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ABSTRACT

Many problems in engineering geology are fundamentally problems in three
dimensional geometry. Spherical projection is a time tested technique by means of
which complex and arbitrary orientation problems can be solved manually with
relative ease. In spite of rapid developments in computing hardware, no analytical
software has been created which seems capable of adequately replacing spherical
projection techniques. Therefore, many attempts have been made to computerize
this method. The majority of these attempts have resulted in programs which are
static and inflexible in nature. DIPS, a program which was developed as the main
compopent of this work, duplicates, on the computer, the flexibility, graphical
visualization potential and interactive nature of the original spherical projection
techniques.
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1.0 INTRODUCTION

The study of geological structure is a fundamental component of any study of
stability characteristics for rock slopes and underground excavations. It is also an
important step in the assessment of general deformation characteristics and fluid
conductivity. As well, identification and extrapolation of geological structure often

forms a basis for preliminary mineral prospecting.

While scalar properties such as length and separation are often considered, many of
the problems which are encountered in these studies are fundamentally problems in
three-dimensional geometry, and focus primarily on orientation relationships. Even if
the problem involves only a few distinct or representative orientations, it’s three
dimensional nature leads to difficulties in visualization and in the solution of
arbitrary interrelationships. While some "black box" techniques exist for the solution
of specific types of three dimensional structural problems, a technique is required
which permits the analysis to progress in a non-prescribed fashion as the problem

dictates, while allowing simultaneous visualization.

Before analysis can proceed with representative structural orientations, however,
simplified models must often be reduced from multiple field measurements. Unless
the regional or local structure is already well established, the systematic collection
of field data is a key first step in any analysis of three dimensional structural

relationships. Because the historical factors such as stress, which contribute to the

formation of geological structure are often consistent throughout a volume of rock,
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natural discontinuities or rock fabric can frequently be represented by several
dominant orientations. The three dimensional nature of the data as well as the
natural variance of geological structure make this reduction process difficult unless

an appropriate visualization and analysis tool is available,

The most appropriate tool for both stages of orientation analysis is, in the opinion
of this author, spherical projection. First used in the second century B.C. by
crystallographers for the study of crystal morphology and optics, this technique has

been adapted in the last century for use in structural geology (Phillips, 1971).

This technique considers only the orientations of linear or planar features. Planes
and lines are assumed to intersect the centre of a sphere. This sphere is often called
the primitive in crystallography. The term reference sphere, however, is used by this
author. The circle and point traces formed as the planes and lines intersect the
surface of the sphere are projected by means of onme of two methods to form the

spherical projection which is the basis for this work.

The projection can be used in a time tested manual process, utilizing reference grids
and rotating overlays to perform a wide variety of otherwise complex geometrical
calculations with relative ease. The method’s power lies in its interactive and
graphical nature. These techniques are described throughout the literature (Goodman
1976, Hoek and Bray 1974, Hoek and Brown 1980, Phillips 1971, Priest 1985,

Ragan 1973) and are summarized in chapter 3 of this work.
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Lines plot as points on the spherical projection as do normals to planes, often
referred to as poles. This allows large numbers of linear or planar features to be
plotted on a projected stereonet in a relatively uncluttered fashion. Dominant
orientations can be derived from apparent clusters or sets visible on such a plot.
The visual impact of this clustering may be further enhanced by a orientation
density contour plot. This technique is also described by the above authors as well
as by CANMET 1977, Denness 1972, Stauffer 1966 and Zanbak 1977. Since there
does not exist a reliable mathematical process to reduce a large multimodal {(having
more than one dominant orientation) orientation data set to representative features,

spherical projection is a unique and vital part of such an analysis.

The process can prove tedious if performed manually, however. The development of
computers has not, in turn, led to the development of a replacement for spherical
projection. It has, on the other hand, created the possibility of drastically increasing
the speed and power of the existing process. There have been many attempts in
recent years to adapt the process for use with a computer. Some of these are
discussed in chapter 4 of this work. Most of these attempts, however, have focused
on generating static output of pole plots, contoured density plots or stereonets with
prescribed distinct planes. Further analysis must then be carried out by hand from
the computer screen or from paper output. These early attempts, in the opinion of
this author, fail to capture the powerful visualization features and interactive nature

of the manual spherical projection techniques.




1.1 DIPS - An interactive toolkit using spherical projection

The purpose of this work was to develop a computer package for orientation
analysis which would dynamically mimic the original techniques involving spherical
projection and cover ail phases of the analysis from data reduction to analysis of
distinct features. The program was to possess many interactive features in addition
to producing high quality graphical output. It was also to accept a wide variety of
data formats and conventions. In addition, since orientation data is often associated
with other information (spacing, continuity and roughness of rock joints, for
example), the program was designed to allow several means of simultaneous
processing this additional data. The program was designed to access a data file
which could act as a single datgbase with the ability to interactively screen and

process data subsets as the analysis warranted.

The resulting package is called DIPS - Data Interpretation Package using
Stereographic projection. The program disk and user manual can be found

appended 1o this thesis.

The rest of this thesis deals with the design philosophy and ratiopale for the
program DIPS. Chapter 2 of this work discusses a variety of orientation
nomenclature and measurement conventions. Chapter 3 summarizes previous work
dealing with orientation analysis including the development of spherical
(stereographic) projection. Chapter 4 deals with previous attempts at computerization
of stereographic techniques. Chapter 5 describes the various features of the DIPS

package.




2.0 ORIENTATION NOTATION AND
MEASUREMENT

Few aspects of orientation analysis create as many difficulties as the initial
recording of the data itself. This arises from the great variety of conventions and
methodologies which are in use at present. This chapter outlines common

conventions and identifies those used throughout this work.

2.1 ORIENTATION NOMENCLATURE

2.1.1 Vectorial Notation

A vector in three dimensional space can be described using three cartesian
coordinates based on some arbitrary origin and three mutually perpendicular
(orthogonal) reference axes. The same vector may also be described using
independent measures of magnitude, or absolute length, and of orientation. This
orientation can be expressed in terms of the coordinates of a collinear unit vector
(vector of length 1). It may also be described using a combination of angles in
mutually orthogonal planes. The horizontal and vertical angles between a vector

and a reference line, for example, uniquely describe an orientation.

The three coordinates of a unit vector, are also termed direction cosines. This term
arises from the fact that each coordinate represents the cosine of the minimum angle
between the unit vector and the axis in question. This form of notation is the most

convenient for analytical manipulation of orientations using linear algebra and is
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ideal for use in computer programs. It is not, however, the most appropriate means
of intuitive visualization for the engineer or geologist. It is often difficult for the
human brain to process three dimensional cartesian expressions. The use of two
dimensions, however, rarely presents a problem (which explains our attachment to
two dimensional forms of analysis and presentation). For this reason, geologists and

engineers have traditionally dealt with information in planar sections.

When describing orientations in the field, a reference vector is chosen, such as true
or magnetic north, and all orientations or attitudes are expressed in terms of a
horizontal angle (azimuth) and vertical angle (inclination) from this reference. This
convention is the most convenient for the surface geologist, for example, who
typically treads upon a horizontal plane armed with a bubble level clinometer and a
compass which references magnetic or true north. Different reference angles may be
adopted in other circumstances, as when surveying in a magnetic ore body ( where
compasses may prove unreliable and other references must be adopted) or when
coring underground with equipment standardized for subvertical drilling ( making a

vertical reference direction more convenient ).

Geological convention and convenience of expression have led to the development
of many different terms for describing the orientation of linear and planar features
and their interrelationships.  Before proceeding with further discussion, it is
worthwhile to describe some of the more widely used orientation terminology. These
descriptions are based on generally accepted definitions which can be found in a
variety of sources ( Ragan 1973, Phillips 1971, Priest 1985, Hoek & Bray 1974,
Hoek & Brown 1980 ).



2.1.2 Orientations of Linear Features

BEARING

AZIMUTH

INCLINATION

DECLINATION

ZENITH ANGLE

NADIR ANGLE

PLUNGE

TREND

The acute horizontal angle between a line and a reference
direction {usually one of the four major directions N,S,E or

Ww).

The clockwise horizontal angle between a line and the
north reference direction.

The angle between a line and the horizontal plane,
measured downward.

The angle between a line and the horizontal plane measured
upward. It is important not to confuse this measure with
magnetic declination which will be defined in the next
section.

The angle between a line and the vertically upward
direction or Zenith.

The angle between a line and the wvertically downward
direction or Nadir.

This is the term used most often in geological references
and by this author to define the downward angle of a
lineation measured from the horizontal plane. This term is
equivalent to inclination. Negative plunge is equivalent to
positive declination.

This is the term used most often in geological references
and by this author to define the horizontal angle between
true or apparent (ie. magnetic) North and the direction of
positive plunge of a lineation. = Nevertheless, if this
measure is associated with a negative plunge, the trend is
the azimuth of the negative vector described and not of its
positive counterpart. Trend is equivalent to the azimuth of
a vector.




vertical i
I
DECIANATION |/ ——
| :
[y arm{lgrl:g.hce
ne (north)
horizontal AZIMUTH
plane or
TREND
INCLINATION
or
PLUNGE
NADIR ANGLE
Figure 2.1: Orientations of vectors in 3-D space
2.13 Relationship of Trend and Plunge to Cartesian

Coordinates

For implementation in analytical analysis or computer processing it is efficient, as
discussed, to convert the above angular relationships into cartesian coordinates or
direction cosines (the two terms are equivalent if the vector described is of unit

length). If a set of axes is adopted, represented by the north, east and down
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directions, then the respective direction cosines, A , of a vector can be calculated as
(Priest 1985):
cos{ trend ) x cos{ plunge )

sin( trend ) x cos( plunge ) (eq. 2.1)
sin( plunge )

fr{

Note that only two angular parameters are required to uniquely define an orientation
in three dimensions. The same is true for direction cosines since the cartesian

coordinates of a unit vector are related by the relationship:

Moo * Aad® + Nww = 1 (eq. 2.2)

unit wvector
(length = 1)

Down

Figore 2.2: Angular and Cartesian expression of vectors
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2.1.4 Attitudes of Planes

DIP

DIP DIRECTION

STRIKE

The plunge of a vector representing the maximum
downward angle between a plane and the horizontal
reference plane. Occasionally the term hade may be used
by geologists in defining a plane. This is the complement
of dip and is the nadir angle of the dip vector.

The azimuth of the dip vector. Unless otherwise stated, the
two above definitions will be used in this work. Note,
however, that the terms dip and dip direction are used
occasionally to refer to other relationships. For example, the
‘maximum dip’ vector or ‘core dip angle’ of a discontinuity
in a drill core is the maximum angle between the plane and
the downhole core axis. The ‘core dip direction’ is then the
clockwise angle between the core dip vector and some
reference line such as the top of core.

The azimuth of a horizontal line in a plane. The strike will
always be perpendicular to the true dip of a plane.

Figure 2.3: Attitudes of Planes (after Hoek & Bray 1974)
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2.1.5 Orientations of Plane-Plane and Line-Plane Relationships

APPARENT DIP

PITCH or RAKE

SOLID ANGLE

CONE ANGLE

Pitch of Intersection
Line in Plane A

o
»

The plunge of a line of intersection between a plane and a
vertical reference plane not parallel to the maximum dip
vector. This value will always be less than the true dip of
the plane being measured. In other words this measure is
the inclination of a plane measured in a direction not
perpendicular to the strike of the plane.

The angle of a lineation (ie. a slickenside or shear etching
on a plane) or of an intersection line as measured in a
plane from the plane’s recorded strike direction. Note that
apparent dip is a special case of pitch where the reference
plane is vertical.

The minimum angle between any two linear or planar
features.

The minimum angle between the surface of a cone and its
axis of radial symmetry.

STRIKE OF B

e

Apparent Dip of
Plane A in Plane B

Figure 2.4: Interplane relationships (after Phillips 1971)
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2.2 NORMAL VECTOR OR POLE TO A PLANE

While the planar definitions of strike/dip or of dip/dip direction are sufficient to
uniquely define the orientations of planar features, many analysis procedures are

more effectively carried out by dealing with poles or normal vectors to planes.

The normal or pole to a plane is a line which is perpendicular to the plane. The
orientation of this line expressed in trend and plunge also uniquely define the
attitude of its associated plane. While every plane has two associated pole directions
(emanating from either side of the plane), it is more common to refer to the
downward normal to a non-vertical plane. This is the convention used by the author

to define the positive pole or normal.

N Pole Plunge = 90° - Plane Dip
\ Pole Trend = Plane Dip Dir. + 180*
N
N\ «% \ Negative
\‘\ o % Pole Veclor

\ (upwards)

Fole \ \ o ."I
Plunge \ A /Plane
i+ ip
W)
Positive ’ \\.'
Pole Vector /*“’
[downwards) \
\:

\

Figure 2.5: Pole - plane relationships




2.3 PLANAR RELATIONSHIPS AND DIRECTION
COSINES - DOT AND CROSS PRODUCTS

While the orientation definitions discussed are convenient for measurement and
visualization of planar relationships in the field, they do not provide convenient
expressions for the analytical calculation of such relationships. Vector analysis of
orientation requires an alternative form of expression. The conversion, for example,
of a planar orientations, expressed in terms of dip and dip direction, to a triplet of
direction cosines for the pole or normal vector to the plane, permits efficient
calculation of relationships such as angle of intersection between planes and
orientation of their line of intersection (Spiegel 1974, Goodman 1976). It also assists

in efficient statistical analysis of orientation trends.

Once the pole vectors for a set of planes have been converted to direction cosines
(A) as discussed earlier, the angle of intersection between any two planes A and B
can be determined, for example. This angle is equivalent to the solid angle between
the poles. This can be determined graphicaily or analytically from the following
relationship:

Pole to plane A = { Mo » Aacem 3 Madows }

Pole to plane B = { Aot » P » Macown }

A" B = Ao’ Mpacts T Macos Moeat + Madown Apiown = €OS & {eq. 2.3)

where E is the solid angle between normals

(and also between planes) A and B.
Notice how this relationship, called the dot product of A and B, resembles equation
2.2. Since the angle between a normal and itself is O, the cosine on the right side

of the equation is equal to 1.
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The direction cosines can also be used to compute the orientation of the line of
intersection between two planes. This formulation is called the cross product and is
somewhat more involved. The cross product of two vectors (in this case the poles to

planes A & B) is defined as follows:

Mrdon Moot = Magorts Modown » (eq. 2.4)

The above resultant triplet comprises the direction cosines for the line of intersection
between planes A and B. If desired, the equations 2.1 can be used to obtain the

trend and plunge of this calculated linear orientation.

