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ABSTRACT: This paper focuses on the application of a continuum-based method in the Shear Strength 
Reduction (SSR) analysis of the stability of jointed rock slopes. In order to take into account the jointed 
nature of the material, the Finite Element Method (FEM) is formulated based on Cosserat theory. Also, it is 
assumed that failure of the equivalent material can result from failure of the joints, failure of intact material, 
or a combinatory mechanism. A consistent elasto-plastic algorithm which takes into account the failure of 
multiple plastic surfaces at the FEM integration points is adopted. The deformation mode, failure 
mechanism, and factor of safety predicted by the proposed model are verified against two discontinuous 
models, including the Discrete Element Method (DEM) and the FEM explicit interface model. The results 
indicate that the Cosserat continuum approach is a reliable tool for identifying various modes of failure of 
jointed slope problems. In addition, application of a robust and accurate elasto-plastic algorithm based on 
the multi-surface plasticity concept enables the method to predict the factor of safety accurately. 

1 Introduction 
In computational geomechanics, two main approaches have been adopted to simulate jointed materials: 1) 
techniques which explicitly take into account the discontinuous nature of joints, i.e., Discontinuous 
Displacement Analysis (DDA), Discrete Element Method (DEM), and Finite Element Method (FEM) or Finite 
Difference Method (FDM), which utilizes an interface element, and 2) smeared techniques based on an 
equivalent continuum concept, i.e., an FEM or FDM equivalent continuum based on classical anisotropic 
models. 
SSR (Dawson et al., 1999; Griffiths and Lane, 1999; Hammah et al., 2005) has proven to be an efficient tool 
in the analysis of slope stability problems for materials exhibiting both a discrete and a continuous nature. 
However, due to the discrete nature of jointed rocks, often it is combined with DDA or DEM analysis of rock 
slopes with a layered or blocky structure. Recently, Hammah et al. (2007) demonstrated that the SSR-FEM 
which utilizes an explicit interface element can be a reliable technique in the stability analysis of this class of 
geostructures. In discontinuous methodology, joints are explicitly simulated, which makes the definition of 
the geometry of the input model a tedious task, especially as the number of joints increases. Consequently, 
the equivalent continuum approach or ubiquitous joint model has grown in popularity, where the original 
discontinuous material is replaced by an anisotropic continuous material. However, the ubiquitous joint 
model based on the classical continuum theory is known to be inapplicable when the internal length scale of 
the problem (block size or layer thickness) is not negligible compared to dimensions of the engineering 
problem. Micropolar or Cosserat theory, on the other hand, provides an accurate description of the 
mechanics of materials with an internal length scale. Cosserat theory was first proposed by the Cosserat 
brothers at the beginning of the past century (Cosserat, 1909). Later, prominent researchers such as Mindlin 
(1965) and Kroner (1967) were attracted to its theoretical aspects. Micropolar theory is based on the 
assumption that micromoments exist at each point of the continuum. A direct consequence of the application 
of Cosserat theory is that the internal length scale of the material is introduced into the constitutive equations 
of the system. Subsequently, it provides an enhanced continuum description of the mechanics of discrete 
materials, such as jointed rock, whose behaviour is governed by an internal length scale (e.g. joint spacing). 
Application of micropolar theory to the FEM analysis of layered and blocky materials was proposed by 
Mühlhaus, (1993) and subsequently, was continued by Adhikary and Dyskin, (1997, 1998)  
In this paper, the SSR method is applied to a number of slope stability problems simulated by the FEM 



Cosserat approach. In contrast to most of the previous works that only allow for the plastic deformation of 
the interface, in this research, plastic failure within the intact material is also considered. A full three-
dimensional (3D) elasto-plastic formulation of Cosserat theory is implemented in the KGC finite element 
code (University of Toronto). Three examples which involve different mechanisms of failure were 
investigated using the developed method. In each case, the FEM Cosserat results are compared to the 
results predicted by the DEM using the UDEC numerical package (Itasca Consulting Group, Inc., 2004), 
reported by Duncan and Mah, (2004), and the FEM explicit joint model using Phase2 (Rocscience Inc., 
2005), reported by Hammah et al., (2007). Comparison of different aspects of the results verifies that by 
introducing the internal length scale or bending stiffness of layers into the constitutive equations, the FEM 
continuum-based approach becomes capable of capturing modes of failure such as flexural layer bending 
that could be identified only by discontinuous models. Also, application of a multi-surface plasticity algorithm 
is an essential aspect in a continuum-based analysis of jointed slope problems that often involve more than 
one failure mechanism.  

