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ABSTRACT 
Spatial variability is one of the largest sources of uncertainty in geotechnical applications. This variability is primarily 
characterized by the spatial correlation length, a parameter that describes the distance over which the parameters of a 
material are similar. Spatial variability is generally described with traditional methods of time series analysis. In statistics, 
the Auto-Regressive Moving Average (ARMA) model is commonly used to describe the relationship between two points in 
time. Instead of assuming an autocorrelation model, the ARMA model calculates the necessary auto-regressive 
components (AR), as well as a decaying mean structure (MA). The advantage of this method is that it is calculated for 
each specific field study, so that the data is not forced to fit into a fixed autocorrelation model (e.g. Markovian, Gaussian, 
etc.). Additionally, a very simple and fast algorithm is needed to calculate the necessary AR, and MA estimates. In this 
study, the ARMA model is introduced as a means of measuring correlation length, and two case studies and a simulation 
are used to compare the correlation length values from the ARMA model to the other estimates. The ARMA model was 
able to find correlation length estimates that were very similar to other methods in the case study values, and much more 
accurate values in the simulation, compared to other methods.  
 
 
 
1 INTRODUCTION  
 
Spatial variability is one of the largest sources of 
uncertainty in geotechnical applications. In recent decades 
the necessity of considering spatial variability in 
geotechnical applications has been demonstrated in 
various studies (Cho 2010; Soubra and Massih 2010; Hicks 
and Spencer 2010; Huang et al. 2010; Stuedlein et al. 
2012; Cassidy et al. 2013; Jha and Ching 2013; Jiang et al. 
2014; Le 2014; Li et al. 2015; Xiao et al. 2016; Li et al. 
2016; Luo et al. 2016; Javankhoshdel et al. 2017; 
Papaioannou and Straub 2017; Cami et al. 2018). This 
variability is primarily characterized by the spatial 
correlation length which describes the distance over which 
the parameters of a soil or rock are similar or correlated; 
soil properties sampled from adjacent locations in the soil 
profile tend to have similar values and as the sampling 
distance increases the correlation decreases. The 
correlation length parameter can be obtained in a variety of 
ways but is most commonly obtained from cone 
penetration test (CPT) measurements. Is required in order 
to characterize as well as simulate a spatially variable field. 
It should be noted that a different correlation length is 
defined for each material, so the CPT data considered here 
is material-specific. 

Spatial variability is generally described by traditional 
methods of time series analysis in statistics, meaning that 
it constitutes of a trend component and a zero-mean spatial 
variability component (Equation 1). The reason for this is 
that as with measurements in time, soil property 
measurements that are closer together in space are more 
similar in value, as shown below:  

 
 
𝑋𝑖 = 𝑋(𝑠𝑖) = 𝑇(𝑠𝑖) + 𝜖(𝑠𝑖), 𝑖 = 1, … , 𝑘    [1] 

 
 

where 𝑋𝑖 is the value of the soil property at location 𝑠𝑖, 

𝑠𝑖 is the vertical distance from the ground surface, for 

example, and 𝑘 is the total number of measurements. 𝜖(𝑠𝑖) 
is the spatial variability component. The spatial correlation 
length describes the distance over which the spatial 
variability components 𝜖(𝑠𝑖) are correlated amongst 
themselves. 

The commonly used methods of measuring correlation 
length in the geotechnical field assume an autocorrelation 
model. A method of moments can then be used to estimate 
the correlation length value, by minimizing the error 
between the theoretical autocorrelation model and the 
experimental one (Vanmarcke, 1977). An autocorrelation 
model describes the relationship between the distance 
separating two points and the correlation between them. 
Some typical autocorrelation models are shown in Table 1, 
where 𝜌(𝜏) is the correlation coefficient between two points 

separated by lag 𝜏, and 𝜃 is the correlation length. 
 
 
Table 1. Common autocorrelation models. 
 

Autocorrelation Model Relationship 

Markovian 
𝜌(𝜏) = 𝑒𝑥𝑝{

−2|𝜏|

𝜃
} 

Gaussian 
𝜌(𝜏) = 𝑒𝑥𝑝{−𝜋(

|𝜏|

𝜃
)2} 

Spherical 𝜌(𝜏) = {1 − 1.5|
𝜏

𝜃
| + 0.5|

𝜏

𝜃
|3  

𝑖𝑓 |𝜏| ≤ 𝜃;  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
 
However, the autocorrelation model selected for a 

given set of CPT measurements is generally just assumed 
to be the one that describes the true structure of the data. 
Since no model can fit the data exactly, this makes the 
selection of an autocorrelation model difficult. 