It is important to note that these relationships are for unit vectors. Vectors with
magnitudes greater than one can be dealt with in a similar fashion as would be the
case when dealing with vectors representing forces in an analytical rock-wedge
stability analysis. The cartesian coordinates in these equations would no longer be
equivalent to the direction cosines. The right hand side of equation 2.2 would be
equal to the square of the vector magnitude. Similarly, the right hand side of
equation 2.3 would become |A[[BlcosE where [A]| and [B| are the scalar magnitudes

of the two vectors.

For complex analysis of geometrical relationships, cartesian vector notation is very
useful. It does not, however, easily facilitate intuitive visualization or field

measurement.
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2.4 ORIENTATION MEASUREMENT

24.1 Field Measurement

There are a number of methods for measuring the orientations of linear and planar
features in the field. The preferred technique will depend to a large degree on the

type of survey and the reasons for performing the survey.

The first stage in measurement is the selection of two reference datums. The first
datum will usually be the horizontal plane. This plane can easily be referenced with
a bubble level or a plumb-bob. Alternative selections for this datum include the
zenith or nadir directions (vertically up or vertically down respectively). An
analogous reference for measurement of drill core discontinuities would be the down

core axis.

The selection of the second datum can be more invoived. True north is the most
common reference. Alternatives include magnetic north, mine grid north (an arbitrary
reference for mine plans) or a tunnel axis or surveyed lineation. Drill core
measurements can be made with respect to a top of core marker line. Selection of
this datum will be governed by situation restrictions, convemience and measuring
equipment used. It is useful, however, to standardise the notation of an orientation

database after the measurements are made.

The reference orientations which will be used in most of this work will be true

north and the horizontal plane. A summary of conventional methods for measuring
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orientations of planar features is given in Hoek & Bray 1974. Orientations may be
obtained from stereoscopic examination of aerial or ground based photographs and
computer enhancement of video or still photography (Franklin and Dusseault 1989,
Peaker 1990). The experience of this author is primarily with manual mapping using

a variety of magnetic compasses or a carpenter’s rule (clinorule).

A pocket transit such as the Brunton compass is well suited for measurements of
lineations. It is composed of a magnetic compass with articulated sighting arms for
improved accuracy. It also has a number of bubble levels and a clinometer (dip
indicator) with vernier precision. This device is also well adapted for the
measurement of plane orientations on a large scale since its operation is very similar
to the workings of a complete surveying transit. Measurements of strike can be
made by sighting along a horizontal line through the plane being measured. Dip

measurements can be made with the clinometer.

When a large number of planar measurements is required, a Clar type compass, as
described in Hoek and Bray 1974 , is more convenient. It possesses a folding planar
back with an angular measure on the hinge. Placing this back against the plane
being measured and levelling the compass allows measurement of dip and dip
direction in one step instead of the two required with the Brunton or Silva type

compasses.

When surveying in magnetic environments, compasses will not give correct azimuth
readings. In this case a device called a clinorule should be employed. This device is

composed of two straight rulers which are joined by a hinge centred on the pivot
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point of a protractor or angular measure. One of the ruler units should also have a
bubble level. A surveyed reference line of known orientation is marked with a tape
or string. Relative strike is measured from this line and compensated later. Dip
measures are recorded using the clinorule as a clinometer. It is important to measure
dip in a consistent direction such as positive dip in the direction of the recorded

scanline trend.

The amount of accuracy and precision inherent in each measurement should be
determined by the importance of the individual measure. For example when tracing
a fault over the ground surface for the purpose of predicting its position at depth, a
very precise and accurate measure with a Brunton type compass is in order. When
mapping several hundred joint planes in a mine drift network for statistical
determination of dominant trends, quick and numerous measurements, possibly at the
expense of accuracy, are more appropriate and a Clar type compass should be used.
In general however, selection of the measurement tool may be simply a matter of

personal preference.

24.1 Magnetic Declination

It is important, when using a magnetic compass for determination of trend, strike, or
dip direction (ie. azimuth or bearing measurements), to be aware of magnetic
declination and its significance. Since magnetic north and true north are not always
coincident, a correction must be made to all compass measurements. The convention
used in this work is as follows. The magnetic declination can be calculated by

subtracting the apparent azimuth (with respect to magnetic north) from the true
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azimuth. From this definition, west magnetic declination is positive and is added to

all compass readings while east magnetic declination is negative.

243 Notation for Orientation Measurements

There are numerous conventions for the numerical recording of orientation data. One
source of variation is the use of either bearing or azimuth notation for records of
horizontal angles such as trend, strike and dip direction. Traditional bearing notation
utilizes a combination of reference compass points and numerical values to express
relative orientation, while azimuth is usually expressed as a single numerical value
(from O to 360) representing the clockwise angle from true north. For example, the
bearing measure of S40W (read south 40 degrees west) is equivalent to the
azimuth measure 220. Similarly the bearing NNW (read north-northwest) is equal to
the azimuth 337.5 (halfway between north and northwest compass points). When the
user is accustomed to bearing measure, the notation is very effective in facilitating
visualization of the oriented features. Azimuth measure, however, is less susceptible
to misinterpretation by the unacquainted and is less cumbersome when processing
large amounts of orientation data or utilizing analytical methods or computer

programs. Azimuth notation will be used throughout this work.

The vertical angles of plunge or dip are usually expressed as a single numerical

value between 0 and 90 (angle with respect t0o the horizontal). There are some
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exceptions such as the vertical angle in borehole orientation. This is typically

measured from the zenith and ranges from 0 to 180.

The azimuth measure is usually expressed as a three digit integer with leading zeros
if necessary (if the azimuth is less than 100). Likewise the vertical angle is recorded
as a two digit integer with leading zeros for values less than 10. This notation
distinguishes  between horizontal and vertical angles in orientation pairs (ie use
073/45 instead of 73/45). Note that the degree symbol (°) is left out in this notation.
If a higher degree of precision is required, a division of the degree unit into
minutes and seconds may be used as an alternative to decimal expression (ie. either
075° 15° 36" or 075.26°). Such precision is only used in very accurate surveying or
specific geological analysis. Natural lineations and planar features possess too much
spatial variability, however, to make measurement precision greater than +0.5°
meaningful. Integer azimuth and integer vertical angle notation will be used

throughout most of this work.

Variability in orientation expression arises from differences in the way planar
features are measured. While linear features are expressed primarily using trend and
plunge in geological work, planar features are commonly measured using dip and
dip direction or one of two strike and dip conventions. Table 2.1 describes the

different conventions.
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ORIENTATION CONVENTIONS BEARING AZIMUTH
FOR LINEATIONS AND PLANES NOTATION NOTATION
TREND/PLUNGE S60E/35 120/35
(Linear features) (eg. pole to

a plane)
DIP/DIP DIRECTION 55/N6OW 35/300

In this work dip will proceed dip
direction in all planar measures to
avoid confusion with strike and dip
notation. This is, however, only the
convention of this author. Other works
may use other conventions.

STRIKE/DIP -generic- N30E/55NW 030/55NW
In this notation, a plane can have one -or- -O1-
of two strike measures, independent if S30W/55NW 210/55NW

the dip orientation. The mnearest
compass point to the dip direction is
therefore appended to the dip to
prevent ambiguity.

STRIKE/DIP -right hand rule- S30W/55 210/55
The handedness indicated can be
interpreted as follows. The hand
indicated is held outstretched with the
palm down, fingers extended and
thumb heid at 90 degrees to the
fingers. If the fingers point down dip,
the thumb indicates the direction of
strike. Alternatively, if a compass is
held in the palm-up hand with the
fingers pointing in the direction of
strike, the thumb will point in the
direction of dip.

STRIKE/DIP -left hand ruie- N30W/55 030/55

Table 2.1. In this work, the azimuth conventions of trend/plunge, dip/dip direction,
and right handed strike/dip will be used for lineations and planes. Other
measurements such as interplane angle, and apparent dip will be expressed as simple
degree measures.
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3.0 SPHERICAL PROJECTION

3.1 INTRODUCTION

Direction cosines and angular relationships in plan and section both provide
effective means for visualization of single lineations and planes in space. Vector
analysis using the cosine approach permits more complex analyses of interplane
relationships when two or more planes or lines are involved. When many planes are
involved, however, or when very arbitrary relationships need to be determined, even
vector algebra proves inadequate, particularly when one considers this method’s lack

of visualization appeal.

Traditional graphical solutions prove useful for resolving certain orientation
relationships. Consider the following example solution for determination of a line

and angle of intersection between two planes:

e
pizh g
1B i (i

Lind af |

Figure 3.1: Graphical Determination of Line of Intersection for Two
Planes (after Ragan 1973)
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Compare this solution to equations 2.3 and 2.4 using direction cosines. For more
complex and arbitrary problems, such graphical solutions are more versatile than
apalytical methods but can prove to be prohibitively cumbersome. A more adequate
two dimensional graphical tool is required for solving three dimensional

relationships.

Such a tool was developed in the second century B.C. and revived by modem
crystallographers for the study of crystal morphology and optics (Phillips 1971). The
method of spherical projection is now a fundamental tool of geoscientists and
engineers, who use it for statistical reduction of orientation trends (Priest 1985,
Hoek & Bray 1974, Ragan 1973, Zanbak 1977), kinematic and stability analysis for
blocky ground (Priest 1980, Priest 1985, McMahon 1971), solution of arbitrary
geological relationships (Ragan 1973, Goodman 1976) and studies of in situ stress

fields and seismic behaviour (Park 1983, Markland 1974).

POINT TRACE OF POLE YECTOR

A

/ 5 f 1

F .

Figure 3.2: Spherical traces of planes and normals (after Phillips
1971)

—
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32 PROJECTION METHODS

The general principles of the method are based on the concept of a sphere with a
centre point through which all lineations and planes are assumed to pass (remember
that it is the orientations which are to be studied and not the spat_ial relationships).
This is called the reference sphere. Vectors or linear orientations can then be
represented by their points of intersection with the surface of the sphere. Similarly,
planes can be represented by the circular traces created as they intersect the surface
of the sphere. These traces are called great circles. One of two procedures may then

be used to transform these peoints and traces into two dimensional projections.

3.2.1 Equal Angle Projection

This method of projection also known as the Wulff projection begins with the
arbitrary division of the reference sphere into two hemispheres. Since every vector
and plane has equivalent and diametrically opposite traces in each half of a divided
sphere, only one half is required to express all orientation information. This work
will follow common geomechanical convention and utilize the lower hemisphere.

The same general principles apply to any arbitrary hemisphere.

An imaginary ray emanating from the zenith (or its relative equivalent if the lower
hemisphere is not being used) traces the points and great circles of intersection on
the lower hemisphere. The corresponding points and curves, traced on the horizontal

diameter plane as it intersects this ray, form the equal angle projection or stereonet.




24

ZENITH

(1]
=
3
(2l

REFERENCE

SPHERE

EQUATORIAL

PLANE

POLE VECTOR

PROJECTION

L
|
O
o
(5]
—
|
[
S

Figure 3.3: Generation of Equal Angle Projections




This process can be expressed mathematically by the following relationships: -
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Figure 3.4: Equal angle relationships (after Priest 1985)
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This term equal angle is derived from the preservation of angular relationships
which this method ensures. This property is reflected in the fact that a small circle,
or the trace of a cone on the surface of the reference sphere, is represented by an
undistorted circle on the projection. The relative size of the projected circle with
respect to is associated cone trace, however, will very depending on the proximity
of the circle to the centre of the projection (ie. the angle of the cone axis with
respect to the nadir of the sphere). As the small circle’s distance from the centre of
the stereonet increases, the larger the projected circle becomes with respect to the
real cone trace on the reference sphere. It is important to note that the centre of the
cone trace on the reference sphere will not plot as the centre of the associated
projected small circle unless the cone is centred about the vertical axis. The
construction of a projected smail circle is described in Priest 1985, along with proof
of angular preservation. It should be noted that this specific method was originally
called stereographic projection. This term has come to describe any form of

spherical projection and will be so used throughout the rest of this work.

3.2.2 Equal Area Projection

In this method, pole points, great circles and small circle traces in the lower
hemisphere are rotated through a circular arc, centred on the nadir of the sphere, to
the horizontal plane tangent to the base of the sphere. The resuitant projection is
then normalized to the radius of the reference sphere to form the equal area

Stereonet.
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Figure 3.5: The equal area projection
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The equal area or Schmidt projection follows the following transformation

relationships:

azimuth = trend

r = R (V2)cos(45 + plunge/2) (eq. 3.2)

where R is the radius of the stereonet
r is the radial distance of the projected point

v2 is a scaling factor

The equations for the curve of a projected great circle are more complex in this
method. The great circle does not plot as a circular arc in this projection unlike the
equal angle procedure. Likewise, cone traces do not plot as small circles except in
the case of cones centred on a vertical axis. Both features plot as higher order
curves which will not be derived here. The main advantage of this projection
method is that it does not suffer from the areal distortion of the equal angle
projection. This means for example, that an area such as that enclosed by a circle
of constant radius on the projection, represents the same amount of area on the
reference sphere regardless of its position. The circle will not however represent a
geometrically similar circle on the sphere unless it is positioned at the centre of the
projection. In other words, areal relationships are preserved in this method while
geometrical relationships are distorted; the opposite is true of the equal angle
projection. Attewell and Farmer (1976) give an analytical proof of the areal

preservation inherent in the equal area stereonet.
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323 Reference Grids

It is common to plot poles and planes on projections using a stereonet grid overlay.
Two main types are used in this case. The first is the polar net. This grid is
composed of radial lines representing azimuth increments and a set or concentric
circles representing increments of plunge or dip. The second is the equatorial net.
This net includes a set of great circles of equal azimuth (ie. strike) and incremented
dips. A set of small circles centred about the strike line of the great circles
represents increments of apparent dip or pitch in each of the great circle planes. The
terms polar and equatorial can be misleading. Both nets are generally used to
represent the same hemisphere (the lower hemisphere in this work) and the real
equator of the reference sphere is represented by the perimeter of the projected
stereonet. The polar net is more convenient for plotting of poles and other
lineations, while the equatorial net is useful for the plotting and manipulation of

planes. Figure 3.6 shows the graphical origins of the two overlay types.