2 Introduction to Cosserat theory 
Cosserat theory is based on the assumption that micromoments exist at each point of a continuum. The 
governing equations of the Cosserat continuum can be expressed by: 

, 0ij i jbσ + =                                                                         (1) 

 , 0k kj j kij ijm eμ σ+ − =                                                                (2) 

where  is the body force,   is the body couple moment and b m σ  and μ  are Cosserat stress and Cosserat 
couple stress or moment stress, respectively. In Cosserat theory, the stress tensor is generally not 
symmetric, and the difference in the shear components of stress is equilibrated by micromoments. 
Compared to the classical continuum, the enhanced or Cosserat continuum is obtained by adding an 
independent rotation, to each point of the continuum, which is different from the rotation of the material 
points. The Cosserat rotation is defined as the independent rotation of a rigid triad attached to each material 
point which rotates independently with respect to the material triad. Thus, in 3D analysis, each node is 
associated with 3 displacement and 3 rotational degrees of freedom. The vector of nodal degrees of freedom 
is defined by: 

[ ] 1 2 3 1 2 3[u,θ c c cu u u ]θ θ θ=     (3) 
In layered materials, the Cosserat rotation allows for slip or discontinuity in deformation at the interface of 
layers. The Cosserat strain measure, γ , then can be expressed by: 

,
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where  is the permutation symbol. Also, a second measure of strain or curvature,ijke κ , is introduced into 

the formulation. Curvature represents the variation of rotations of the adjacent triads, and is expressed by: 
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2.1 The elasticity matrix of a layered Cosserat material 
For the derivation of the components of the elasticity tensor, the equivalent continuum concept is 
considered. It is assumed that a jointed material consists of an intact matrix and a number of discontinuous 
surfaces which are called interfaces or joints. From a mathematical point of view, such a material can be 
simplified to a number of elasto-visoplastic modules interacting in series (Sharma and Pande, 1988). The 
elasticity matrix of the equivalent continuum can be calculated based on the elastic properties of the different 
components of a material using the following equations: 
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where  denotes the compliance and  denotes the elasticity tensor, and sub-indices  and j denote 
equivalent continuum and joints, respectively. 

D C Eq

In Cosserat continuum theory, the elasticity tensor is a block diagonal matrix that relates the stress tensor 
σ̂ , and couple stress tensor, μ̂ , to their work conjugate measures, γ) , and , κ̂  , through:  
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where the  sign denotes the local coordinates of anisotropy i.e., local coordinates of the joints. The 
difference between Cosserat theory and classical continuum theory is in the way that shear stresses are 
distributed, and the way that micromoments are related to their work conjugate curvature measures. 
Considering the 2D representation of a beam depicted in Figure 1, it can be interpreted that part of each 
shear stress component along the thickness of the layer , i.e., 

∧

13σ  is in equilibrium with its conjugate shear 
component 31σ  and is related to the corresponding strain components through the shear coefficient of the 
equivalent continuum, , expressed by: 11G
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where  is the shear modulus of the intact material,  is the layer thickness and G h sk  is the shear stiffness 
of the joints. However, the stress occurring on a plane perpendicular to the axis of the beam has a 
contribution from the bending of the layers, which is related to 13γ  through the shear modulus of the 
individual layers, G . Thus the stress component perpendicular to the layers can be expressed as: 

                  13 11 13 31 13( )G Gσ γ γ γ= + +               (9)              
Also, the nonzero couple stress, 31μ , can be related to the curvature of the system through the bending 
stiffness of the interacting layers, as follows: 

  31 31Bμ κ= ; 
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where and E υ  are the Young’s modulus and Poisson’s ratio of the layers. It is clear that Equation 10 
accounts for the effect of internal length scale or layer thickness. For a comprehensive study on the 
mechanical considerations in the derivation of Cosserat parameters, and the 2D elasticity matrix of a 
Cosserat layered material one can refer to (Zvolinski & Shkhinek, 1984) and (Mühlhaus, 1995), respectively. 
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Figure 1 2D representation of a single beam. 

