
 

 
 

1 INTRODUCTION 

There are two approaches for solving the equilibrium equation in an elastic domain using the 
BEM: direct and indirect. In the direct formulation, an appropriate Dirac-Delta function is used, 
and the weak form of the equilibrium equations is derived by employing the divergence theo-
rem. In contrast, the indirect formulation uses a singular solution that satisfies the governing 
equations over the boundaries of interest, such as the free-space Green functions (Banerjee and 
Butterfield, 1981). In this paper, the indirect formulation is used to calculate the stresses and 
displacements on the surface as well as at any point within the domain. Geomechanics software 
has typically been based on constant indirect element formulations. However, with constant el-
ements, a fine mesh is required to obtain high accuracy near the boundary (Beer and Watson, 
1992). To overcome this issue, Vijaykumar et al. (2000) introduced the general node-centric 
method, which provides a higher degree of accuracy using a lower number of elements. In the 
node-centric method, a linear triangular element is defined, and the nodes are placed at the cor-
ners of each element. This technique not only satisfies the continuity of displacements and 
stresses along the surface, but also accounts for the variation of unknowns within an element. 
To generalize this method, a special integration algorithm was introduced that captures the sin-
gular and near-singular cases (Vijaykumar et al., 2000).  

 In this paper, we extend the node-centric indirect method to 3D multi-material rock prob-
lems. Hence, we create a set of double-layer elements on each material boundary to satisfy the 
equilibrium equation and the continuity of displacements along the boundary. We verify the 
new approach with several examples, and the results are in good agreement with the analytical 
solution and other numerical methods.    
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ABSTRACT: An indirect formulation for the boundary element method (BEM) has been used 
in a variety of linear elastic infinite domains containing joints, faults, and excavations. The dis-
placement discontinuity (DD) method is employed to describe the behaviour of joints, while the 
boundaries of excavations and tunnel surfaces are modeled by fictitious elements. In this work, 
the node-centric indirect BEM is employed, where linear triangular elements are used to discre-
tize the domain, and nodes are assigned to the corner of each element. In this paper, the applica-
tion of this approach is extended for multi-material domains, where a double-layer element is 
defined on the material boundaries. This method captures the behaviour of each zone inde-
pendently of the rest of the domain and is compared with several numerical and analytical 
methods and found to be in good agreement. 



 

2 METHODOLOGY 

In this section, we give a brief overview of the mathematical formulation of node-centric in-
direct BEM and present the special integration required to capture the singular cases (Yacoub, 
1998). We then discuss in detail the proposed approach for modeling the multi-material domain. 

2.1 Mathematical formulation 

Proposing the use of a general indirect BEM in geomechanical problems requires capturing 
two behaviour in the domain, one dedicated to displacement discontinuities in rock joints and 
the other to continuities in the response of material boundaries, such as tunnel surfaces. Deriv-
ing a mathematical framework for each of these cases requires a single solution that calculates 
the displacement field ( )u  at interest point ( )qx  owing to an applied concentrated load (e ) at 
any point within the domain ( px ), as shown in Figure 1 below, that can be written as: 

( ) ( , ) ( )p qqpi ij ju x B x x e x=    (1) 

 

Figure 1. Schematic position of the interest point xp and the triangular element  

Here, 
ijB  is the second order tensor and is calculated for both the formulation of indirect DD 

and fictitious cases (Banerjee and Butterfield, 1981, and Vijayakumar et al., 2000). By obtaining 
the displacement field, strain and stress can be presented as: 
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By applying Hook’s law, one can write: 

( ) ( ) ( , ) ( )ij p ijkl kl p ijk p q k qx D x G x x e x = =                   (3)  

where 
ij  is the stress tensor, 

ijklD  is the fourth-order tangential stiffness operator tensor, and 
the third-order tensor G is the Green function (Crouch and Starfield, 1983). In addition, the trac-
tion on the surface it  with the normal direction n, as shown in Figure 2, can be obtained by us-
ing Equation (3) as: 

( ) ( , ) ( )i p ij j ij p q j qt x n K x x e x= =                      (4) 

In a discretized domain, instead of a concentrated point load ( )pxe , we can assume its linear 
variation over the triangular element, i.e., ( ) ( ) k

i k ie x N x = , where N is the linear shape func-
tion associated with each node and 

k

i  can be interpreted as the ith fictitious component associ-
ated with the kth nodal concentrated force of each element.  