Figure 3.6: Origin of reference stereonets (after Hoek
and Bray 1974)
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Hoek & Bray (1974) as well as Priest (1985) contain high quality full size reference

grids which can be reproduced and used for accurate manual stereonet manipulation.

They are shown here reduced for comparison.

Polar equal-angle net.

Equatorial equai-angle net.

Figure 3.7: Reference stereonets for manual calculations (after Priest 1985)
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33 USES OF STEREOGRAPHIC PROJECTION

Stereographic projection can be used to facilitate analysis of any physical problem

where orientation is an important factor.

Principle in-situ stresses may be presented as points (vectors) on a stereonet. Where
large amounts of measurements have been taken and measurement variability makes
analysis difficult, the stereonet may be used to visually resolve principle stress

directions (Markland 1974).

Stereographic projection can be used in a similar fashion to resolve orientation
trends in the fields of structural geology (Ragan 1973, Hoek & Bray 1974, Zanbak
1977, Priest 1985) or any other field where large amounts of highly variable
measurements have been made and where the analytical resolution of multimodal
orientation trends becomes prohibitive. The stereonet makes use of the human
brain’s facility for pattern recognition which is difficult to duplicate even through
the use of computer technology. Relationships which can be resolved from the
stereonet plots of multiple data units include maximum concentrations of poles or
mean poles for clusters of orientations as well as the fold axis determined by the
corresponding plane of best fit through joint or bedding poles on the arms of the
fold. Contouring methods which aid in the reduction of orientation trends from large

samples of highly variable data will be discussed in the next section.

The stereonet can be used in analysis of seismic data. For example, the orientations

of the primary slip planes responsible for a seismic event can be resolved by
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plotting vector orientations representing the orientation of the epicentre with respect
to the recording locations and using symbols to indicate the compressive or
expansive nature of the first wave arrival at each location. A pair of perpendicular
great circles are then manipulated to separate the regions dominated by either so-
called ‘push’ or ‘pull’ vectors. These planes then represent the surface of slip and

the plane normal to the direction of slip (Park 1983).

Analysis of a number of geological phenomena such as oriented elongation of
conglomerate pebbles, oriented clast fabrics in glacial tills, and acicular crystal
fabrics in igneous and metamorphic rocks can be carried out using stereographic
projection for determination of previous stress and flow histories (Park 1983, Ragan

1973).

Goodman (1976) gives a construction for the direction of greatest compressive
strength of a jointed rock mass. A number of poles representing normals to joint
planes are plotted on a stereonet. Small circles with cone angles representing the
friction angle on the respective joint planes are drawn, centred on the associated
pole orientations. The centroid of the region on the projection which is common to
all small circles, if such a region exists, represents the direction of maximum
compressive strength since full intact strength may be mobilised in this direction

without inducing joint slip.

Relationships between distinct planes and lineations which can be analytically
complex are graphically simple using the stereonet. The following is an analysis of

the relationship between two planes:
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Figure 3.8: Calculation of angle and line of intersection using stereonets (after

Priest 1985)

Compare this solution to equations 2.1 - 2.4 and the graphical solution in figure 3.1.
The opposite calculation (that is, determination of a planes true orientation from
apparent dip or intersection pitch in another plane) is possible with no increase in
complexity (Priest 1985, Phillips 1971). The same cannot be said for the analytical

solution.
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Another example of the flexibility of stereographic projection is illustrated in the
following example. A marker horizon such as a consolidated volcanic ash layer is
found in two non-parallel and non-oriented drill cores. The true orientation of this
bed can easily be derived using the procedures outlined in Ragan 1973 and Priest
1985. These references, as well as, Phillips 1971, Goodman 1976 and Hoek &

Bray 1974, all contain many other examples of graphical solutions using stereonets.

One application of stereographic projection of particular interest to rock mechanics
and excavation engineering is the method’s suitability to multiple plane wedge
stability analysis for slope faces or underground excavations (Priest 1980 ,Hoek &

Brown 1980, Lucas 1980, McMahon 1971).

The general principle of kinematic assessment of rock wedges above an underground

excavation is illustrated in figure 3.9.

The great circles to a group of planes can be plotted on a lower hemisphere
projection as shown. If the wedge indicated by the shaded region between the
plapnes encloses the centre of the net, the wedge is free to fall without sliding under
the influence of gravity. If the wedge does not contain the centre but possesses a
side or edge (vertex of the projected wedge) which falls inside a small circle whose
radius represents the compliment of the friction angle, the wedge will fail by sliding
along the respective edge or side. If none of the above cases are true, the wedge

will be stable (under gravity loading).




b9
,
Excevalion

Failure by gravity fall

Failure by gravity sliding

{ ¢ = FRICTION ANGLE )

Stable Wedge Conditions

Figure 3.9: Kinematic and stability assessment of rock wedges (after Hoek and
Brown 1980)
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Similar methods may be used for analysis of sliding and toppling potential in
jointed rock siopes (Hoek and Bray 1974, McMahon 1971, Lucas 1980) and on
non-horizontal faces of surface and underground excavations. This latter technique
utilizes inclined hemisphete projection (the projection uses a hemisphere with a non-

horizontal equator) and is discussed in detail in Priest 1980 & Priest 1983.

This construction can be used in conjunction with standard graphical techniques to
recreate actual block geometry and properties such as volume and weight (Hoek and

Brown 1980).

The combination of graphical sterconets and vector algebra for analysis of stability
involving non-vertical loads (eg. cable forces) is discussed in Priest 1985 as well.
Examples of problems with more than three planes and complex loadings are also

solved in Priest 1980.




34 REDUCTION AND ANALYSIS OF MULTIPLE
ORIENTATION MEASUREMENTS

34.1 Introduction

The previous section deait with means of analyzing relationships between distinct
linear and planar features. On their own, these methods are useful on a very local
scale if the features involved are small, or on a regional scale in the case of well
defined fault or intrusion features for exampie. In many cases, however, reliable
analysis can rarely be performed using a few isolated measurements due to the
variability of in-situ properties and structure found in most natural systems. In the
case of in-situ stress determination, many measurements may be required before a
reliable estimate of magnitudes and orientation of regional principle stresses can be
made. Similarly, the determination of regional or even local structural trends in rock

masses may require hundreds of measurements to be statistically acceptable.

Regional orientation trends can be estimated:

- by visual determination on site

- analytically using a number of statistical vector methods
- by visual analysis of stereonet pole plots

- by visual analysis of contoured stereonets

- using a combination of the above techniques
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In the case of structural analysis of rock masses, the first approach can be utilised
in situations where well correlated joint sets are present and the working space
allows for several viewing points in order to objectively assess the dominant
orientations.  This method must inevitably involve a great deal of subjective
judgement. The orientation of an tunnel or mining drift for example will have a
profound effect on the frequency of outcrop and the visual dominance of a
particular set of similarly oriented planes. This makes objective visual assessment

of primary orientation trends difficult and often unreliable.

34.2 Analytical Methods

A number of analytical means have been developed for the statistical reduction of
orientation data. The methods described in the literature (CANMET 1977, Priest
1985, Markland 1974, Fisher 1953) deal primarily with orientation data which is
monomodal or clustered about a single mean direction. Some deal with several
mutually orthogonal orientations. In general, no method was found in the literature
which seemed capable of resolving multiple independent orientation sets from a
single database. Nevertheless, several of these methods prove effective in analyzing

single orientation clusters and will be described here.

The simplest computation which can be performed on a cluster is that of mean
orientation by vector addition (Priest 1985, Fisher 1953, Golder Ass. 1979). This

method involves the conversion of angular measurements to direction cosines
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(equation 2.1) and the summation of the respective components ( YA, , Shw .
SMwn ) to form a resultant vector. Each component of this resultant is then
normalized (divided by the total length of the vector) yielding the direction cosines

of the mean vector.

When using the lower hemisphere conventions for orientation measurement (plunge
and dip) there is an important point to remember. When the cluster of vectors
represents a mean orientation which is subhorizontal, an extra step must be taken
before calculating the mean as described above. If, for example, part of the
orientation data ranges between trends of 120 and 160 and ranges between plunges
of 0 and 20, while the rest of the data ranges in trend from 300 to 340 and in
plunge from O to 15, one of these two groups of vectors must be reversed
(multiplied by -1) before performing a summation of cosines. If this is not done, the
mean vector will be directed downwards, midway between the two clusters. To
better visualize this problem, imagine a group of subvertical planes striking in the
same general direction - north, for example. Some of the planes dip steeply to the
east, while others dips steeply to the west. They all, however, represent the same set
of discontinuities. If the downward normals are used in the mean vector calculation
described here with no conversion, the mean normal will point downwards and the
mean plane will be subhorizontal, an obviously incorrect solution. The direction
cosines corresponding to the normals of either the east or the west dipping planes
must be multiplied by -1 before summation with the rest of the group in order to
achieve the correct result. This limitation, which is not mentioned in any of the
references listed, makes this method difficult to implement, even for monomodal

distributions, in a non-subjective, "black box" analysis.
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An aiternative and more flexible approach is outlined by Markland 1974. This

method employs a procedure called eigenanalysis (Speigel 1974, Watson 1966).
Eigenvectors, [X],y, and their associated eigenvalues , p , for a general n x n

matrix [M] are determined by satisfying the equation:

Ml Xlus = wW[X)s (eq. 3.3a)

the three eigenvalues, A, are therefore the roots of the cubic equation derived from:

det( p{I] - (M} )=0 (eq. 3.3b)
where det is the determinant and {I] is the identity matrix. The eigenvector for

each associated eigenvalue can be back calculated from equation 3.3a.

For the analysis of poles clustered about a particular axis, Markland assembles the

matrix M:
212 2Lm, 2la,
M] = 2m]; 2m? Zmp, (eq. 3.4)
2o 2nm, 2n}

where 1,m,n are the direction cosines of each sample orientation.

The matrix M has three possible eigenvalues and associated eigenvectors. Markland
describes the significance of the three eigenvectors in the following way. If each
measured pole is assumed to have 2 particle of unit weight attached to its axis

where it intersects the unit reference sphere, the eigenvectors represent the axes
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which provide the maximum, intermediate and minimum moments of inertia when
the sphere is spun about them. The moment of inertia for a given pole, is calculated
by multiplying the mass of the head (which can be one or some representative value
for stress, force, etc.) by the square of the distance between the unit pole vectors
head and the axis of rotation. The total moment of inertia for the whole data set
would be the sum of these values. Markland’s analogy is incorrect in that it is
implied that the maximum eigenvalue corresponds to the axis of maximum moment

of inertia ia this system. The opposite is in fact the case.

The eigenvector associated with the maximum eigenvalue, corresponds to the axis of
minimum moment of inertia and therefore, represents the mean wvector for the
cluster. This method should yield the same mean orientation as the vector addition
method described earlier. The advantage of this method is that there is no need to
convert any vectors to their negative equivalents for subhorizontal data clusters. The
moment of inertia of a pole vector with respect to an arbitrary axis is the same as

the value for the negative pole vector.

This method also allows for the calculation of a best fit plane through vectors
which have a girdle distribution such as the normals to bedding or joints on a fold.
The eigenvector associated with the minimum eigenvalue (and the maximum
moment of inertia) for such a data set represents the normal to the best fit plane. In

the case of a fold, this vector represents the fold axis.

For complete analysis of a pole cluster, the maximum eigenvalue is associated with

the mean vector, while the minimum and intermediate eigenvalues correspond to
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eigenvectors normal to the planes representing the maximum and minimum axes of
the elliptical cone defining an asymmetrical pole concentration. The relative
magnitudes of the eigenvalues reveal information about the degree of clustering of
the orientation data. Three identical eigenvalues indicate a uniform distribution with
no clustering. One small value and two fairly similar large ones indicate pole data
distributed about a plane (normals about a fold). One large value and two much
smaller ones indicates clustering about a mean vector. In this case equivalence of
the two smaller values indicates a symmetrical cluster about the mean while a
difference between the two smaller values gives a measure of asymmetry of the

distribution.

Once these axes have been determined, then a number of methods may be used to
describe the distribution in detail. The most common statistical analysis procedure is
based on a radially symmetrical Fisher distribution, an adaptation of two
dimensional normal distribution to data on the surface of a sphere (Fisher 1953,
Priest 1985). Bivariate normal distributions can also be used when the data is

asymmetrical (CANMET 1977, Zanbak 1977, McMahon 1971).

Markland discusses other uses for the eigenanalysis method such as the reduction of
multiple in-sity stress measurements into mean principle stress directions and
magnitudes. Although there are three orientations being solved for here, they are
assumed to be mutually orthogonal. This method still suffers from the inability to
solve for mean orientations in a system with multiple and independent orientation

clusters.



43

It is clear then, that even if these analytical methods are to be used for the analysis
of field data, another procedure must first be performed which can group orientation
data into clusters of association (about a mean pole or best fit plane as the case

may be} and, as will become apparent, rank clusters in order of relative dominance.

3.43 The Use of Stereographic Projection in Statistical
Analysis of Orientation Data

The use of stereographic projection in the statistical reduction of orientation data

1]

reties on the "...powerful human ability for pattern recognition and, therefore, ...has
considerable practical advantages over methods based on vector procedures which

are purely mathematical and difficult to envisage." (McMahon 1971)

Such analysis begins with the plotting of vectors on a stereonet. For analysis of
planar orientations it is convenient to plot the normals rather than the planes
themselves. Visual analysis of multiple planar measurements is far too cumbersome

when the planes themselves are plotted (figure 3.10).

The poles or normals are used in preference to the maximum dip vectors for
reasons of convention. There is another practical reason for doing so, however.
Consider a series of similarly oriented subhorizontal planes. The maximum dip
vectors will all plot as points near the perimeter of the net but will have widely
varying trends between O and 360 degrees. This wide variation in azimuth makes

visual analysis less effective. If the poles are plotted, however, the pole points will
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be tightly clustered about the centre of the stereonet, making visual estimation of
mean orientation simple and reasonably accurate. Conversely, comsider a set of
subvertical planes of varying strike or dip direction. Where the subhorizontal planes
could be considered as related family in spite of a wide variation in dip direction,
the same cannot be said of the subvertical pianes, from a practical point of view. If
dip vectors are plotted, however, the resultant clustering about the centre of the net
gives the visual impression that such a family exists. The poles would be distributed

about the perimeter of the net and would not cause such a confusion.