 

In statistics, the Auto-Regressive Moving Average 
(ARMA) model is commonly used to describe the 
relationship between two points in time. Instead of 
assuming an autocorrelation model, the ARMA model 
calculates the necessary auto-regressive components 
(AR), as well as a decaying mean structure or moving 
average (MA). The advantage of this method is that it is 
calculated for each specific field study, so that the data is 
not forced to fit into a fixed autocorrelation model. 
Additionally, a very simple and fast algorithm is needed to 
calculate the necessary AR, and MA coefficients. 

In this study, the ARMA model is introduced as a means 
of measuring correlation length. Two case studies and a 
simulation are used to compare the correlation length 
values from the ARMA model to the method of moments 
estimates. There are no previous studies that use this 
method to measure correlation length.  
 
 
2 ARMA 

 
2.1 Stationary Time Series 
 
As with the methods of moments, in order to measure the 
correlation length from CPT data, the data must first be 
stationary. A stationary time series has properties that do 
not depend on the time at which the series was observed. 
In the CPT realm, a stationary CPT is one whose properties 
do not depend on the depth.  

Weakly stationarity is defined by a constant mean, 
variance, and covariance structure. This is necessary in 
order for the autocorrelation function to have meaning. 
While the constant variance and covariance must be 
assumed, the constant mean is the famous de-trending 
problem. This is analogous to removing the trend of a 
measurement and only looking at the spatial variability 
component (𝜖(𝑠𝑖) in Equation 1). The readers are referred 
to the multitudes of literature on the subject some of which 
are included here (Ching et al. 2016, 2017; Ching & Phoon 
2017). The data used in the remainder of the paper is 
assumed to satisfy weakly stationarity.  
 
2.2 The ARMA Model 

 
The auto-regressive (AR) component of the ARMA model, 
allows for current measurements in time to depend on a 
certain lag of past measurements. For example an AR(1) 
model indicates that the current measurement depends on 
the last. An AR(2) model indicates that the current 
measurement depends on the last and the one previous to 
that. This can be similarly applied to CPT measurements, 
such that for an AR(2) model, a measurement at a given 
location depends on the measurements at the two previous 
locations adjacent to it. An AR(p) model is expressed as 
shown in Equation 2 below, where 𝛼𝑖 are the coefficients 

associated with each past measurement, and 𝑤𝑖 are the 
random error components which are typically assumed to 
be independently and identically distributed white noise 

with some fixed variance 𝜎𝑤
2 . 𝑋𝑖 is the value of the soil 

property at location 𝑠𝑖, 𝑋𝑖−1 is the value at location 𝑠𝑖−1, and 

𝛿 is the intercept. 
 

 
𝑋𝑖 = 𝛿 + 𝛼1𝑋𝑖−1 + ⋯ + 𝛼𝑝𝑋𝑖−𝑝 + 𝑤𝑖       [2] 

 
 

The moving average (MA) component indicates that the 
regression error is a linear combination of the error terms 
at the previous locations. Similarly to the AR, an MA(2) 
model indicates that the current error depends on the error 
at the previous two locations. An MA(q) model is expressed 
as shown in Equation 3 below, where 𝜃𝑖 are the coefficients 

associated with each past measurement error, 𝑤𝑖−1 is the 

error associated with measurement 𝑋𝑖−1, and 𝜇 is the 
intercept. 

 
 

𝑋𝑖 = 𝜇 + 𝜃1𝑤𝑖−1 + ⋯ +  𝜃𝑞𝑤𝑖−𝑞 + 𝑤𝑖     [3] 

 
 
Therefore, for stationary data, an ARMA(p,q) model 

can be expressed as shown in Equation 4 below, where p 
is the order of the AR component, and q is the order of the 
MA component: 
 
 
𝑋𝑖 − 𝛼1𝑋𝑖−1 − ⋯ −  𝛼𝑝𝑋𝑖−𝑝 

= 𝑤𝑖 +  𝜃1𝑤𝑖−1 + ⋯ + 𝜃𝑞𝑤𝑖−𝑞      [4] 

 
 

In the equation above, 𝑋𝑖 are the stationary 

measurements at each location, 𝛼𝑖 are the coefficients of 

the AR components, 𝜃𝑖 are the coefficients of the MA 

components, and 𝑤𝑖 are the errors associated with the MA 
model. 

