
1 INTRODUCTION 

Natural soils and sedimentary rocks, such as shale, 
limestone and mudstone, are typically formed by 
deposition and progressive consolidation during 
formation. Such formations usually have a distinct 
internal structure, which is characterized by the ap-
pearance of multiple sedimentary layers. Besides the 
bedding planes, the geometric layout of networks of 
joints and other types of discontinuities in a rock 
mass are significant contributors to the complex be-
havior of such geomaterials (e.g. Hoek & Brown 
1980, Hoek 1983, Zienkiewicz & Pande 1977). The 
presence of these fissures and planes of weakness 
significantly influence the response of geotechnical 
structures such as slopes, tunnels and excavations 
(Goodman et al, 1968, Bandis et al, 1983). 

2 JOINTED ROCK MASS 

The jointed rock mass here is considered to be com-
posed of an intact material that is intercepted by up 
to three sets of weak planes. The spacing of the 
weak planes is such that the overall effects of the 
sets can be smeared and averaged over the control 
volume of the material. Such a configuration with 
two sets of weak planes is illustrated in Figure 1 
where the weak planes are oriented at an arbitrary 
angle θ1 and θ2 in the rock mass.  

In this paper, it is assumed that the failure of the 
matrix can be described by the Generalized Hoek-
Brown criterion presented in Equation 1. The 

strength criterion of the weak planes is formulated 
by a simple Coulomb criterion as in Equation 2. 
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In the above, 1  and 3  are the major and minor 
principal stresses, ci  is the uniaxial compressive 
strength of the intact rock material, and  
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im  is an intact rock material property, GSI is the ge-
ological strength index, and D is the disturbance fac-
tor (Hoek et al 2002).   and  n  are the tangential 
and normal components of the traction vector on a 
weak plane,   is the friction angle and c  is the co-
hesion of the weak plane.  

According to Equation 3, the strength of the rock 
mass is related to the strength of the intact rock that 
is factored by GSI and D parameters. In general, the 
presence of weak planes contributes to these two 
factors. In this work however, since the weak planes 
are considered in the modeling separately, the GSI 
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and D parameters are selected to be very close to 
that of the intact rock. This will help capture the ani-
sotropic effects caused by dominant weak planes in 
a rock mass.  

3 CONSTITUTIVE MODEL  

The constitutive model developed for the commer-
cial finite element package, Phase2 (Rocscience Inc. 
2011), considers the Generalized Hoek-Brown mod-
el for the matrix and can include up to three sets of 
Coulomb weak planes. Tension cut offs are also 
considered for the matrix and the weak planes. In the 
formulation of this constitutive model, the total 
number of yield functions adds up to eight, not all of 
which needs to be active simultaneously. In the fol-
lowing sections the integration procedure of the con-
stitutive equations and some application examples 
are presented.  

3.1 Integration of the constitutive equations 

Considering a multi-yield surface constitutive model 
where ( ) 0ijF    is a set of yield surfaces and 

( ) .ijQ const   , the corresponding set of plastic po-
tentials, the basic elasto-plastic equations are: 
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where ij  is the increment of strain tensor, ij is the 
increment of stress tensor, e

ijklD  is the fourth order 
elastic tensor,  subscript  stands for each yield sur-
face,    is the plastic multiplier and superscripts e  
and p  indicate elastic and plastic, respectively. 
Equations 4 represents the additivity postulate, 
Hooke’s law and flow rules for each yield mecha-
nism (Vermeer 1978, Simo et al. 1988, Hofstetter et 
al. 1993, Simo & Hughes 1998). The total rate of 
plastic strain in Equation (4c) is the summation of 
the rate of plastic strain calculated for all the mecha-
nisms. Note that the constitutive model presented 
here is an elasto-perfect-plastic model with no hard-
ening parameter. That is why the hardening parame-
ter and hardening/softening rules are not included in 
the set of Equations 4.  