Figure 3.10: Stercographic projection of numerous planes
(after Phillips 1971)
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A plot of lineations or of normals to planes is termed, simply, a pole piot.
Additional information may be combined with the plotting of pole orientations.
Though the use of symbols or colours, information such as joint continuity, surface
type, of, in the case of stress data, magnitudes of stress can be plotted at each pole
point. This provides a visual comparison of attributes to supplement or assist in the

determination of orientation clusters.

When a large number of data has been taken or when a number of closely aligned
orientation measurements have been made, it may become difficult to assess
dominant trends from the pole plot alone. Many of the pole points will overlap. A
similar plot may be created, using symbols to represent the quantity of similar
measurements represented by each pole point This cleans up the pole plot and
reveals multiple measurements otherwise concealed by overlapping pole points. This

form of presentation is often referred to as a scatter plot.

From these two plots, varying degrees of success can be achieved in visually

distinguishing dominant orientation trends.
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Figure 3.11: Manually generated plot of 304 poles on equal area stereonet
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3.4.4: Density Contouring on the Stereonet

If concentrations of poles are well defined on the pole plot or scatter plot, no
further processing need be carried out to separate the data into orientation sets and
to estimate approximate mean or modal directions. It is often difficult to accurately
define dominant pole concentrations from a pole plot if a large quantity of data has
been collected or if more than three clusters are present. Such clusters become more

clearly defined if the pole concentration is contoured over the stereonet.

The correct interpretation of such contours is as follows. The concentration indicated
should represent the probability of pole occurrence within some specified angular
distance of the orientation in question. That is to say, if any oriented feature is
chosen at random from the data set (and implicitly therefore, from the total
population in-situ), this chosen orientation has a probability of lying within a
defined region about a reference point on the stereonet, as indicated by the

contoured density value at that reference point.

When contouring on a stereonet, it has proven efficient to use a contouring region
as defined above, equivalent to 1% of the area of the reference hemisphere (or 1%
of the projection area). A number of manual contouring methods have been
developed and are outlined in Phillips 1971, Priest 1985, Hoek & Bray 1974, Hoek

& Brown 1980, Ragan 1973 and Denness 1972.
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The classic method is called the Schmidt method and involves the use of the equal
area projection and a movable counting circle. This circle has an area equivalent to
1% of the stereconet. The counting circle can be centred on an arbitrary point on a
stereopet containing plotted poles. All of the poles which fall within it are totalled.
This number becomes associated with the counting point and when divided by the
total number of poles in the data set, represents the pole concentration at that point

expressed as ‘percentage of poles per 1% area’.

The counting points can be arbitrarily and subjectively determined. This method is
called the floating circle counting method. The circle would be used to scan the net
until a pole concentration corresponding to one of the predetermined contour
intervals is found. 1% concentration intervals are convenient for manual contouring.
The concentration is recorded at this point. The counting circle is then moved about
the net, following a path which corresponds to this contour interval. The process is
repeated throughout the net for different clusters and concentration intervals. This
method is very difficult and tedious as a first step in contouring. It is more useful
for refining a plot once crude contours have been generated using another method

(Hoek and Bray 1974).

A more common method is the counting grid approach. A square grid is

superimposed on the pole plot. The counting circle is then centred on each of the

grid intersections and the respective concentrations noted. The grid spacing should
be no more than haif of the counting circle diameter to assure adequate overlap
(Priest 1985). The resultant matrix of concentration values must then be contoured.

This method is more efficient then the floating circle approach but has some
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disadvantages. The grid point concentrations are usually fractional concentration
values and contour lines must be subjectively drawn between them. Additionally,
this method does not always capture maximum concentrations unless the central pole

of a density peak falls on a grid point.

Both counting circle techniques require special attention when counting near the
perimeter of the stereonet. Counting circles which extend past the perimeter of the
net must partially reenter on the opposite side of the net. This is due to the fact
that this procedure is a simulation of a spherical surface counting procedure. Poles
near the perimeter of the net (equator of the sphere) have negative counterparts on
the opposite side and therefore contribute to counting circle totals on either side of

the stereonet.

This problem is overcome through the use of a twinned counting circle pair as
shown in figure 3.12. The twin circles are kept at a fixed distance and pivot about
the centre of the stereonet. When one circle extends past the perimeter of the net,
the area loss outside the net is equivalent to the area of the opposite circle which
falls inside the net. There is an loss of area in this case, equivalent to
approximately 10 percent of the counting circle area (Attewell and Woodman, 1972)
as shown in figure 3.13. In practice, however, this loss of area is not considered
significant. The numbers of poles falling inside of both circle are summed and
recorded at the counting circle centre which falls inside the net. This value is

recorded at both centre points if they fall on the circle perimeter.
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Figure 3.12: Counting circle method with perimeter counting tool
(after Phillips 1971)
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Figure 3.13: Loss of counting area near perimeter of stereonet
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The following contoured stereonet was generated using the counting grid and circle

technique. The data is that shown in figure 3.11.

Figure 3.14: Stereonet with pole concentration contoured using 1 % counting
circle (data as in figure 3.11)
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One disadvantage of either counting circle technique is the areal distortion which
occurs due to the use of a counting circle of fixed radius. The radius of a 1% area
counting circle is equal to 10 % of the radius of the net from circular geometry.
Such a circle at the centre of the equal area projection subtends an angle of
approximately 16 degrees. At the perimeter of the net, this same circle subtends an
angle of approximately 22 degrees (Priest 1985). The use of an elliptical window
near the perimeter would compensate somewhat for this distortion (Stauffer 1966,

CANMET 1977). This is an unpopular procedural complication and is rarely done.

The area, however represented on the reference sphere, by a counting circle on the
equal area stereonet, is constant regardless of the location of the circle (Attewell and
Farmer 1976). The distortion in this case is merely geometrical and means only
that a concentration represenied on a contoured stereonet correctly describes the
probability of pole occurrence within an area surrounding the point in question. The
only problem is that for points near the perimeter of the net, the counting point will
not represent the centroid of the area described. This will cause an error in location

but not in magnitude of the contour lines (Attewell and Woodman, 1972).

The same cannot be said for the equal angle projection. A constant radius circular
window subtends an angle of 23 degrees at the centre of the net and omly 12
degrees at the perimeter. While this distortion is only slightly greater than for the
equal area projection, the areal distortion is directly related to this difference in
cone angle. This distortion generates inaccuracies in both location and magnitude of
density contours. If a circular counting window is used with equal angle projection,

the circle must be made to increase in size near the perimeter of the net and
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decrease in size near the centre. This is prohibitively bothersome for manual
contouring. The counting circle methods are therefore only efficient when used with

equal area projection.

Other variations on contouring methods employing counting circles are summarized
in Stauffer 1966. One of particular interest for later discussion is the Mellis
procedure in which circles of 1% area are drawn on the net centred on the plotted
poles themselves. The concentrations are then determined by the number of circles
which overlap at a given point. This method is similar to a reverse Schmidt floating

circle technique and the two procedures can be easily shown to be equivalent.

While there may be some statistical validity in the use of circular windows for
contouring stereonets, the method can be rather cumbersome. Several researchers
have developed other methods for contouring. These generally involve the use of
template overlays which are divided into regions of equivalent representative area.
These fixed cells are then used in a similar fashion to the circular window to count
poles within their areas. One such overlay is the Kalsbeek net described in Ragan

1973. Shown in figure 3.15, it is completely divided into triangles. Six of these

triangles form a hexagonal area which is equivalent to 1% of the total area of the
net. The total number of poles within each hexagon is recorded at the centre node
for later contouring as a percentage of the total. Triangles at the perimeter can be
coupled with triangles on the opposite side of the net to form complete hexagons.
This method has the advantage that data inside of each triangle is used by three

hexagons resulting greater continuity of concentration values from node to node.
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This is similar to the overlap achieved in the Schmidt counting grid method if the

grid spacing is less than one counting circle radius.

o

Figure 3.15: Kalsbeek counting net (after Ragan 1973)

For both efficiency and accuracy, the best counting overlays for general field
analysis of orientations, in the author’s opinion, are the Denness counting grids

(Denness 1972). The Denness grids are based on individual cells which vary in

shape and size over the stereonet, but which represent areas on the reference sphere
of not oniy constant area, but also of constant shape. The poles inside each cell are

totalled and recorded at the centre of the cell for manual contouring. The grids have
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the disadvantage that each pole is counted in only one cell reducing continuity of
concentration values from cell to ceil. For most field applications, however, this
deficiency can be overlooked in view of the grids’ ease of use and the speed with

which contouring can be performed.

The Denness Type A Counting Net is best suited for analysis of subvertical planes
or subhorizontal lineations. Notice in figure 3.16 that the outer ring of cells is
divided by a ring into equal halves. These ocuter ceils are used as whole cells and
the halves outside this ring are used as pairs of opposing half cells to provide detail
near the perimeter of the net. The Type B net is designed for efficient contouring of
inclined strata. The selection of counting net is governed by an initial subjective

appraisal of the data.

Where more accurate contour diagrams are required, Hoek and Bray (1974) suggest
using the Denness net as a first approximation and then refining the contours with
the floating circle techmique. This is an adequate procedure providing the user
consider that the inflexibility of the Denness net is compensated for by its lack of

areal distortion. The opposite is true for the floating circle method and combining

the two techniques may be of dubious value.




Figure 3.17: Denness Counting Grid B
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34.5 Interpretation of Stereonets

Once the stereonet has been contoured, the next step should be a putely visual
assessment of the clustering which may or may not be apparent. To plunge into
further analysis without first qualitatively assessing the distributions is very
dangerous. The stereographic technique is ideally suited to this very important stage

of assessment.

Figure 3.18 illustrates several idealised pole distributions corresponding to bedding
planes and their appearance on a contoured stereonet. The shape of a concentration
indicates the nature of the cluster as either a centralised distribution corresponding
to a set of lineations or planar surfaces which can be approximated by a single
mean orientation, or a girdle distribution corresponding to a folded regional
geometry. The contoured stereonet also facilitates the ranking of dominant
concentrations. In some cases many peaks will be visible on the stereonet and a
decision must be made regarding which if any will be reduced to distinct
representative features for further analysis. In other cases, no dominant treads will
be visible causing a great deal of conflict in the mind of the geologist who has
gone to all the trouble of collecting the data. Stauffer (1966) discusses some
guidelines for fabric analysis of contour plots and the definition of dominant

clusters. His conclusions are summarised as follows by Hoek and Bray (1974).
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1. First plot and contour 100 poles.
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2. If no preferred orientation is apparent, plot an additional 300 poles and
contour all 400. If the diagram still shows no preferred orientation, it is probably a
random distribution.

3. If step 1. yields a single pole concentration with a value of 20% or higher,
the structure is probably truly representative and little could be gained by plotting
more data.

4. If step 1. results in a single pole concentration with a contour value of less
than 20%, the following total numbers of poles should be contoured.
12 -20 %  add 100 poles and contour all 200

8-12% add 200 poles and contour all 300
4-8% add 500 to 900 poles and contour all
600 to 1000

less than 4 % at least 1000 poles should be contoured

5. If step 1. yields a contour diagram with several pole concentrations, it is
usually best to plot at least another 100 poles and contour all 200 before attempting
to determine the optimum sample size.

6. If step 5. yields 1% contours less than 15 degrees apart and with no pole
concentrations higher than 5%, the diagram is possibly representative of a folded
structure for which poles fall within a girdle distribution.

7. If step 5. yields a diagram with smooth 1% contours about 20 degrees apart
with several 3-6% pole concentrations, then an additional 200 poles should be added
and all 400 poles contoured.

8. If step 7. results in a decrease in the value of the maximum pole
concentrations and a change in the position of these concentrations, the apparent
pole concentrations on the original plot were probably due to the manner in which
the data were sampled and it is advisable to collect new data and carry out a new
analysis.

9. If step 7. gives pole concentrations in the same positions as those given by
step 5, add a further 200 poles and contour all 600 to ensure that the pole
concentrations are real and not a function of the sampling process.

10. If step 5. yields several pole concentrations of 3 and 6% but with very
irregular 1% contours, at least another 400 poles should be added.

11.  If step 5. yields several pole concentrations of less than 3% which are very
scattered and if the 1% contour is very irregular, at least 1000 and possibly 2000
poles will be required and any pole concentration of less than 2% should be
ignored.
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These guidelines were developed during a study of statistical significance of pole
concentrations and are somewhat impractical for field analysis. The basic procedure
of stepwise refinement described is nevertheless sound. The numbers of poles
suggested in each step may not be realistic and can be reduced accordingly. For the
experienced user, it is usually sufficient to analyze whatever data is available within
reason, which is usually much less comprehensive than Stauffer suggests. The
important thing to note is that the origin of the data should never be forgotten in
the analysis process and that interpretations should never be made more detailed
than the data warrants. Similarly, if a very accurate and statistically sound selection
of representative orientations is critical to the problem at hand, a more detailed
analysis with larger quantities of data may be required. One rule of thumb used by
this author is that if an apparent dominant concentration, once delineated with the
help of a contoured stereonet, does not visibly stand out in the original pole plot or
at least in a scatter plot, it is ignored altogether or used with caution in any further
analysis. This is a major advantage of the stereographic procedure for reduction of
orientation data collected from a natural environment. The visualization inherent in

the method is a vital ingredient lacking in purely analytical or statistical analysis.
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Figure 3.18: Interpretation of contoured clusters
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3.4.6 Sampling Bias in Orientation Data Collection

In the preceding discussions, the orientation data has been assumed to be collected
without bias in a perfectly objective manner. In the case of data collection for
assessment of structural geology measurement error and data biasing can be
introduced in a number of ways. Terzaghi 1965, and Einstein and Baecher 1983
summarize a number of sources for error and bias in joint surveys. Several of the
principle sources of bias are described here. Most of the errors inherent in an
individual measurement will average out to zero over an entire survey and will not

be discussed.

1. Open joints, a phenomena often governed by localised stress directions, are
more likely to be recorded than tightly closed joints. This problem can be overcome
by a purely objective scanline survey. A tape line is stretched across a face of 2
slope or along a drift underground and all planar features are recorded which
intersect this scanline. This will remove visual bias based on aperture. It could be
argued, however, that open joints indicate more important features than closed joints,
just as persistent discontinuity planes are more important than those which are
impersistant. This view would make these forms of bias beneficial. This is a case
where judgement is required based on field stress data and whether or not the data
is being collected for local design or regional assessment. A useful rule of thumb
- for practical joint surveys for engineering design is "..If it is longer than [the
b geologist] and wide enough to imsert a thin knife blade, measure it. Otherwise,

b ignore it."(Bawden 1989)
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2. Magnetic ore bodies in the vicinity will cause incorrect measurement of

strike or dip direction. This problem is dealt with through the use of the clinorule.

