole density

within a cluster as the repres€ntative orienlation. Certain individual features such as

continuous faults can also be singled out itr this way for special consideration. The

orientations of any features can be interactively resolved using this cursor. As the

cursor moves about the screen, the corresonding orientation is instatrtaneously

displayed on the upper status line (fig 5.20).

STBIKE/DIP.R: 062/84 GRID:CI

Figurt 520: Screen cursor and orientation readout in DIPS
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The SET WINDOWS option in DIPS is somewhat more sophisticated. Using the

cursor, the user csn interactively enclose an entire data cluster within a 'rubber-

banding' window. Once the window limits are confirmed, the data within the

window limits (spccified as a ranges of trend and plunge) are assigned a set

number. The mean pole within the window is calculated automatically. Both

weighted and unweighted poles can be calculated and plotted, along with their

equivalent planes.

The method used in DIPS involves simple vector addition of all pole vectoni within

the window. The resultant vector (calculated from the component sums of pole

direction cosines) is then normalized with respect to its magDitude !o yield a mean

unit pole vector. For weighted means, thc scalar weight for each pole is multiplied

by each of the pole's direction cosines beforc inclusion into the veclor summation.

POLE VECTORS IN A
CLUSTER

HEMISPHERE

-.- \

h

ZeDitb

Figurc 521: Mean vector calculation
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NORMALIZED
RESULTANT
(MEAN

Figurc 5J2: Mean calculation near equator

The 'rubber' window in DIPS is allowed to wrap around !o the other side of the

stereo net as required. Poles in this wrapped portion of the window arc assigned a

negative indicator flag. When calculating the mean veclor for a wrapped window,

these flagged vectors must be converted to their negative normal oounterparts (ie.

their direction cosines must be multiplied by -l) before summed with the rest of the

vectors. This insures a conect mean for a set of sub-horizontal poles.

The vector addition method was chosctr for is simplicity and ease of user

application. In tbe funrre, an external post-proc€ssor may be develo@ which will

utilise eigenvector methods to allow more complex cluster analysis. For most

EQUIVALENT
NEGATIVE POLE

l-!==-.--
<-prorrso PILE/
\vncroRs lN (
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applications and user requirements, the method uscd in DIPS was deemed ttt be

srtrfrcient

Figurc 523: DIPS windows and calculated mean planes

The set numbers assigned to the data within a window may be used internally, for

the creation of joitrt-set-specific histograms for various feature attributes (figure

5.2). This is useful when performing a rigorous Q classification (furl,on 1974\ for

etrmple. Files may also be written to disk which contain processed orientationg

bias correction weights and set numbers Thesc can be easily incorporated as input

to additional packages such as visualization tools or block size and geometry

aaalysis packages (Peaker 1990).
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53.9 Manipulation of Distinct Planes

DIPS permits plotting of selected and calculated orientations on a s€parate plot if

desired. The planes are generated using the vector rotation method described earlier

in this section. A legend can be generated giving the exact orientations represented.

A number of tools may be used with any of the various plot options described.

Those most useful at this stage include the polar and equatorial grid overlays. The

equatorial grid may be plotted at any meridian trend to illustrate a variety of

relationships. DIPS also allows the plolting of small circles centred about any

orientation on the stereonet. Thes€ are useful when performing stability ass€ssment

on the DIPS stereonet. ln addition a rubber-band great circle may be moved

throughout the stereonet and may be combined with a pitch or apparent dip grid for

visual assessment of such relationships as the angle between interseaing planes (fig.

5.25). As discussed earlier, the intent of these and other interactive gnphical tmls

is to mimic the flexibility of the original manual stereonet method.

Any or all of the data, as well as the selected distinct orientations may be rotatec

about any arbitrary axis. This is particularly uscful for geDerating inclined

hemisphere projections (fig. 5.28) Thesc projcctions are identical to the lower

hemisphere ster€on€t discussed throughout this work, with the excePtion that the

stereonet equator is no longer horizontat. The inclined hemisphere is used for

assessment of free wedge formation in inclined excavation backs or sidewalls (Priest

1980).
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RotatioD of data can also be useful for comparing different data s€ts which may be

geomctrically similar but sympathetic to a folded bedding, for example. Roration of

the data in one set by the relative augle of folding may conrirm suspicions that the

data sets are similar and allow prediaion of geometries farther along the fold

(Carter,f989).

several features in the DIPS package are illustrated in the following figures and

ntore are described in detail in the manual in appendix B.
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This database may also be used to filter data according to joint continuity. or

aperture, for example. If the data s€t is difficult to interpret, such filtering may be

necessary in order to assess dominant structure.

The data base also allows local assessment of structure from a mine-wide data base.

Such databases are becoming more commoo in canadian mining practice (Noranda

l98e).

53.11 Hard Copy Output

It was decided early in this and othcr software development projecs at the

University of Toronto, that it was not the maDdate of the group to invest a great

deal of time developing printer drivers for the vast array of different printers on the

market. Instead, it was seen as more efficient to prepar€ the screen in a fashion

which would allow a screen dump to a prinrcr or file using commercially available

lutiliti€F.. Pizazz Plus by Applications Techniques Incorporated is one such utility

and the one most commonly utilized at the timc of this work by the group at the

University of Toronto. This utility, and others like it, support a wide variety of

printers and screen graphics cards.