2.2 Elasto-plastic behaviour of the equivalent continuum 

In this research, it is assumed that failure of the equivalent continuum can be due to the failure of each set of 
joints or failure of the intact material, which are simultaneously present at all FEM integration points. Each 
component exhibits a separately specified strength and post-peak behaviour. Once the stress level at a point 
reaches the strength of any of these components, its corresponding mechanism becomes active, and its 
potential rule is mobilized. For the intact rock two yield criteria expressing shear and tensile failure were 
considered. Shear failure of the intact rock is expressed by an isotropic Mohr-Coulomb law: 

1 tan 0nF c= + −τ σ ϕ =     (11) 
where ϕ  is the friction coefficient and  is the cohesion parameter. Mohr-Coulomb criterion for isotropic 
materials can be written in the following form in stress invariants space: 
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where  is the first invariant of the stress tensor, I 2J  is the second invariant of deviatoric part of the stress, 

and Lθ  is the Lodé angle. Also, the tensile strength of the intact rock is expressed by: 
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where 1σ  is the maximum principal stress, and  is the tensile strength of the material. Strength of the 
joints also follows a Mohr-Coulomb type behaviour combined with a tensile failure surface. In order to take 
into account the orientation dependence properties of the anisotropic material, the stress tensor is projected 
onto the surface of the joints. The violation of yield functions is checked in the local coordinate of the joints 
as follows: 

tc
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and 
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where 3
)x  is the normal vector to the interface and σ)  is the stress expressed in the local coordinates of the 

joint as: 
ˆ TQ Qσ σ=             (16) 

where  is the orthogonal transformation matrix for change of coordinate system of a second order tensor. Q
In the post-peak analysis, it is assumed that the shear failure of the intact rock and joints follows a non-
associative flow rule with a dilatancy angle of dilϕ , while the tensile failure of both components always 
follows an associative rule. 
Finally, in Cosserat plasticity theory, the effect of micromoments should be taken into consideration. It is 
clear that both the yield and potential functions of the interface depend only on the normal and shear 
components of stress occurring on the surface (Adhikary and Dyskin, 1998; Dawson and Cundall, 1992). 
Yielding within the intact rock on the other hand, depends on the values of the micromoments of the system 
and consequently involves a more complicated mechanism. The effect of micromoments on the strength of 
the intact material can be described based on beam theory (Adhikary and Guo, 2002). However, the 
significance and the effect of micromoments in both shear and tensile failure of layers requires extensive 
analytical and experimental research. In the present work, the plasticity formulation of the intact material is 
based on the symmetric part of the stress tensor, and effects of micromoments are disregarded. Clearly, the 
approach provides an estimate to the exact solution. Nevertheless, results show a high level of consistency 
with other numerical methods. 

2.3 Stress integration of multiple plastic surfaces 
The essence of the elasto-plastic relation in the presence of multiple mechanisms is similar to the case of a 
single yield surface, i.e.: 
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In materials with multiple mechanisms, the total increment of plastic strain is obtained by the summation of 
the plastic straining of all active plasticity surfaces. This can be expressed by: 
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where α denotes the index of activated surfaces and Qα is the corresponding potential surface. From a 
numerical point of view, the existence of multiple yield mechanisms can result in serious complications in the 
determination of the activated surfaces and the post-peak behaviour. The FEM integration algorithm adopted 
in this research belongs to the multi-surface plasticity schemes discussed by Simo (1988) and Pasternack 
and Timmerman (1986) It should be noted that in the presence of multiple failure mechanisms, violation of 
the yield criterion does not guarantee that the corresponding mechanism is active, i.e., positiveness of 
plastic multipliers, αλ& , indicate the active plastic surfaces. 