3. Measurement variation due to waviness of the feature being measured may
cause a dispersion of the recorded poles. It may be necessary to estimate an average
orientation of the surface, or in the case of stability surveys, to quantify this

waviness separately (Barton et al. 1974).

4, Measurement on a flat surface such as a slope face or along a linear scanline
or tunnel introduces a measurement bias in favour of those features which are closer
to being perpendicular to the survey orientation. Features which are subparallel to a
wnnel or slope face are less likely to be recorded than those perpendicular to it. On
an irregular rock face, enough variation in measurement surface may be present to
allow outcrop of all features present. Over flat traverse planes or in borehole core,
this bias can be quite severe. If possible, joint surveys should be performed locally
on two or three approximately orthogonal traverse orientations. This procedure
should reduce the overall bias in the survey. If this is not possible, Terzaghi (1965)

proposed a correction for sampling bias as outlined in figure 3.19.
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WHEN ORIENTATION MEASUREMENTS ARE CONDUCTED. A BIAS IS INTRODUCED IN FAVOUR

OF THOSE FEATURES WHICH ARE PERPENDICULAR T0 THE DIRECTION OF SURVEYING ( A

LINEAR TRAVERSE OR A PLANAR ROCK FACE) . IN THE ABOVE SCANLINE EXAMPLE, THREE

IOINT SETS WITH IDENTICAL SPACINGS ARE SHOWN. MEASUREMENTS ALONG THE SCANLINE
WILL RECORD FAR MORE JOINTS IN SET A THAN IN SET C. TEIS WILL BIAS THE DENSITY
CONTOUR PLOT HEAVILY IN FAVOUR OF SET A.

T0 COMPENSATE FOR THIS BIAS. A GEOMETRICAL WEIGHTING FACTOR CALCULATED BELOW IS

APPLIED TO EACH MEASUREMENT BEFORE CONTOURING OR MEAN VECTOR CALCULATION.
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NOTE: THIS WEIGHTING, W, TENDS TO INFINITY AS o APPROACHES
ZERO DEGREES. A WEIGHTING LIMIT MUST BE SET.

Figure 3.19: Terzaghi correction for sampling bias
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This weighting ,w, is applied to each pole before contouring. A weighting of 2.7,
means that a given pole is interpreted as representing 2.7 measurements during
contouring. Otherwise the contouring procedure is the same in all of the methods
described. When expressing pole counts as a percentage of the total population, the

total used must be the weighted population, N,:

N
N, = > w (eq.3.5)
j=1

\‘* grid

-

overlapping positions <

for counting circle

weighted data point

percentage of weighted
values, per 1% area

Figure 3.20: Weighted pole density contouring with counting circle
(after Priest 1985)

When computing mean vectors this weighting may be taken into account by
multiplying the direction cosines for each pole by the weight for that pole before

performing vector addition or eigenvector analysis.
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3.4.7 Combination of Stereographic and Analytical Procedures

Once a stereonet has been contoured it may often be sufficient to define
representative orientations corresponding to directions of primary concentration peaks
on the diagram. This technique is usually sufficient if the dominant concentrations
are reasonably symmetrical and normally distributed. In this case the direction of
maximum concentration will be approximately equivalent to the mean orientation.

For field analysis of data, this approximation will usually be sufficient.

If the orientation is skewed or if a more statistically valid description of dominant

orientations is required, analytical post-processing of contoured clusters may be

necessary.

Zanbak (1977) describes a method for statistical description of orientation mean and
variance which is performed primarily on the stereonet itself and graphically on
cartesian orientation - frequency plots. Two orthogonal great circles are overlain on
the contour plot corresponding to the major and minor axes of am elliptical
distribution. These planes are selected such that they intersect at the point of
maximum concentration for the cluster being analyzed. Concentration (probability of
occurtence) values are taken directly from the stereonet along these axes and two
frequency plots are generated corresponding to each axis. Standard statistical
analysis can then be used to determine means and variance along these two axes
assuming any form of distribution. Normal or Poisson are suggested by Zanbak. In

this reference Zanbak then uses these statistical parameters for a probabilistic slope
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stability analysis. McMahon 1971 uses a similar approach. This method is often

called a bivariate distribution analysis.

More rigorous methods using vector addition or eigenanalysis can be performed on
the original data if the poles are first grouped into clusters based on the stereonet
contours. Such a combined procedure is described by Priest 1985. Once the poles
are grouped into sets or clusters, each cluster is then analyzed separately. The pole
orientations are converted to cosine triplets and the mean is calculated using vector
addition. A symmetrical spherical normal distribution (Fisher) is assumed and
goodness of fit parameters are calculated. Fisher’s constant K, for example is
calculated as:

K =(N-1)/(N-R) (eq.3.6)

where N is the total length of pole vectors and R is the length of the resultant.

o
- N—ﬂ N—1
“*NR K= T
=7=1 _ 7=1
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Figure 3.21: Significance of Fisher constant K (after Peaker 1990)
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If weighted vectors are used to correct for sampling bias, R must be calculated by

summing normalized weighted vectors with w;’:

wy = wN/N, (eq.3.7)
such that:

N

Zw o= N

It can be seen then from equation 3.6 that if the orientations within a set are
tightly clustered, that is approximately parallel to the mean, R will approach N and

K will tend to infinity. If the data is widely scattered, Fisher’s constant K will

become very small.

This constant can then be used to generate a probability function for a symmetrical

spherical distribution known as a Fisher distribution:

P(6) vk =? dg (eq.3.8)

where: v

(Ksin@)/(e-¢e*)

A complete discussion of this method is found in Priest 1985, based on the original

work by Fisher 1953.

% A method is outlined in the Pit slope Manual (CANMET 1977) which utilises a
- special overlay, permitting a direct computational procedure for Fisher parameters

: from pole plots. The grid, called a Braitsch overlay, closely resembles the Denness
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pets described earlier. The cells are identified by codes which relate to a chart of
corresponding direction cosines. Each set of cosines is multiplied by the number of
poles falling in the respective cell and summed for a given cluster. The summed
triplet is then normalized to give the direction cosines of the mean vector. Fisher’s

constant can then be directly determined and a distribution specified.
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Figure 3.22: Braitch overlay (after CANMET 1977)
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Complex statistical and analytical analysis may be performed on orientation data
using a number of methods as described here. The common starting point, however,
in most analysis procedures for data measured in the field, is the stereonet and its
various flexible applications. The next chapter will discuss the computerization of

stereographic projection techniques, the logical progression for orientation analysis.
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4.0 COMPUTERIZED STEREOGRAPHIC
PROJECTION
4.1 COMPUTER GENERATION OF STEREONETS

The development of computers and, in particular, microcomputers has prompted the
development of numerous computer programs involving stereographic projection.
Computers permit the rapid calculation of complex analytical problems. As shown in
the previous chapter, however, most available analytical techniques for processing of
three-dimensional orientation data suffer from an inability to reliably handle multiple
arbitrary clustering of data and do not easily facilitate visualization. The most
logical alternative, therefore, is to use the computer’s computational and graphical

power to streamline the process of orientation analysis using stereonets.

The fundamental equations for the computerized generation of stereonets are the
mapping functions ,converting trend and plunge values for a vector to a projected x
and y coordinate pair on the stereonet. These functions are outlined by Priest (1985)
and described in sections 3.2.1 and 3.2.2 of this work. Priest (1983) also describes
plotting functions for great circles in the equal amgle projection as described in

figure 3.4 in the previous chapter.
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The improvement in programmable computer graphics in recent years permits the

rapid generation of computerized plots of poles and great circles as illustrated by

Priest (1983,1985).
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4.2 COMPUTERIZED DENSITY CONTOURING

A number of other groups have developed computer programs which perform pole

density contouring using a number of different methods.

Most of these existing programs allow for input of orientation pairs for each data
unit and possibly one other identifying label such as discontinuity type. Static pole
plots are then produced along with plots of contoured pole demsity. Dominant
orientations can then be selected visually from the screen or printer/plotter output
and input separately into a great circle ploiting routine as described in section 4.1.
Improvements in subsequent efforts in computerized pole contouring have come as a

result of improved computer graphics.
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Figure 4.2: Computerized contouring example (after Golder Ass. 1979)




Figure 4.3: Computerized contouring example (after Shi & Goodman
1989)

Figure 4.4: Computerized contouring example (after Tocher 1978)
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Another improvement has been in the contouring method itself. Early attempts at
computerized contouring utilized the fixed grid counting circle approach. Poles were
located on a two dimensional projection using equations 4.1 and 4.2. These
projected pole positions were then used in the comtouring algorithm which was
simply a computerized version of the manual technique. This method involves some
very complicated logic and calculation, particularly around the perimeter of the
stereonet (Zhang & Tong 1988, Tocher 1978). Calculation of concentrations near the
perimeter require duplication of either poles or counting circle on the opposite side
of the projection (just as in the manual approach) to correctly incorporate

subhorizontal poles.

Data loss due to the two dimensional nature of the problem also occurs near the

perimeter. This loss is acceptable in the manual approach as described in the
previous chapter but would seem to be avoidable in a computerized approach.

Tocher 1978, proposes a compensation technique to deal with this problem.

The computer approach also permits the use of a variable counting circle to deal
with the angular distortion on the stereographic projection. Separate mapping
functions for this counting circle must be adopted depending on which projection is
being used (equal area or equal angle). Zbang & Tong (1988) describe such a

method for equal angle projections.

All of the above problems are eliminated entirely, however, if density contouring is

performed on the surface of the sphere instead of on the projection. This approach
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is obviously impossible to utilize manually. This is, however, the easiest method to

computerize.

Spherical contouring employs the mapping functions described for either projection
method (equations 4.1 and 4.2) as well as the inverse of these functions for
mapping from the projection back oato the sphere. A grid is first mapped onto the
surface of the sphere, either directly as regular spherical coordinate intervals, or
indirectly. The latter approach would involve a regular grid overlay on the
projection. Each grid intersection would then be transformed to an equivalent vector

point on the sphere (using the inverse of the appropriate projection equations).

A floating cone is selected such that its circular intersection on the surface of the
sphere encloses an area equivalent to 1% of the area of one hemisphere. This circle
(or cone) is then centred on each grid vector and the pole vectors falling within the
%  copne are counted and each grid total is divided by the total population. The
resultant concentration values are then associated with the corresponding grid point

<t
= on the stereonet plane and contoured accordingly.

This method will be described in more detail in the next chapter. This methods has
the advantages of eliminating any distortion and data loss since the counting circle

is used on the sphere and not on the projection.

Near the horizontal equator of the sphere, grid vectors just below the horizontal
plane have negative counterparts just above this plane on the opposite side of the

sphere. Poles vectors falling inside of cones centred on these negative grid vectors
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T
S

are included in the totals for the associated positive grid vectors. In this way, there

is no data loss at the perimeter, another advantage over contouring on the

projection.

From a programming point of view, this method has one very major advantage over
two dimensional contouring. The counting circle radius can be equated to a cone

angle by the following relationship:

a= wr? area of counting circle

A = (4mR% )/2 area of reference hemisphere
. a
if n = A

2

\ l'. L—r""ﬁ / n=-%—r

=3 b a ’
, \ ____1“’- r = \fzn
m““"“"‘\‘”\——/‘/// ie) for n = .01 (1 % circle) :

r =,/ .02 (cone angle

in radians)

Figare 4.5: Caiculation of cone angle for spherical counting circle
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If pole and grid vectors are expressed as direction cosines (equations 2.1), then the
dot product (equation 2.3) of a grid vector and a pole vector can be calcuiated.
Remember that the dot product of two unit vectors yields the cosine of the angle
petween them. If this value is greater than the cosine of the counting circle cone
angle, then the pole is inside the counting circle and is included in the counting
total for that grid vector. This is a much simpler relationship than that which must
be used to determine the relationship between a pole and grid point on a two
dimensional projection. This dot product is also used directly in more compiex

statistical contouring methods which will be discussed in detail in the next section.

Several recent contouring programs utilize spherical contouring (Golder Ass. 1979,
Diggle and Fisher 1985). Both of these programs utilize some form of probability
distribution associated with each pole. In the Schmidt method on the sphere, as on
the projection, a pole is counted as having full influence on a grid point (grid total
is incremented by one or the full weight of the pole if corrected) if the pole falls
anywhere inside a counting circle centred on the grid point. The pole has zero
influence on the grid point if it falls immediately outside the circle. In a more
sophisticated statistical approach as employed by these and other authors, the
influence of the pole on a grid point decays continuously with angular distance from
the grid vector. These influence functions produces smoother and more statistically
valid contours, and better reflects the degree of measurement error inherent in each
measurement (Golder Ass. 1979). These functions are easily implemented in a
spherical contouring algorithm since they are usually a direct function of the dot

product of the grid and pole vector.
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A number of different approaches can be used to determine the function used in this
type of density calculation. Diggle and Fisher (1985) describe one method in detail.
A different derivation is used by this author and will be described in detail in the

next chapter.

43 CURRENT DEFICIENCIES IN COMPUTERIZED
STEREONETS

All of the programs evaluated as part of this study were found to be deficient in

several areas.

Computer graphics, particularly for the persomal computer have improved immensely
in the last few years. Programs written several years ago are not up to date in their

graphical presentation.

Use of these programs was seen to be very cumbersome. Development focus was
placed on internal procedures and statistical validity and very little emphasis placed

on usabiiity.

Most current programs are static. That is, they do not reproduce the flexibility and
interactive nature of the original manual stereonet. Most programs provide simple

. pole plots of data and then provide contour diagrams for this data. Alternatively,
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stereonet programs permit visualization of discrete planes in horizontal or inclined
projections. The paper output can then be used manually to perform stability

assessments, for example (Priest 1983).

It was apparent to this author, that a real need existed for a computer package
which could duplicate as much as possible the interactive nature of the manual
stereonet, utilize modern graphical techniques to produce report-quality output, and
provide a direct bridge between statistical reduction of large data sets and the use of

dominant orientations in further analyses.

Other features which were seen as important in a comprehensive stereographic

toolkit, were the incorporation of an easily accessible data base from which data

could be selectively plotted and analyzed, as well as the ability to process and
visualize data attributes other than orientation such as discontinuity spacing or
seismic amplitude. These features are present in some existing packages (CANMET
1977, Golder Ass. 1979, Noranda 1989) but were found by this author to lack an

acceptable degree of flexibility and ease of use.