DIPS has IIARD COPY options in all of the plot menus. This option prepares the

screen with titles and a legend. This display catr thcn be capturcd by a print screen

utility. The screen display can be printed direc-tly to a printer or saved to a file

which can be imported by a word processing package.
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A file creation option has also been created wbich writes the plots and associated

legend information to a Drawing Exchange File @)<F1 which can then be imported

by AutoCad (A computer aided drafting and design package by AutoDesk). AutoCad

supporb a wide range of plotters and printers and can be used as a picture editor to

customize DIPS plots to fit company forms for example. The screen capture plots

can be seen throughout this work while examples of DXF output are shown in

figures 5.30 and 5.31.

SURFACE STRUCTURE SURVEY
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Figurt 530: ACAD output using D)G file crcation with DIPS
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Figurt 531: DXF reference grids from DIPS - compare to figure 3.7
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6.0 coNclusroN

The main objective of this project was nor to merely improve on the static

presentation tools prwiously developed using spberical projectioD, nor was it an

objective to create a black box statisticel analysis tool for orientation data. The

primary goal was to bring to the computer environment the interactive and

illustrative nature of manual stereographic analysiq and to create atr integrated

package which would permit varying degrees of subjective as well as computational

analysis through most phases of orientation analysis.

Although the background of the author dictated a desigr philosophy influenced by

the requirements of engineering structural analysis, it was also felt that such a tool

should accommodate any application in which orientatiotr formed an important

component of the data basc. Within each field of application, it was felt that no

preferred conventiodr existed emong practitioners regarding either input format, data

Dotation, or desired presenlation style. A computer package would have to take the

form of a toolkit and be as flexible and as robust as possible in these regards

By utilising the computation power of the computer, it was felt that any simplifying

approximations in the manual metho4 such as fixed and inaccurate statistical

counting windows for density contouring as well as enors introduced by contouring

the tc/o dimensional projection, could be efficieotly eliminated by performing all

in three dimensions on the surfac€ of the reference sphere, using the

only for presentation.
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Since visualization is a major advatrtage of stereographic analysig any package

created during this work would have to utilize up to date computer graphics and

animation tecbniques wherever possible both for interaaive analysis and final report

quality pres€ntation.

Finally, it was the opinion of this author that tbe package should be able to treat an

input file as a database from which data could be selectively screened to

interactively retsieve us€r defined subseb for analysis. This daa base would also

have to accommodate non-orientation data associated with each daa unit This

additional data could then be analyzed in various ways in addition to orientations.

Tbe program DIPS, developed as part of this work at the University of Toronto,

satisfics all of these initial criteria. The program has gained wide acceptanc€

inrcmationally as both an educational aad practical engineering tool. Feedback from

a wide variety of users regarding the interactive and graphical format of the

progam indicates that most of the authors initial objectives have been adequately



6.L FUTI'RE DEVELOPMENT

At this stage, it is the feeliag of the author that any further additions to the DIpS

package within the main program would only increase the complexity of the

working environment and would take away from the "user-friendly' nature of the

progfam. Future enhancements !o the progfam would therefore be more desirable in

the form of add-on modules.

One desirable addition would be a customis€d data input progam for DIPS file

cseation. This would eliminate the need !o use a third party program for creating

data files. This was originally thought to be an important component of this work,

with the current system considered an unneoessary bother, It seems, however, that

Erost usets have been accustomed to storing their data in files created by

commercial spreadsheet programs or ASCI editors. Others have developed

customis€d electronic databas€s as part of their own systems. The frec format of the

text input file has permitted easy adaptation to systems already in place. This input

nodule is, therefore, deemed less vital to the package then it was origiaally thought

Such a tool would, neverthelesg be a us€fuI addition to the DIPS package.

Once ilata clusters have been delineated by the user, it may be desirable to perform

more complex analyses on thc individual scts Examples of such applications can be

found in Peaker 1990, Tanbak 1977, Fisher 1953, lvlarkland 1974, and others There

has been some limited demand for a statistical pGt-proc€ssor as part of the DIPS

packagg primarily fiom academic use rs. The simple mean vector calculation

performed within DIPS was deemed to satisfy most field requiremens. A more
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sophisticated extemal module could be create4 which would accept a processed

oueut fle from DIPS. Such a file c:m already be created and has been used for

rigorous statistical processing of orientation and spacing data for joint sets (peaker

190).

The author intends, at a later date, to ircorpoBte DIPS as a pre-processor for a

statistical rock block analysis and structurc visualisation package for underground

excavations. At the time of writing, suitable keyblock analysis codes (Shi and

Goodman 1990) are being evaluated for incorporation as an integrated support

dcsign tool for blocky ground.

The free format input and output filcs for DIPS have been designed to facilitate

incorporation into other systems without the nccd to alter the internal coding of the

DIPS program. The progran in its prcsent form should bc adaptable to a wide

variety of applications as they become availablc.
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