 
Figure 2. Different boundaries of the domain 

By applying the above relation to Equations (1) and (4), one can obtain displacement and 
traction as: 
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in which   defines the boundaries of the domain.  

Consequently, in a numerical perspective, according to the traction and field points applied to 
the domain and the boundary conditions of the problem, we can use the matrix form of the 
above relation to obtain the unknown nodal values  . By calculating the unknowns, displace-
ment at any point in the domain and on the boundaries can be found by using the first relation of 
Equation (5) above. It should be noted that taking the integration of Equation (5) requires spe-
cial techniques such that Green’s functions are unbonded at a singular point. While the point lo-
cated at px  has enough distance from the element surface, the integration can be performed 
with an appropriate number of gauss points. However, if the point is in a close distance from the 
element (near-singular case) or located exactly on the edge or the surface of the element (singu-
lar case), an innovative numerical technique, proposed by Vijayakumar and Cormack (1989), is 
applied to calculate the integration. In this method, for the singular or near-singular conditions, 
by employing the divergence theory, the integration over the area of an element would be trans-
formed to the edges of the elements. As explained by Vijaykumar et al. (2000), by applying this 
methodology to Equation (5), displacement and traction would be represented by a set of 
boundary functions instead of by Green functions as introduced earlier.  

2.2 Modeling of multi-material domains 

As mentioned above, Equation (5) is presented for an infinite homogenous elastic medium. 
However, modeling multi-material domains is unavoidable in geomechanics. In this paper, a 
new formulation of the node-centric BEM is presented to model multi-material domains. Let’s 
consider the domain shown in Figure 3(a) below, containing two different material zones with 
associated material properties. The normal direction of elements in each zone is facing inward. 
The basic assumption here is that the continuity of material boundaries, i.e., the total displace-
ment, is the same on the boundaries of the zones, hence, the fictitious elements are used to de-
fine material boundaries. In addition, due to equilibrium, the summation of tractions on the 
boundary surfaces is assumed to be zero.  

  

 

Figure 3. (a) Double-layered element on the boundary, (b) Master-slave nodes at the corner of a multi-

material domain 

Consequently, for any node on the boundary, there is a conjugate node in an adjacent zone. 
By assuming one of these nodes as master (superscript m) and the other one as slave (superscript 
s), one can write: 

0, 0m s m s

i i i iu u t t− = + =    (6) 

noting that both ui and ti are given in Equation (5). The above relation can be applied only to the 
nodes on the material boundary surfaces. However, Equation (5) would be applied to the rest of 
the nodes of each zone. In a schematic view, the final form of stiffness matrix for the domain 
given in Figure 4 below (Banerjee and Butterfield, 1981) can be presented as: 

(a) (b) 



 

Figure 4. Matrix form for solving system of equations in bi-material domain 

In general, multiple zones might intersect, as shown in Figure 3(b). As can be seen, for the 
nodes on the corner, there is not a unique conjugate node to satisfy Equation (6) above. There-
fore, this relation should be modified to handle this type of problem. In this case, one of the 
nodes on the corner is assumed to be a master node, and the rest are considered slave nodes. 
Since the displacement for all these nodes are the same, we have: 

( ) 0, ( 1 )m s j

i i su u j ton− = =    (7-a) 

where ns is the total number of slave nodes. On the other hand, with regard to equilibrium, the 
summation of all traction at this point is assumed to be zero, i.e., 
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The accuracy of this methodology is presented in the following section through comparison 
with examples of several numerical and analytical methods 