The decision was made by this author, based on these deficiencies, to develop a
comprehensive package for stereographic analysis of oriemtation based data. The

resulting program, DIPS, will be described in the next chapter.
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5.0 A NEW APPROACH TO COMPUTERIZED
STEREOGRAPHIC ANALYSIS

5.1 REQUIREMENTS FOR EFFECTIVE
COMPUTERIZATION OF STEREOGRAPHIC
ANALYSIS

After examining previous attempts at computerized stereographic analysis as
presented in the previous chapter and after discussions with practising engineering
geologists (Carter 1989, Wood 1989, Noranda 1989, Bawden 1989), some mandatory
requirements were established by this author for an effective software tool for data

processing. These requirements can be summarized as foilows:

-the program must utilise effective graphics.

-the program must be interactive both in preprocessing, and in data manipulation.

This would enable the program to effectively mimic the time tested manual process

of arbitrary analysis using stereonets.

-the program should support several processing, projection  and presentation

conventions in order to suit the diversified preferences of practitioners.
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-the program should permit progressive analysis of data at a number of stages from
plotting of poles, to cluster analysis and manipulation of selected distinct

orientations.

_the program should include tools for both the interactive visual processing and

analytical analysis of orientation clusters.

.the program should accommodate processing of qualitative and quantitative non-

orientation data.

.the program should be as portable and hardware insensitive as possible without

sacrificing efficiency.

.the program should include a flexible data base to permit quick screening and

selection of data as the analysis progresses.

-program input should be as free-form as possible to allow analysis of data from a
wide variety of applications. It should use primarily a row-column entry format and
should accept an ASCII data file which would permit file creation by other software

packages such as data collection programs Or industrial databases.

-the program shouid generate report guality hardcopy output.
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52 PROGRAMMING PHILOSOPHY

The Turbo - C programming language from Borland-Osborne was selected for this

project due to its superior graphics capabilities and data handling features.

Turbo - C also includes compilation modes which creates one executable program
capable of running on an XT, 286 or 386 system with or without an associated
math coprocessor. A wide variety of video graphics drivers are supported by
Turbo - C, including Hercules, CGA, EGA ,VGA and others. Again these can be
included in the executable program to permit autodetection and initialization of
many graphics system configurations. When designing software for field use, such

system portability is critical for the acceptance and usage of the product.

Many previous engineering software packages require specific system configurations
or require lengthy and complicated setup and initialization procedures. One major
goal of this project was to provide a single program, "load and run", package which

wouid be as system independent as possible. Turbo - C permits this form of

programming.

Concurrent with the development of this author’s stercographic analysis package, the
Rock Engineering group at the University of Toronto was developing a Turbo - C
graphics interface library, which it intended to incorporate into all subsequent
interface software. In order to be consistent with future programs, the system

drivers, screen layout routines and menu functions from this library (Corkum 1990)




83

which were available at the time of start-up of this project were used as a base for
development. These permitted the support of multiple video modes, mapping of real
coordinates to screen device coordinates for a variety of video configurations, mouse
support, and the generation of the basic screen design including a prompt and input

bar, drawing region, status line, and a flexible cursor key or mouse driven menu

system (Figure 5.1).

Pisplayw Info: GRID:CIRC LINE: DIPS 21
| Ttat Options

Select Data

DIPS

VERSION 2.1

COMPUTE
Track Data
List & Histo
POLE PLOT

W Departent of Civil Engineering
University of Torooto

(¢)1988 E Hoek and M Diederichs

SCATTER PLOT
CONTOLURR PLOT
MAJOR PLAMES

EXIT

The hor disclains anvw responsibils
tha cor tness of arrd data dispel |
[-Tg-2 T ] or tha consesouences r

the use thereol.

Figure 5.1: Basic Screen Layout for the DIPS package




53 DIPS 2.1
Data Interpretation Package
Using Stereographic Projection

The software package which resulted from this work is called DIPS. All of the
requirements outlined in the beginning of this chapter have been satisfied in this
authors opinion. DIPS is viewed as an interactive toolkit containing a wide variety
of features enabling the user to customize the analysis process to accommodate the
needs of the problem at hand and the user’s personal preferences regarding analysis
methodology. It was found that it was difficult, if not impossible, to find one
particular data processing format that would satisfy the requirements of enough
individual applications where orientation analysis is required. As mentioned, it was
therefore decided to provide as broad a range of analysis tools as practical in one

interactive package while maintaining the program’s ease of use.

The i:asic layout of the program and the basic programming methodology will be

described in this chapter.

53.1 Data Input

Data input is, at present, performed by creating an ASCII text file which contains
some header information and the data in column format This format was designed

to allow easy file creation by another program such as a data collection or database
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system (Noranda 1989, CANMET 1977) and to allow file creation and editing using

spreadsbeet packages, word processors or text editors. At the time of this writing, a

customized data file creation utility written in Turbo - C is planned.

The header information contains several pieces of information:

-Project titles for use in hard copy output

-Traverse information for data organization and for bias correction

-Several flags concerning the setup of the data portion of the file

-Magnetic declination data for automatic data correction

-Information regarding the number of data columns and their physical layout (order,
column title and column width).

-Comments are allowed throughout the data file if the line begins with an asterisk

or if the comment follows required information in a line.

More detailed information on the data file makeup can be found in the program
manual in appendix B. This header section contains enough wuser specified
information to completely customize the format of the data portion of the file to fit
the user’s requirements. Only three columns are mandatory - one aumerical
identifier for each row of data and two orientation parameters. Traverse identifiers
for each data unit must also be present if traverse information is to be used in the
file. A quantity column for multiple orientation measurements can be turned on or

off using a flag in the header file.

The data file can then contain up to twelve additional columns of data in qualitative

or quantitative form. For structural analysis these columns could be used to specify
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spacings, roughness, discontinuity type, etc. (figure 5.2) For seismic data these
extra columns might contain information on intensity, and directional sense of first

arrival for focal mechanism studies.

This data can be processed in a number of different ways in DIPS. It can also be
used for data subset selection and screening. These features will be discussed in a

later section.

The column widths are user specified in order to allow file creation from fixed
format column editors. The only limits on the quantity of data in a file are imposed
by system restrictions. DIPS is currently configured for a system with 640 kilobytes
of random access memory (RAM). With average concurent RAM use (mouse
driver, DOS shell and screen save utility) 7000 - 9000 rows of data may be

processed. A row of data will hereafter be termed one data unit.

In addition, since no real consensus exists on proper data notation, DIPS permits

data input using one of five formats:

-TREND/PLUNGE may be used for direct plotting of pole vectors of lineations. No

further processing is required.

-DIP/DIP DIRECTION , STRIKE/DIP (left hand rule), and STRIKE/DIP (right hand
rule) may be used for input of planar measurements. Internal processing is required

to convert these data units to pole orientations. (See table 2.1).
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The desired input format is specified using a global orientation flag in the data file
header section. For data in a particular traverse as identified by its traverse number,
a traverse orientation flag may be used to override the global flag for the traverse
involved. This is useful when combining data in DIP/DIP DIRECTION format with

data from another source which may be in STRIKE/DIP format , for example.

-BOREHOLE DIP/ BOREHOLE DIP DIRECTION may be used when inputting data
from oriented core measurements. This data is identified by its traverse number
which references a traverse type specified as BOREHOLE. The data is rotated using
the borehole reference directions and the real orientation is calculated and specified
in the global orientation format. The rotation technique is the matrix transformation
equivalent of the procedure outlined in Golder Ass. 1979. A description of input

parameters is given in the manual in appendix B.

It was intended to include a clino-rule input format. However, since the notation
and datum conventions used when measuring with a clinorule vary greatly, it was
decided that clino-rule data conversion is best done by the individual taking the

measurements in order to avoid serious error.

DIPS permits the creation of several types of output files containing information
about the original data (after processing), as well as calculated features such as
mean or representative orientations. The original data file, however, is never altered
within the DIPS program. This allows the data to be stored in a stable data base

which can not be altered by careless errors during the use of the program.
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53.2 Projection Options and Spherical Mapping

The heart of the DIPS computation and presentation algorithms is the set of
mapping routines which convert world coordinates to angular measures of trend and
plunge and vice versa. The conversion from device (ic. screen pixel) coordinates to

wortld coordinates is handled by the basic interface routines.

The angular to cartesian mapping functions are based on those outlined in Priest,
1985. The two functions WORLDTORADIAL and RADIALTOWORLD are outlined
on the following page. Note that both EQUAL AREA and EQUAL ANGLE
projections are supported. The projection type is selected from an options menu in
the DIPS package. A flag is toggled and the appropriate functions are executed by
these two routines. Since all operations involving projections and user interaction
with the screen are directed through these two routines, this is all that is required to

support both projection methods in the program.

Priest and others have outlined functions for the computer generation of other
features such as great and small circles. These involve analytical routines for
calculation of the circle centre and then the generation of arc segments for the great
circle and small circle curves. These routines are for equal angle only and are
difficult to program in a flexible fashion. The equivalent two dimensional curves for

equal area projection require complex fourth order functions to generate.
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The alternative is to map all pole points and vertices of polygon approximations of
great and small circles from the reference sphere to the projection and then connect
the vertices as required to form the projected features. The following routines from

DIPS are the mapping functions which form the basis for all projections in DIPS:

#define Pl 3.141592654
#define ROOTZ  1.414213562
#define rad(x)  ((x)/57.29577951) /*degrees to readians®/
Mdefine  ang(x)  ((x)*57.29577951) /*nadians to degrees*/

*Global flags toggled in main program®/

extern ist project_type;  /*(EQUAL ANGLE or EQUAL AREA)*/
extern iat gridradius; P (radius is 100)*/

PWORLDTORADIAL converis world coordinates (worldx,worldy) o= projection
to (tread,plunge) vector orientation®/

void worldtoradial{float worldx,float worldy,.float *tresd,float *pluage)
{

double angcheck;

if (project_type==sEQANGLE){
angeheck=(sqr{worldx* worldx +worldy *woridy){gridradias));
* pluage=(floatX(rad(90)-atan(angcheck)*2);

llse if (projeci_type=EQAREA){
angcheck=(sqri{worldx * worldx + worldy *worldy W(gridradins* ROOTZ));
if(angcheci>1.0mageheck =1.0;

» plunge=(float)(acos(angeheck)® 2-rad(90));

if (worldy!=0){

* read=(float)(atan 2(worldx,woridy))
llse{

if (worldx>=0)*tread=rad(%0);

else *trend=rad{270);

i}t' (*tread<0) *tread=(float)(rad(360)+* rend);

PRADIALTOWORLD coaverts (tread,plunge) vector orieatation to world
coondinates (worldx,worldy) or projectdoa*/

void radialtoworid(foat tresd,foat plenge,float *worldx,float *worldy)
{

float length;

if (project_type==EQANGLE){
i(((90-ang(plange))2>89.5)L&((90-ang(plonge)y2<91.5))length=1000.0;
else leagth=tan((rad(90)-plenge)/Z)* gridadius;

}
clse if (project_type—EQAREA)(
leagth=(gridradine® ROOT2)" coa((rad(90)+ plunge)/2);

!wdd:-(ﬂoatXlengﬁ‘si.(uud));
*worldy=(float)leagth* cos(tread));

f*NOTE that world coordinates are coaverted i screen pixel coondimates ( aad viee versa ) by a
second set of coaversion rowtines in the imterface (Corkum 1990)*/
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The two mapping routines on the previous page, however, eliminate the need for the
projection-specific and feature-specific functions outlined by Priest 1985. The plane
and cone intersections on the surface of the sphere can be calculated by wvector
rotations in 3 dimensional space using direction cosines, matrix transformation, and
conversion to angular measurements for a number of interval points on the curve.
These points can then be assigned world coordinates using the mapping routines
described and a polygon approximation can then be drawn on the screen. This
method is then projection independent and is very flexible. All great circles, small

circles and cluster definition windows are generated this way in DIPS.

The windows described do not require matrix rotation since they are defined by
plunge and trend limits and can be mapped directly to the screen using the
conversion routines. These are used to interactively surround pole clusters for set
definition and mean vector calculation for a given set. They can be moved and
stretched with the cursor keys or mouse in an interactive "rubber band" fashion.

These will be discussed in more detail in a later section.

Both polar and equatorial reference grids can also be generated directly by drawing
great circles and small circles at appropriate intervals using the methods described
above. If adequate angular resolution is used when generating the polygon
approximations to the great and small circles, the results are indistinguishable from
the results obtained using the arc functions outlined by Priest 1985. Since the
computer excels at tedious but simple iterative calculation, there is no real need for

computational elegance if the results are compatible.
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and c) trend/plunge windows for defining cluster limits
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533 Presentation of Multiple Data Measurements .

The Pole Plot

The simplest form of presentation in DIPS is the basic POLE PLOT. Data is read
from the file in a form specified by the global orientation flag or the traverse
orientation flag, and converted to equivalent pole orientations specified by trend and
plunge. These orientations are then directly mapped onto the projection using the
RADIALTOWORLD routine. The default plotting method involves the generation of
a simple pole symbol at the projected location of the pole. This would normally

represent the first step in analysis and reduction of multiple data measurements.

The database in DIPS can also be utilised at this stage to provide additional
information. Any one of the columns in the data file can be used to generate a plot
with symbols at the pole locations representing particular feature attributes such as
surface type, roughness or strength, or ranges of values for spacing, continuity or
seismic intensity, for example. The symbols and colours used have been chosen to
create a gradient in colour (cold to hot) and in symbol complexity. For quantitative
data, the legend defining these symbols and colours can be modified to highlight
either greater or smaller values, and to accentuate linear or log distributions.
Likewise, for qualitative data such as roughness evaluation, the symbols can be
interactively selected to highlight desired properties. The combination of pole
plotting and symbol representation permits a double purpose plot (Tufte, 1983)
where visual dominance can result either from closely spaced data points or high

intensity symbols representing undesirable properties such as high continuity. Both
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factors must be considered in assessing critical surfaces for slope stability, for

example.