3 Overview of the Shear Strength Reduction Method  
The SSR has proven to be an efficient tool in the analysis of slope stability problems for materials exhibiting 
both a discrete and a continuous nature. In this method a systematic search is performed to find the 
reduction factor, Fs , that brings the slope to the limit of failure. The reduced shear strength of a Mohr-



Coulomb material is described by the following equation, in which / sc c F* =  and *arctan(tan( ) / )sFϕ ϕ=  are 
factored Mohr-Coulomb shear strength parameters.: 
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The factor of safety is the maximum value of Fs for which the numerical solution remains stable. The 
problem should be solved for different values of Fs. A sudden increase in values of displacements in the 
graph of Fs versus maximum displacement indicates the onset of instability. Also, non-convergence of the 
solution within a reasonably specified tolerance and number of iterations is an indicator of failure in the FEM 
solution (Hammah et al., 2007).  

4 Examples  
Three different examples were chosen to demonstrate the performance of the proposed FEM Cosserat 
continuum approach to the slope stability analysis of layered rock slopes using the SSR method. The 
geometry of the slope and the FEM mesh of the Cosserat model are depicted in Figure 2. 
For the intact rock, an isotropic material with Young’s modulus of  and a Poisson’s ratio of 0.26  
was considered. The joints have a normal stiffness, kn, and a shear stiffness, ks, of 100

9.072 GPa
 /MPa m  and 

10 /MPa m , respectively. For the elasto-plastic behaviour of the intact rock, a non-associative Mohr-
Coulomb failure criterion with a friction coefficient of , dilation angle of 0 , and cohesion of 43o o 675 KPa , 
with zero tensile strength, was considered. In examples 4.1 and 4.3, the joints exhibit a Mohr-Coulomb 
failure criterion with a friction coefficient of , dilation angle of , cohesion parameter of 10040o 0o KPa , and 
tensile strength of 100KPa . In example 4.2 the cohesion and tensile strength of the joints were set to . The 
load was applied incrementally in a total number of 30 steps and the tolerance of the solution was set to 

. The results were verified against the results predicted by DEM using UDEC numerical package 
(Duncan and Mah, 2004), and the FEM explicit joint model using Phase2 (Hammah et al., 2007). 
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Figure 2 Slope geometry, boundary conditions, and the FEM mesh for Cosserat solution of slope stability 
examples. 

4.1 Slope with daylighting joints 

The joints in this example are approximately  apart and dipping at . The factor of safety predicted by 
the FEM Cosserat solution was 1.27 (see Figure 3b), while UDEC predicted 1.28, and the FEM explicit joint 
model predicted 1.32. The failure mechanism predicted by the Cosserat solution is depicted in 
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Figure 3a. 
Similar to the failure mechanism identified by UDEC and Phase2 (see Figure 4), the FEM Cosserat solution 
indicates that the mechanism of failure is a combination of sliding at the toe and a curved tension crack at 
the top of the slope. The failure mechanism for the FEM Cosserat solution was determined based on the 
contours of the total displacements and the deformed shape of the slope, and contours of the effective 
plastic straining of the activated plastic surfaces. Since progressive slip on the joint plane is the dominant 
mode of failure, the bending rigidity of the layers does not have a significant effect on the stability of this 
slope. 

4.2 Plane Failure of slope with non-daylighting joints 

The joints in this example are spaced at approximately  and dipping at . The factor of safety 
predicted by the FEM Cosserat solution is 1.45 (see Figure 5b), while UDEC predicted 1.5, and the FEM 
explicit joint model predicted 1.53. The failure mechanism predicted by the Cosserat model (see Figure 5a) 
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is a combination of shearing through the intact rock in the lower part, near the toe of the slope, and sliding 
along joints in the upper part of the slope. The failure mechanism predicted by UDEC and the FEM explicit 
joint model is depicted in Figure 6. In this example, the bending rigidity of the inclined columns of rock 
sustains part of the applied load.  