For any process of loading/unloading, the Kuhn-
Tucker conditions (Luenberger 1984) must be satis-
fied for all the mechanisms: 

( ) 0ijF      ;    0     ;     0F    (5) 

 The plastic potential for the Generalized Hoek-
Brown yield surface has a similar function as in 

Equation 1 with a dilation factor qm  replacing the 
bm . For the weak planes, a constant dilation angle is 

considered and the plastic potential function has the 
same form as the Coulomb criterion in Equation 2. 
The tension cutoffs have associated flow rules.  

3.2 Example I: Uniaxial compression tests 

As an example, Figure 2 shows the anisotropic 
effects induced by one and two sets of weak planes 
on the maximum axial strength of a rock mass sam-
ple tested in a biaxial tests configuration. The mate-
rial properties for the matrix and the weak planes are 
listed in Table 1. Weak planes set I is oriented at an-
gle θ1 and set II is perpendicular to set I at angle θ2 = 
90° − θ1.  The results include the cases where only 
one set of the weak planes (either set I or set II) ex-
ists in the medium and the case that both sets are 
present. The variation of maximum axial stress with 
the inclination angle of the weak planes from both 
the analytical solution and the finite element simula-
tions are presented in Figure 2. The analytical solu-
tions are from a simple evaluation of failure func-
tions for the weak planes and the matrix for different 
configurations of the model under uniaxial loading 
(Pietruszczak 2010). Similar patterns for the varia-
tion of maximum axial stress with inclination angle 
have been reported by many researchers both in nu-
merical and experimental investigations (e.g. Hoek 
& Brown 1980, Zienkiewicz & Pande 1977). 

 
 
 
 
 
 
 
 
 
                               
 
 

Figure 1. Typical control volume of a material with two sets of 
perpendicular weak planes with inclination angle θ1 and θ2. 
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Figure 2. Variation of maximum axial stress of the rock mass 
sample intercepted by two sets of perpendicular weak planes.  
Table 1. Properties for the matrix and weak planes 
Characteristics of the matrix  Value 

Unit Weight 20 3/kN m  

Elastic Modulus 50 MPa  

ci  5 MPa  

bm , qm  3.42679 

s  0.108368 

a  0.500593 

GSI  80 

D  0 

im  7 

Weak Planes Set I Value 

Friction & Dilation  Angle 

Cohesion 

20  

10 kPa  

Weak Planes Set II Value 

Friction & Dilation Angle 

Cohesion 

30  

20 kPa  

3.3 Example II: Circular excavation 

This example presents the numerical results obtained 
for a circular excavation in a jointed rock mass. Two 
types of simulations have been performed. In the 
first one, the weak planes are simulated by joint 
networks in the finite element mesh, i.e. the joints 
are modeled explicitly. The second simulation takes 
advantage of the proposed constitutive model with 
embedded weak planes. The domain of the problem 
is a circular disk with a radius of 5m, and the circu-
lar excavation is located at the center of the disk 
with the radius of 1m. The simulations are plane 
strain and the boundary condition at the external 
boundary is pinned. The initial stress field is hydro-
static with a pressure equal to 100 kPa, and the body 
force is not included in the analysis. The material 
properties of the intact rock are taken from Table 1, 
and the weak planes have the properties of weak 
plane set I in that table. 

In one set of simulations only one set of weak 
planes oriented at θ = 45° is considered, and in the 
second set two sets of perpendicular weak planes 
with  θ1= 45° and  θ2 = 135° (see Figure 3). 

 
 

 
 
 
 
 
 
 
 
 

Figure 3. Circular excavation in a rock mass with one and two 
sets of weak planes (illustration of the explicit joint networks) 

Figure 4 and 5 show the results of simulations for 
the case where the rock mass has only one set of 
weak planes with inclination angle θ = 45°. Figure 
4(a) shows the contours of total displacement in the 
domain from the simulation with the new constitu-
tive model. Figure 4(b) shows the results obtained 
from the simulation that uses a joint networks. Fig-
ure 5 shows the failure pattern observed in these two 
simulations. The “+” symbols in Figure 5(a) are in-
dications of failure along the weak planes at Gaussi-
an integration points. The bold red lines in Figure 
5(b) represent the slip along the explicit joints. In 
these simulations the plastic deformation is in the 
form of slips along the weak planes and no failure 
was observed in the intact rock.  