Non-orientation data, loaded using the TRACK DATA option in DIPS, can also be
presented using a histogram option in the program. This can be useful when a more
rigorous examination of the data is warranted as in the case of joint spacing
evaluation. This histogram can be generated for all data plotted or for data enclosed
by a set window. This can be useful for examining, in detail, the attributes of a
particular joint set as required when performing a Q rock mass classification (Barton

1974), for example. The operation of windows will be discussed later.
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Figure 5.5: DIPS Histogram of data attributes




534 Visual Clarification of Pole Distribution

The Scatter Plot

When multiple data measurements have been taken {one data unit representing more
than one similar feature) or when a large number of data measurements has been
taken, a single pole symbol in the pole plot may conceal many actuai
measurements. A second plot is then needed to identify the number of collinear or

similarly oriented pole vectors at a given location on the stereonet.

This plot is called a SCATTER PLOT. This plot uses a square grid pattern
superimposed on the stereonet. This is the same grid which is used for contouring
pole density as described in the next section. All poles which plot within one half
grid spacing (with a square region centred on the grid point) are tallied and the
total assigned to that grid point. A symbol plot is then generated which shows the
number of poles in the immediate vicinity of each grid point. This plot gives a

clearer picture of the pole distribution.

It is important to note, however, that the symbol positions in the scatter plot are
determined by the grid point locations. Consequently, the scatter symbol positions
will differ from the pole positions in the pole plot. The scatter plot should not be
used for determination of exact orientations of features. It is only intended to clarify
the quantity distribution. The accuracy of the symbol positions in the scatter plot
can, however, be improved if a finer computation grid is selected through the

options menu in DIPS.




.Tjr{‘._

—_—
STRUCTURAL, SURVEY - DEVELOPTENT LEVELS 3800 ~ 2330

&

*« & B ¢ & 0 ¢
-
]
-
L]
-
L

Figuore 5.6: DIPS Scatter Plot

COUNTING GRID POINTS

= _|_ ——

SCATTER PLOT GRID TOTALS

POLES
=NOTE THAT NUMBERS
NEAR A POLE SYMBOL
INDICATES A MULTIPLE
MEASUREMENT. SCATTER
PLOT IS UNWEIGHTED

BOUNDING BOXES

FOR SCATTER PLOT
CALCULATION - POLES
WITHIN EACH BOX ARE
TOTALLED AT GRID POINT
AT BOX CENTRE.
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53.5 Contoured Pole Concentrations

The Contour Plot

A more statistically valid assessment of pole distribution is obtained using a contour

plot of pole density. The interpretation of such a plot is discussed in section 3.4.
The contours represent intervals of probability (in percent) of pole occurrence within

a specified angular distance of a given orientation.

DIPS features two options for coantouring pole density on the sphere. The so-called
SCHMIDT method is similar to the manual grid counting circle approach and
assumes 100 percent confidence in each orientation measurement. Each data unit
contributes either 100 or O percent of its value to a grid point depending,
respectively, on whether or not it falls within defined angular limits of the grid
vector. In the FISHER method ( so-named by this and other authors because of its
use of the probability function described in Fisher, 1953) each pole possesses an
bell shaped distribution which contributes a fractional influence on a grid point

which decreases with increasing angular distance between pole and grid vector.

Contouring in DIPS occurs on the surface of the sphere. A grid of user specified
resolution is generated which is square when projected in two dimensions. This is to
facilitate efficient generation of the continuous interpolated screen contours. These
grid points are converted to unit grid vectors in three dimensional space using the
WORLDTORADIAL mapping routine. The angular distances between grid vectors

and pole vectors in the data set are then used to calculate concentrations. In order
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to optimize the computation process, DIPS calculates grid contributions at all grid
points for each successive pole in the data list, rather than cycling through the pole
list for each grid point. The DIPS approach is optimized by processing only those
grid points within an angular distance as specified by the counting circle radius.
Only a small row/column defined cluster of grid points needs to be considered for

each data unit. This greatly reduces the computation time required.

After mapping the grid points onto the sphere, the next step is to compute the cone
angle, P, represented by the radius of the counting circle. Figure 4.5 illustrates this
relationship. The default area of the counting circle is 1 percent of the area of one

hemisphere. The user may alter this area if desired.

Each pole vector is converted to equivalent direction cosines. Each grid vector is
also expressed as direction cosines. The dot product of the pole vector with each

successive grid vector yields the cosine of the angle between them.

In the Schmidt method, if this cosine is greater than cos B, the grid vector is within
t the cone corresponding to the counting circle centred on the pole vector. The grid
' point concentration is therefore incremented by the value of the pole (unity or
: greater if multiple measurements are represented or if a weighted contour is being

. calculated as described later in this sectiom).

f If the pole is within an angular distance B of the stereonet perimeter, it wiil bave
t an influence on grid points on the other side of the net. DIPS must then repeat this

| process using the negative pole vector.
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In DIPS, for greater memory and computational economy, only one quadrant (north-
east) of grid information is stored in an array. Each grid point has four
concentration values corresponding to the symmetrically associated grid locations in
the other three quadrants. There are also redundant grid points in the upper right
comer of the grid array which are an artifact of the row-column indexing of the
grid. Since only neighbouring grid points are processed for each pole, these

redundant grid points pose no extra computational overhead.

The user can select between SCHMIDT and FISHER distributions for density
contouring. As discussed, the Schmidt distribution is analogous to a cylinder on the
surface of the sphere and centred about the pole vector. The density contribution to
each grid point inside the cylinder’s radius is given by the height of the cylinder.
This height is unity for a single unweighted pole but can be a greater integer or
rational value. The same analogy applies to the FISHER method used in DIPS,
though in this case the height of the distribution surface above each grid point
varies with angular distance from the pole. This distribution is based on the

equation for a normal distribution on 2 sphere:

PO =  v<=0dg (eq.5.1)

where:

c
[

(Ksin®)/(e-e*)

This equation can be thought to represent an assumed distribution of probable error

inherent in the measurement of the orientation in question. In this context, the above

equation expresses the probability that a measured orientation actually represents a
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true orientation which is an angular distance of between & and 6 + dO& of the

measured (recorded) vector.

In DIPS, the constant K is calculated such that the value of the probability function
has a value equivalent to 5% of its maximum at a distance P corresponding to the
cone angle of the counting circle. In other words, the counting circle represents the
95% confidence limit of the Fisher distribution. The function is truncated outside

this limit.

If this truncated function defines a distribution over the surface of the reference
sphere, the volume under the surface, enclosed within an equivalent and partially
overlapping counting circle centred on a grid vector, can be calculated by numerical
integration. The ratio of this volume compared to the total volume under the
distribution curve defines the contribution of the pole to the concentration total for
the grid point. It can be seen that while the new distribution, formed by plotting
these integrated and normalised volume ratios with respect to the distance between
pole and grid vectors, extends to an angular distance of 2f from the pole centre, the
total volume is equivalent to a Schmidt cylinder (radius=f) of influence for the

same pole.

Since the grid totals are now normalized with respect to the total volumes under
each pole distribution, the grid totals are merely divided by the total number of
poles (or total quantity or weighted total represented by ail the poles in the data
group) to calculate the densities in percent. The derivation of the FISHER method

used in this program is outlined in appendix A.
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Figure 5.11: Calculation of influence contribution on sphere

The repetitive calculation of the influence contribution for each pole - grid
combination would be extremely expensive. Fortunately, it was found that the ratio
of contributing volume (for a given grid - pole separation ,E) to total volume for a
pole was independent of counting circle size when compared to the associated ratio
of the dot product, cos E, of the grid and pole vectors, to cos § (where B is the
cone angle of the counting circle). This permitted the calculation, in advance, of
influence ratios for a set of 50 intervals of cos E / cos B. This list is then stored in
an array, and the actual values as required are interpolated from this list. This

greatly improves the efficiency of the Fisher counting algorithm without sacrificing

measurable accuracy.
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FISHER PROBABILITY FUNCTIONS
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Figure 5.12: Fisher probability functions for varying counting angles, §
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Figure 5.14:Two & three pole testing and comparison of Schmidt and Fisher

density calculation.
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53.6 Terzaghi Weighting

When performing the contouring calculations described the resultant influences are
multiplied by a quantity value for a given pole. This value can be unity for a single
unweighted pole, or a user specified value, corresponding to a number of similar
features represented by one measurement. This quantity can also be multiplied by a
weighting factor to compensate for measurement bias against planar features which

are subparallel to the outcrop surface where the measurements were made.

These weights are calculated when the data file is loaded. The traverse number for
each data unit references a particular traverse orientation. The angle between the
line or surface of the traverse and the feature in question is calculated in one of

two ways and used to calculate an appropriate weighting factor.

The weighting is calculated as:

A iceom = COS(pole trend)-cos(pole plunge)
Aicen = Sin(pole trend)-cos(pole plunge)
A iedown = Sin(pole plunge)

For LINEAR traverses:

Aeweoms = COS{(traverse trend)+declination)-cos(traverse plunge)
Ao = sin((traverse trend)+declination)-cos(traverse plunge)
Avdowa = SiD(traverse plunge);

For PLANAR traverses:

Aemvoons = COS((traverse normal trend)+declination)-cos(traverse normal plunge)
Mvew = sin((traverse normal trend)+declination)-cos(traverse normal plunge)
Arvdowe = Sin(traverse normal plunge);

A = cosine of angle between pole and fraverse orientation or
traverse normal (dot product)

A = pole-traverse =hny o Mocws + Aev-cots Ppoiecane Mm%am
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w = weighting applied to the pole for weighted contouring
and mean calculation

For LINEAR traverses:
w= 1/A
For PLANAR traverses:
w= 1/¥(1-A)
NOTE that in the above cases, w — @ as A — 0 for a LINEAR
traverse and as A — 1 for a PLANAR traverse, This is avoided by
specifying a lower or upper limit, respectively, on A. For a LINEAR
traverse in DIPS this limit corresponds to the sine of a user specified
minimum angle. For a PLANAR traverse, the maximum A is
equivalent to the cosine of this minimum angle.
Density contributions calculated by the Schmidt or Fisher method for given pole -
grid vector combinations are multiplied by this weighting, w, and added to the grid
point total. The individual grid point totals are then divided by a weighted total for

the whole population to obtain the percentage density values plotted.

Because the weighting tends to infinity as the traverse and planar feature become
parallel, a limit can be set by the user for minimum angle and therefore, for
maximum weighting factor. In addition, since judgement and care is required when
using a weighted plot, both unweighted and weighted concentrations are calculated
at the same time. Both plots can be instantly generated and compared. If a high
concentration appears in the weighted plot, but is totally absent in the unweighted
plot, it is advised that the user interpret this cluster with caution. A single
measurement which closely parallels the traverse can take on an exaggerated
importance in the weighted plot (figure 5.19). The user must decide whether such a
measurement warrants serious consideration without the backing of other similar

measurements.




55.7 Contouring the Grid Values

Once the weighted and unweighted grid point densities have been calculated, the
grid values are assigned to the associated projected points on the stereonet overlay.
This square array of values is then contoured using linear interpolation in two
dimensions to generate the continuous contours shown in figures 5.14 - 5.15. A
simple line contouring routine (Bourke 1987) is also used to generate line contour

plots if desired. The line contour plot is shown in figure 5.16.

SURFRCE STRUCTURE SURUVEY -~ OFEN FIT 3LOPE

S

Figure 5.15: DIPS colour contour plot ( same data as manual plot in fig 3.14 )
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Figure 5.16: Stippled contour plot ( data from Wallach 1990 )
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Figure 5.17: Line contour plot ( data from De Azevedo 1990 )




111

COMPARIION BETHUEEN FISHER AND SCHMIDT METHODS CONTOUR PLOT

.44 SCHRIDY POLE
CONCEN

% of total par
i A s 1)

kS
>
*
 J =
7
k3
*

AAAA»\AAA‘E

CONMPARI SON BETHEEN FISHER AND $CHNMIDT HETHODS

34 POLES
3 EMTRIES
MO BIAS
CORRECT 1 Ot

FISHER CONTOURS

Figure 5.18: Comparison between Schmidt and Fisher density contours
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53.8 Reduction of Data to Dominant Orientations

The DIPS contour plot permits effective visual analysis of orientation patterns. Once
clusters of data have been identified, DIPS provides two methods of reducing these
to representative orientations. The first follows a methodology similar to the manual

method.

The LOCATE POLES option allows the user to select with a cursor (using the
cursor keys or the mouse), distinct orientations from the stereonet. The density
contours can be used, for example to select the direction of maximum pole density
within a cluster as the representative orientation. Certain individual features such as
continuous faults can also be singled out in this way for special consideration. The
orientations of any features can be interactively resolved using this cursor. As the
cursor moves about the screen, the corresondilig orientation is instantaneously

displayed on the upper status line (fig 5.20).

STRIKE/DIP-R: 062/84 GRID:CIR

Figure 5.20: Screen cursor and orientation readout in DIPS
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The SET WINDOWS option in DIPS is somewhat more sophisticated. Using the
cursor, the user can interactively enclose an entire data cluster within a ‘rubber-
panding’ window. Once the window limits are confirmed, the data within the
window limits (specified as a ranges of trend and plunge) are assigned a set
number. The mean pole within the window is calculated automatically. Both
weighted and unweighted poles can be calculated and plotted, along with their

equivalent planes.

The method used in DIPS involves simple vector addition of all pole vectors within
the window. The resultant vector (calculated from the component sums of pole
direction cosines) is then normalized with respect to its magnitude to yield a mean
unit pole vector. For weighted means, the scalar weight for each pole is multiplied

by each of the pole’s direction cosines before inclusion into the vector summation.

Zenith

[ .
— - 9 POLE VECTORS IN A
H ] CLUSTER
\ NORMALIZED-\
\MEAN VECTOR\ \\' /
% A
NN
'S, VECTOR ADDITION
LOWER HEMISPHERE \, “._ AND RESULTANT
\,
e b
. <
~ N
~ W
~. N

Figure 5.21: Mean vector calculation
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Figure 5.22: Mean calculation near equator

The ‘rubber’ window in DIPS is allowed to wrap around to the other side of the
stereo net as required. Poles in this wrapped portion of the window are assigned a
negative indicator flag. When calculating the mean vector for a wrapped window,
these flagged vectors must be converted to their negative normal counterparts (ie.
their direction cosines must be multiplied by -1) before summed with the rest of the

vectors. This insures a correct mean for a set of sub-horizontal poles.

The vector addition method was chosen for its simplicity and ease of user
application. In the future, an external post-processor may be developed which will

utilise eigenvector methods to allow more complex cluster analysis. For most
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applications and user requirements, the method used in DIPS was deemed to be

sufficient.