4.3 Failure involving flexural toppling 

The slope in this example has a single set of joints, approximately apart, which dip  into the slope 
face. The FEM Cosserat model predicts a safety factor of 1.45 (see Figure 7b), while UDEC analysis gives 
1.3, and the FEM explicit joint model predicts 1.41. Similar to the FEM explicit joint model and UDEC 
analysis, the FEM Cosserat joint model identifies the mode of failure to be flexural bending of the rock 
columns (see Figures 7a and 8). However, it yields a relatively high SSR factor compared to the other 
models, which is due to underestimating the tensile forces within the intact rock. The tensile cracking is due 
to the bending of layers or high values of curvatures. It can be explained using beam theory that the 
presence of bending moments in a beam will result in axial stress along the layers. By neglecting the effect 
of the bending stiffness of the layers, the Cosserat model reduces to the classical ubiquitous joint model. 
Since in this example, the bending rigidity of the layers sustains the applied load, the classical model totally 
fails in predicting the mode of deformation of the layers, and consequently cannot capture the correct 
mechanism of failure.  
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(a) (b) 

Figure 3 a) Failure mechanism based on contours of total displacement and b) displacement versus SSR 
factor predicted by the FEM Cosserat solution for a slope with daylighting joints.  

  
(a) (b) 

Figure 4 Failure mechanism and contours of total displacement for a slope with daylighting joints predicted 
by: a) UDEC and b) Phase2 FE-SSR. 
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(a) (b) 

Figure 5 a) Failure mechanism based on contours of total displacement and b) displacement versus SSR 
factor predicted by the FEM Cosserat solution for a slope with non-daylighting joints. 



  
(a) (b) 

Figure 6 Failure mechanism and contours of total displacement for a slope with non-daylighting joints 
predicted by: a) UDEC and b) Phase2 FE-SSR. 
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(a) (b) 

Figure 7 a) Failure mechanism based on contours of total displacement and b) displacement versus SSR 
factor predicted by the FEM Cosserat solution for a slope exhibiting flexural bending. 

  
(a) (b) 

Figure 8 Failure mechanism and contours of total displacement for a slope exhibiting flexural bending 
predicted by: a) UDEC and b) Phase2 FE-SSR. 

5 Conclusion 
The main focus of this paper was to investigate the performance of the FEM continuum-based technique in 
the stability analysis of discrete or jointed materials. The results predicted by the proposed FEM Cosserat 
model were verified against two different discontinuous methods. The comparison was based on the 
deformation mode, failure mechanism, and values of the SSR factor. 
Classical continuum theory is based on the assumption of the continuity of deformation, and, as a result, if 
the internal length scale is comparable to dimensions of the problem, the FEM solution formulated in 
classical continuum theory can introduce large errors into the solution. Alternatively, Cosserat theory 
provides an enhanced continuum description of materials with microstructures. In the FEM Cosserat 
solution, the bending stiffness of layers is introduced into the governing equations of the system; 
subsequently, the method becomes capable of capturing modes of failure such as flexural layer bending that 
can be identified only by discontinuous models. Experimental observation of the failure of jointed rock slopes 
clearly indicates that the ultimate collapse often involves the failure of different components of the material. 
Numerical prediction of the failure mechanism depends on capturing the deformation mode and the correct 
formulation of the strength and post-peak behaviour of the material. The Cosserat continuum approach was 



further improved by applying a multi-surface plasticity algorithm which allows for simultaneous failure of 
different components of the material. In total, four plastic surfaces could be potentially active at each point of 
the continuum. Consistency between values of the SSR factor obtained by this method and values predicted 
by discontinuous models clearly indicate the accuracy of the integration algorithm in the presence of multiple 
plastic surfaces. 
It was found that the mode of failure and deformation is greatly influenced by the effect of bending stiffness 
or layer thickness. It should be noted that in addition to physical parameters, values of the SSR factor 
predicted by the FEM can be affected by a number of numerical aspects such as the stability and accuracy 
of the stress update integration scheme as well as the FEM mesh size. 
The results clearly suggest that the FEM Cosserat model can be an efficient and reliable tool in the stability 
analysis of jointed rock slope problems. An attractive aspect of the FEM Cosserat solution is the fact that 
discontinuity surfaces are not explicitly modeled, and that the solution can be performed by an FEM 
discretization which is totally independent of joint spacing and orientation. In conclusion, the FEM Cosserat 
solution can be an important tool in slope stability analysis of 3D problems with arbitrarily-orientated layers. 
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