Once the coefficients 𝛼𝑖 and 𝜃𝑖  are determined for the 
necessary number of p and q, then the autocorrelation 
function for the specific case is defined, and the correlation 
length can be calculated as simply the area under the 
correlation function. 

It turns out that these coefficients and orders can be 
determined automatically and quickly with a simple 
algorithm.  
 
2.3 Determining the ARMA coefficients 
 
There are two ways to determine the ARMA coefficients. 
One is by visual inspection of the autocorrelation function 
and partial autocorrelation function plots. It is often evident 
from reviewing these plots what the values of p and q 
should be. An even simpler way is using the auto.arima 
algorithm from the forecast package in R (Hyndman and 
Khandakar, 2008; Hyndman et al. 2019). This code is 
open-source and available for implementation in other 
software. 

The auto.arima function takes as an input the CPT data 
in the format of measurement locations and measurements 
at each location. It outputs the necessary values for p and 
q and their respective coefficients. Once these coefficients 
are determined the correlation structure of the data is 
explained.  
 
 
 



 

2.4 Determining the correlation length 
 
Once the coefficients are determined, the autocorrelation 
function 𝜌(𝜏) can be defined and the corresponding 

correlation length, 𝜃, is the area under this function, as 
shown in Equation 5 (Vanmarcke, 1984): 
 
 

𝜃 = ∫ 𝜌(𝜏)𝑑𝜏
∞

−∞
= 2 ∫ 𝜌(𝜏)𝑑𝜏

∞

0
         [5] 

 
 
An important note is warranted here – the factor of 2 in the 
equation above is often omitted hence resulting in two 
definitions of correlation length. What is alternately referred 
to as correlation length or scale of fluctuation has been 
defined as both 𝜃 and 𝜃/2 in geotechnical literature, 
resulting in general confusion. In this study, the correlation 

length refers to 𝜃 as defined above. 
This integral can be easily obtained with quadrature of 

the autocorrelation function.  
 
 
3 VERIFICATION 

 
Three examples are considered for verification of the 
ARMA method. The first two use CPT measurements from 
two studies, the correlation lengths of which were 
measured using a method of moments and an assumed 
autocorrelation model. These are used to verify that ARMA 
gives similar results to the classic methods. The third 
example is a simulated example where the correlation 
length is known, and ARMA as well as methods of 
moments are used to see how close they can get to the 
true measurement. 
 
3.1 Example 1: Świebodzice 
 
This example uses a CPT measurement from Świebodzice 
(Bagińska et al., 2012), the correlation length of which was 
measured by Pieczyńska-Kozłowska (2015). The 
Świebodzice CPT for qc used in the study is shown in 
Figure 1.  

Pieczyńska-Kozłowska (2015) used various 
autocorrelation models and de-trending methods and 
compared the resulting correlation lengths, measured 
using methods of moments. For comparison purposes, 
only the linearly de-trended measurements are used 
below. These results form Pieczyńska-Kozłowska (2015) 
are summarized in Table 2. 
 

 
Figure 1 The Świebodzice CPT for qc 
 
 
Table 2. Pieczyńska-Kozłowska (2015) linearly de-trended 
correlation length results. 
 

 Markov 
Autocorrelation  

Gaussian 
Autocorrelation  

Vanmarcke Method 0.28 m 0.22 m 

Rice Method 0.23 m 0.29 m 

 
 

The auto.arima function from the forecast package 
determined that an ARMA(4,4) model best described the 
correlation structure. That is, a model with 4 AR terms and 
4 MA terms. The coefficients of this model are as shown in 
Table 3. Using these coefficients and quadrature of the 
resulting autocorrelation function, the estimated correlation 
length was found to be 0.26 m, which is in close agreement 
with the values found by Pieczyńska-Kozłowska (2015). 
 
 
Table 3. The ARMA coefficients determined for the linearly 
de-trended Świebodzice CPT. 
 

AR Coefficients, 𝛼𝑖 MA Coefficients, 𝜃𝑖  

0.83 0.17 

0.25 0.29 

0.53 -0.34 

-0.63 0.34 

 
 
 
 



 

3.2 Example 2: Taranto Clay 
 
The second example uses a CPT measurement from 
Taranto, Italy (Cafaro and Cherubini, 2002). The G1 
borehole of the lower clay data is used for comparison 
purposes, as de-trended by Cafaro and Cherubini (2002). 
This de-trended data is shown in Figure 2.  
 