:
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Figure 5.23: DIPS windows and calculated mean planes

The set numbers assigned to the data within a window may be used internally, for
the creation of joint-set-specific histograms for various feature attributes (figure
5.24). This is useful when performing a rigorous Q classification (Barton 1974), for
example. Files may also be written to disk which contain processed orientations,
bias correction weights and set numbers. These can be easily incorporated as input
to additional packages such as visualization tools or block size and geometry

analysis packages (Peaker 1990).
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539 Manipulation of Distinct Planes

DIPS permits plotting of selected and calculated orientations on a separate plot if
desired. The planes are generated using the vector rotation method described earlier

in this section. A legend can be generated giving the exact orientations represented.

A number of tools may be used with any of the various plot options described.
Those most useful at this stage include the polar and equatoriai grid overlays. The
equatorial grid may be plotted at any meridian trend to illustrate a variety of
relationships. DIPS also allows the plotting of small circles centred about any
orientation on the stereonet. These are useful when performing stability assessment
on the DIPS stereonet. In addition a rubber-band great circle may be moved
throughout the stereonet and may be combined with a pitch or apparent dip grid for
visual assessment of such relationships as the angle between intersecting pianes (fig.
5.25). As discussed earlier, the intent of these and other interactive graphical tools

is to mimic the flexibility of the original manual stereonet method.

Any or all of the data, as well as the selected distinct orientations may be rotated
about anmy arbitrary axis. This is particularly useful for generating inclined
hemisphere projections (fig. 5.28). These projections are identical to the lower
hemisphere stereonet discussed throughout this work, with the exception that the
stereonet equator is no longer horizontal. The inclined hemisphere is used for
assessment of free wedge formation in inclined excavation backs or sidewalls (Priest

1980).
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Rotation of data can also be useful for comparing different data sets which may be
geometrically similar but sympathetic to a folded bedding, for example. Rotation of
the data in one set by the relative angle of folding may confirm suspicions that the
data sets are similar and allow prediction of geometries farther along the fold

(Carter,1989).

Several features in the DIPS package are illustrated in the following figures and

more are described in detail in the manual in appendix B.

[TRENO/PLUNGE:  230-44 GRIDICIAC  LINE:= OFF FILE: MAIOR PLANES

SELECY. . . .ENTER”
POLE L-MOUSE
Grid togelw...Fi
Grid resst....F2

S tereonst, .ALTF2
Lire fix/wouva.F3
Lira topple...F4
Sava line. .ALTF4

Pltch erid.ALTFS
Drav sasll....Fé
cone

Lagwnd —->. . ALTF?
<= MHalp

Delata 211....F8

> Hove cursor {(mouse Or arrow keys) to locste pole.

Figure 5.25: Solution for angle of intersection for two planes using rubber
plane and pitch grid options.
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DIP/DIP DIR.: 337233 GRID:CIRC LINE:= OFF FILE: BOREHOLE
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Figure 5.26: Small circles used to solve true orientation of marker bed from
unoriented core.

Figure 5.27: Kinematic and stability study using small circles
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Figure 5.28: Inclined hemispherical projection using rotate data option (data
from fig 5.23)

53.10 The DIPS Database

One of the unique features of DIPS as a integral stereographic analysis package is
its easily accessible data base. Any of the columns in the data file may be used in
parallel, to filter and select, from a main data file, a subset of data which meets any
combination of selection criteria. This can be useful for assessment of structural
~ domains. All measured data from a project may be stored in 2 single data file and
subsets corresponding to spatial locations or rock domain, as examples, may be
. interactively selected and plotted. The example in figure 5.29 illustrates how subsets

comresponding to spatial location and rock type yield different structural domains.
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Figure 5.29: Structural domains revealed through data screening ( data from
fig 5.2)
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This database may also be used to filter data according to joint continuity- or
aperture, for example. If the data set is difficult to interpret, such filtering may be

necessary in order to assess dominant structure.

The data base also allows local assessment of structure from a mine-wide data base.
Such databases are becoming more common in canadian mining practice (Noranda

1989).

53.11 Hard Copy Output

It was decided early in this and other software development projects at the
University of Toronto, that it was not the mandate of the group to invest a great
deal of time developing printer drivers for the vast array of different printers on the
market. Instead, it was seen as more efficient to prepare the screen in a fashion
which would allow a screen dump to a printer or file using commercially available
utilities, Pizzazz Plus by Applications Techniques Incorporated is one such utility
and the one most commonly utilized at the time of this work by the group at the
University of Toronto. This utility, and others like it, support a wide variety of

printers and screen graphics cards.

DIPS has HARD COPY options in all of the plot menus. This option prepares the
screen with titles and a legend. This display can then be captured by a print screen
utility. The screen display can be printed directly to a printer or saved to a file

which can be imported by a word processing package.
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A file creation option has also been created which writes the plots and associated

legend information to a Drawing Exchange File (DXF) which can then be imported

by AutoCad (A computer aided drafting and design package by AutoDesk). AutoCad

supports a wide range of plotters and printers and can be used as a picture editor to

customize DIPS plots to fit company forms for example. The screen capture plots

can be seen throughout this work while examples of DXF output are shown in

figures 5.30 and 5.31.
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Figure 530: ACAD output using DXF file creation with DIPS
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126

6.0 CONCLUSION

The main objective of this project was not to merely improve on the static
presentation tools previously developed using spherical projection, nor was it an
objective to create a black box statistical analysis tool for orientation data. The
primary goal was to bring to the computer environment the interactive and
illustrative nature of manual stereographic analysis, and to create am integrated
package which would permit varying degrees of subjective as well as computational

analysis through most phases of orientation analysis.

Although the background of the author dictated a design philosophy influenced by
the requirements of engineering structural analysis, it was also felt that such a tool
should accommodate any application in which orientation formed an important
. component of the data base. Within each field of application, it was felt that no
preferred conventions existed among practitioners regarding either input format, data
| notation, or desired presentation style. A computer package would have to take the

form of a toolkit and be as flexible and as robust as possible in these regards.

. By utilising the computation power of the computer, it was felt that any simplifying
approximations in the manual method, such as fixed and inaccurate statistical
counting windows for density contouring, as well as errors introduced by contouring
on the two dimensional projection, could be efficiently eliminated by performing all
calculations in three dimensions on the surface of the reference sphere, using the

jection only for presentation.
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Since visualization is a major advantage of stereographic analysis, any package
created during this work would have to utilize up to date computer graphics and
animation techniques wherever possible both for interactive analysis and final report

quality presentation.

Finally, it was the opinion of this author that the package should be able to treat an
input file as a database from which data could be selectively screened to
interactively retrieve user defined subsets for analysis. This data base would also
have to accommodate non-orientation data associated with each data unit. This

additional data could then be analyzed in various ways in addition to orientations.

The program DIPS, developed as part of this work at the University of Toronto,
satisfies all of these initial criteria. The program has gained wide acceptance
internationally as both an educational and practical engineering tool. Feedback from
a wide variety of users regarding the interactive and graphical format of the
program indicates that most of the authors initial objectives have been adequately

metL
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6.1 FUTURE DEVELOPMENT

At this stage, it is the feeling of the author that any further additions to the DIPS
package within the main program would only increase the complexity of the
working environment and would take away from the "user-friendly" nature of the
program. Future enhancements to the program would therefore be more desirable in

the form of add-on modules.

One desirable addition would be a customised data input program for DIPS file
creation. This would eliminate the need to use a third party program for creating
data files. This was originally thought to be an important component of this work,
with the cumrent system considered an unnecessary bother. It seems, however, that
most users have been accustomed to storing their data in files created by
commercial spreadsheet programs or ASCII editors. Others have developed
customised electronic databases as part of their own systems. The free format of the
text input file has permitted easy adaptation to systems already in place. This input
module is, therefore, deemed less vital to the package then it was originally thought

Such a tool would, nevertheless, be a useful addition to the DIPS package.

Once data ciusters have been delineated by the user, it may be desirable to perform
more complex analyses on the individual sets. Examples of such applications can be
found in Peaker 1990, Zanbak 1977, Fisher 1953, Markland 1974, and others. There
has been some limited demand for a statistical post-processor as part of the DIPS
package, primarily from academic users. The simple mean vector calculation

performed within DIPS was deemed to satisfy most field requirements. A more
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sophisticated external module could be created, which would accept a processed
output file from DIPS. Such a file can aiready be created and has been used for

rigorous statistical processing of orientation and spacing data for joint sets (Peaker

1990).

The author intends, at a later date, to incorporate DIPS as a pre-processor for a
statistical rock block analysis and structure visualisation package for underground
excavations. At the time of writing, suitable keyblock analysis codes (Shi and
Goodman 1990) are being evaluated for incorporation as an integrated support

design tool for blocky ground.

The free format input and output files for DIPS have been designed to facilitate
incorporation into other systems without the need to alter the internal coding of the
DIPS program. The program in its present form should be adaptable to a wide

variety of applications as they become available.
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APPENDIX A

DERIVATION OF FISHER INFLUENCE FUNCTION

S8 Leet ol et




DERIVATION OF SCHMIDT COUNTING CIRCLE CONCEPT

REFERENCE SPHERE

.-—'-'_'_'_'_._.__—-_\_\_‘_\_‘—hn.

T

IN ARBANGEMENT AT RIGHT, THE POLE
VHICH 13 COINCIDENT ¥ITH THE CENTRE
OF COUNTING CORCLE A, HAS A 106 X

OF FALLING WITHIN CIRCIE A
AND B AND A 0 %X FPROBABIUTY OF PALLING
WITHIN CIECLE C.

SCHMIDT 0D ASSUMES |

MY TH! PROBABILITY THAT THE
ACTUAL POLE POSITION IS l'l' m'r VHICH was

ON SURFACE OF REFPERENCE SPHERE:

EQUIVALENT DERIVATION OF FISHER CONTOURING CONCEPT

FOLE VECTOR

IN ARBANGEMENT AT RIGHT, THE POLE

A PROBANTLITY BETWEEN 0 and 300 X OF
FALLING IN CIRCIES B OR C AND 0 %
PROBABILITY OF FALLING IN 0.

IS
DIIS'I'AICI mlmnnsumrom(uu mcnm
[ I3 CENTRED

CIRCLE LIMIT IS THE
98 X CONFIDENCE LIMIT. THIN MUST BE DONE SINCE THE ACTUAL
DISTRIBUTION COVERS THE WHOLE SURFACE OF THE SPHERE.

NOTE THAT THR DISTRIBUTION IS TRUNCATED AT THE COUNTING
PERIMETER AND

ON SURFACT OF REFERENCE SPHERE:

FOLE FOSTITION




GIVEN A MEAN POLE ORIENTATION AT ¥ = 0 DECREES

¥ = THE PROBABILITY THAT THE ACTUAL POLE POSITION IS BETWEEN
@ & @ + &0 FROM THIS MBASURED POSITION ( ASSICNED MEAN ORIENTATION )
) = (_‘__)exmw)w
4 7 sinh( X )

TO DERIVE THE INFLUENCE FUNCTION, FIRST SOLVE FOR K FOR A GIVEN
COUNTING CIRCLE CONE ANGIE 8 :

T PO
i L+ I"l._
P(B) _ g05 PLO)
/—;ﬁ——‘"——-—-—hﬁ__ dg d g
“%__H—_—__TD* P(g )

COUNTING /
CIRCLE , / (%ﬂ K con { )
{coxEI ANGLE ,M B ¥ ) = 0.05
B : ( E X contQT
/ mnb{ K ) €

.."ll . Kcos(B - 1) = gos5
;’ K = In{ 0.05)
/ cos( B- 1)

S

NEXT NUMERICALLY CALCULATE TOTAL VOLUME UNDER DOME CORRESPONDING TO
100 Z PROBABILITY OF OCCURANCE WITHIN A ANGULAR DISTANCE OF £ FROM THE
MEAN POLE.

STy

P

/:- Ilk\dtp p=8
/@/h 2[( _).xeco],
4 1 sink{ X )
p=0

PR A R L P




T

NOW DERIVE THE PROBABILITY THAT THE ACTUAL ORIENTATION
WILL BE SOME ANGULAR DISTANCE ¢ AND SOME ROTATIONAL
ANGLE a FROM THE MEAN POSITION:

[:' K’

| K
# F = — K da
\,H__'f,-' (¢.a) (411- sinh(!()) el K con®) do 2w
K
P = f__ > K com {a)
( ¢,G) (8 Trzainh(i(’) e( ‘P) d¢da

CALCULATE THE VOLUME UNDER THE PROBABILITY DOME WHICH FALLS
WITHIN A COUNTING CIRCLE (RADIUS § ) CENTRED ON A GRID POINT
SOME ANGULAR DISTANCE ¢ FROM THE POLE POINT:

/

AN

GRID POINT
COITING CIRCLE

THE NUMERICAL SUM OF THE VALUES OF P
IN EQUATION a ABOVE FOR ALL INTEGRATION
POINTS (g a ) WHICH FALL INSIDE OF THE
GRID Poﬁof COUNTING CIRCLE.

THIS PARTIAL VOLUME DIVIDED BY THE TOTAL
VOLUME OF THE FISHER DOME AS CALCULATED

ON THE PREVIQUS PAGE YIELDS THE PROBABILITY
THAT A POLE WITH MEASURED ORIENTATION AS
SHOWN WILL ACTUALLY FALL WITHIN THE GRID
POINT COUNTING CIRCLE. THIS IS THE VALUE WHICH
IS ASSIGNED TO THE GRID POINT FOR EACH POLE
INSTEAD OF THE 0 OR 1t VALUES IN THE SCHMIDT

METHOD.

THE PROBABILITY VALUE YV, / V CAN BE SHOWN TO
BE INDEPENDANT OF THE VALUE OF § WHEN
REPRESENTED AS A FUNCTION OF THE RATIO £/8 .
THIS RELATIONSHIP SHOWN BELO¥ IS THE BASIS FOR
THE CALCULATION OF INFLUENCE IN DIPS. ACTUAL
VALUES ARE INTERPOLATED FROM A STORED SET

‘OF VALUES SHOWN BELOW.

Applied weighta to grid points

c.§ =
€
i3l 2.8 -
2 ““
> Q.7 - |
5 L
E 0.6 = |
= \
E i |
i 0.8 \ |
, |
E..’-‘ 0.4
]
3 0.3
a

0.2 4

0.1 =

o ——a —
6 0.2 0.4 0.8 o8 1 1.2 14 1.8 1.8 2

) {polm=-grid mporation)/(counting angla)
o Faher weigitting —— SchArmdt weighting