3 NUMERICAL INVESTIGATION 

3.1 Tunnel in a three-layered soil 

The first example is a model of a tunnel in a three-layered soil under confining field stress, as 
shown in Figure 5(a) below. This example was presented by Shou and Napier (1999) to investi-
gate the stress distribution around the tunnel for five different cases. In the first case, the tunnel 
is surrounded by two weak layers where the module of elasticity of the middle layer, E2, is 100 
times greater than the other layers. However, in the last case, the middle layer is the weaker one, 
in which E1/E2=0.01. In the following, the ratios of material properties are given for all cases: 

1: 1/ 2 100 2 : 1/ 2 10

3: 1/ 2 1.0 4 : 1/ 2 0.1

5 : 1/ 2 0.01

Case E E Case E E

Case E E Case E E

Case E E

= =

= =

=

  

The radius of the tunnel is assumed to be 1.0 m, the distance from the tunnel’s center to the top 
layer (c) 2.0 m, and the module of elasticity of the middle layer 50GPa.  

 
 

Figure 5. (a) Geometry of tunnel in soil, (b) 3D surface mesh used in BEM 

(a) (b) 



 

The 3D mesh used for the BEM simulation is provided in Figure 5(b). The top and bottom 
layers are defined as double-layered elements in order to define the material boundaries. The 
horizonal field stress is applied to the domain and the normalized tangential stress around the 
tunnel is calculated. The obtained results are plotted in Figure 6 below and compared with the 
proposed results by Shou and Napier (1999), showing very close agreement. In Figure 6, the re-
sults calculated by the BEM are shown with a marker and the given results from literature are 
shown with a line. It can be observed that a higher tangential stress is obtained where the sur-
rounding layers are stronger while, for the case of weaker layers around the tunnel, lower tan-
gential stress is as expected. 

 
Figure 6. Variation of tangential stress around the tunnel in different angles for all five cases. 

3.2 Settlement in a multi-layered soil 

In the second example, the settlement of a three-layered soil under surface traction is exam-
ined. The geometry of the example is given in Figure 7(a) below. The stiffness of the top to bot-
tom layers are 50, 30, and 10 MPa, respectively. There is a circular footing with the radius of 
5m, and the magnitude of 1MPa is applied on the surface.  

 

 

Figure 7. (a) Geometry of the three-layered soil, (b) 3D surface mesh used in BEM analysis  

The total deformation is compared with the results obtained by Boussinesq’s solution for 
multi-material domain provided in Settle software. The 3D surface mesh for the ground and 
boundary layers are given in Figure 7(b). According to the external load applied to the surface, 
the unknown nodal values   can be obtained. By finding these unknowns, the displacement on 
the surface and at any arbitrary field point can be calculated. In Figure 8(a), the vertical dis-
placement is presented under the applied load. As can be seen, the continuity of deformation be-
tween layers is satisfied. 

(a) (b) 



 

 

 
Figure 8. (a) Vertical displacement on field point in three layers, (b) Variation of vertical deformation and 

comparison with Settle software 

To compare the accuracy of the results, the vertical displacement beneath the loading surface 
is determined for the proposed technique and Settle software, as plotted in Figure 8(b) above. As 
can be seen, very similar results are obtained, which demonstrates the ability of the node-centric 
BEM to solve multi-material domains. 

4 CONCLUSION 

In this paper, the indirect node-centric BEM has been formulated to solve the multi-material 
elastic domains. In this technique, double-layered elements are introduced on the material 
boundaries while the normal directions are pointing to their relevant zones. By incorporating the 
continuity of displacement and satisfying the equilibrium for the nodes on double-layered ele-
ments to the general equilibrium equation, the stress distribution and deformation in the domain 
were obtained. Since the elements in node-centric methods are sharing nodes, the results are as-
sumed to be smooth and averaging is not required, which leads to more accurate results and 
saves computational time on calculation of the matrix. The accuracy of the proposed technique 
was examined through comparison with other numerical methods, and very similar results were 
obtained. This makes the indirect node-centric BEM technique a very good candidate for solv-
ing 3D elastic domains. 
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