 
Figure 2 The de-trended CPT for qc of borehole G1 per 
Cafaro and Cherubini (2002). 
 
 

Cafaro and Cherubini (2002) used the variance function 
method to measure the correlation length and obtained a 
value of 0.536 m for the specific borehole, with an average 
measurement of 0.40 m over the five boreholes. The 
auto.arima function determined an ARMA(2,1) model to be 
the best fit for borehole G1, the coefficients of which are 
shown in Table 4. The estimated correlation length was 
found to be 0.40 m. This is in close agreement with the 
estimated measurement for the given borehole as well as 
the average over the five boreholes. 
 
 
Table 4. The ARMA coefficients determined for the linearly 
de-trened Taranto CPT. 
 

AR Coefficients, 𝛼𝑖 MA Coefficients, 𝜃𝑖  

1.98 -0.90 

-0.98 - 

 
 
3.3 Example 3: Simulated Data 
 
Finally, the third example uses data which was simulated 
to have a correlation length of 5 m. This was done using 
the spatial variability field option in the Slide2 software 

(Rocscience, 2018), which uses Markovian and Gaussian 
autocorrelation functions together with a method known as 
Local Average Subdivision (LAS) (Fenton and Vanmarcke, 
1990) to generate the field. The simulated field is a spatially 
variable cohesion parameter with a mean of 10 kPa, a 
standard deviation of 2 kPa, and a normal distribution. The 
spatial field with mesh size of 0.2 m in a typical slope with 
a unit weight of 19 kN/m3 and a friction angle of 23 degrees 
is shown in Figure 3.  
 

 
Figure 3. Random cohesion field generated with isotropic 
correlation length of 5 m. 
 
 

Five relatively equi-spaced vertical samples were taken 
from the field, at x=1.1 m, x=20 m, x=50.1 m, x=75.1 m, 
and x=98.3 m. The correlation length was measured using 
both ARMA and an autocorrelation fitting method with a 
Markovian and Gaussian autocorrelation models. Since 
this data is simulated, de-trending was not necessary. The 
results are summarized in Table 5.  
 
 
Table 5. Correlation length measurements for simulated 
data. 
 

Measurement 
Location 

Autocorrelation 
Fitting with 

Markovian Model 

Autocorrelation 
Fitting with 
Gaussian 

Model 

ARMA 

1.1 3.32 m 3.36 m 5.58 m 

20 1.77 m 1.36 m 1.65 m 

50.1 5.32 m 6.41 m 6.60 m 

75.1 3.51 m 3.92 m 6.27 m 

98.3 2.26 m 2.47 m 3.58 m 

Average 3.24 m 3.51 m 4.73 m 

 
 

This simulated example has attempted to replicate 
what might happen in the field, where only a handful of 
boreholes are taken and must be used in order to 
characterize the field. It is seen that although all methods 
in Table 5 tend to deviate from the true value at specific 
locations, when averaged the ARMA model gives a value 
that is much closer to the 5 m measurement. This is due to 
the fact that ARMA defines an autocorrelation model for a 
each of the five locations exactly, instead of assuming the 
Markovian or Gaussian autocorrelation model.  



 

These three average correlation lengths were input into 
a spatial variability analysis for the slope in Figure 3 using 
500 Latin-Hypercube samples and Morgenstern-Price limit 
equilibrium method in order to get a rough idea of the 
expected difference in probability of failure when the 
correlation length is misrepresented.  

 
 
Table 6. Probability of failure values for the slope in Figure 
3 using the three correlation lengths in Table 5. 
 

Markovian Model 

3.24 m 

Gaussian Model 

3.51 m 

ARMA 

4.73 m 

16.8% 17.6% 18.4% 

 
 
It can be seen in the table that the correlation length 
parameter has a considerable effect on probability of 
failure.  
 
4 DISCUSSION 
 
In this study, the ARMA model is introduced as a means of 
measuring correlation length. The advantage of this 
method is that it allows the autocorrelation model to be 
defined exactly, instead of forcing the data to fit into a pre-
defined model such as Gaussian or Markovian. 
Additionally, an open-source algorithm is available for 
finding the coefficients of the model quickly and easily. 

Two case studies and a simulation are used to compare 
the correlation length values from the ARMA model to the 
method of moments estimates. The two case studies were 
found to be in good agreement with the ARMA 
measurement. The simulated study showed that the ARMA 
model got much closer to the true correlation length than 
the methods of moments. This has a considerable effect on 
the computed probability of failure.  
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