Figures 6 and 7 present the numerical results for 
the case where two sets of weak planes exist at θ1= 
45° and  θ2 = 135°. Note that the properties of both 
sets of weak planes are the same as weak planes set I 
in Table 1.  Figure 6 shows the contours of mean 
principal stress and Figure 7 illustrates the failure 
pattern.  

Note that in these simulations since the geometry 
is symmetric and the field stress is constant, if the 
material was isotropic the results would have been 
symmetric as well. The asymmetry observed in the 
numerical results is the result of anisotropic effects 
induced by the weak planes. 

Clearly there is a good agreement between the 
two approaches in modeling the weak planes in a fi-
nite element analysis.  
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Figure 4. Contours of total displacement for the case of one set 
of weak planes oriented at θ = 45°; (a) Constitutive model with 
embedded weak planes and (b) joint network 
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Figure 5. Failure pattern around the excavation for the case of 
one set of weak planes oriented at θ = 45°; (a) Constitutive 
model with embedded weak planes and (b) joint network 
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Figure 6. Contours of mean principal stress for the case of two 
sets of weak planes oriented at θ1= 45° and  θ2 = 135°; (a) 
Constitutive model with embedded weak planes and (b) joint 
network 

 
 
 
 
 
 
 
 
 
 
           (a)                                     (b) 

Figure 7. Failure pattern around the excavation for  the case of 
two sets of weak planes oriented at θ1= 45° and  θ2 = 135°,; (a) 
Constitutive model with embedded weak planes and (b) joint 
network 

4 SLOPE STABILTY IN JOINTED ROCK MASS  

The finite element method with the shear strength 
reduction (SSR) method (Azami et. al. 2012, Ham-
mah et. al. 2006, Dawson et al. 1999, Griffiths & 
Lane 1999) is used to evaluate the safety factor of 
slopes against failure. In this method, finite element 
analyses are used systematically to search for a 
strength reduction factor (SRF), i.e. the factor of 
safety, which brings a slope to the point of failure. 
Here, the SRF is applied to both the Generalized 
Hoek-Brown criterion for the matrix and the Cou-
lomb criterion for the weak planes. 

4.1 SSR for the new constitutive model 

Application of SRF to the Coulomb criterion is ra-
ther straight forward. It would suffice to divide the 
right hand side of Equation 2 by the scalar value that 
is the SRF. However, for the Generalized Hoek-
Brown model this task is more challenging. 

There are number of approaches for applying the 
SRF to the Generalized Hoek-Brown model in the 
literature, most of which rely on some sort of a fit-
ting procedure. In some, the Hoek-Brown criterion 
is locally fitted using a Mohr-Coulomb criterion 

based on the stress level at the material calculation 
point (e.g. Dawson et al 2000). In the approach pro-
posed by Hammah et al. (2005), a new and reduced 
Generalized Hoek-Brown criterion is formulated 
based on the locally fitted Mohr-Coulomb criterion. 
The approach selected in this paper is based on the 
work of Benz et al (2008). In this approach, the yield 
function is modified to incorporate a SRF in its defi-
nition (see Equation 6). The simplicity and computa-
tional efficiency of this method are the reasons for 
this selection.  
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In above   is a factor that is related to the SRF as 
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4.2 Numerical results and discussion 

The rock mass material considered for the slope 
stability analysis consists of the intact material inter-
cepted by only one set of weak planes. The material 
properties of the rock mass are presented in Table 1 
and the properties of the weak planes corresponds to 
the weak planes set I in that table.  

Figure 8 shows the geometry of the problem 
where θ is the orientation of the planes with respect 
to the horizontal plane and h=150m. The finite ele-
ment simulations are carried out in two-dimensional 
plane strain configuration using 6-noded triangular 
elements. The external boundary of the model is 
constrained in both horizontal and vertical direc-
tions.  

In finite element SSR simulations, θ varies from 
θ = 0° to θ = 180° with steps of Δθ = 5°. On top of 
these, another simulation is carried out considering 
only the intact material with no weak planes.  
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Figure 8. Geometry of the slope analyzed in this study. 

Limit equilibrium analyses (Spencer 1967, Bal-
mer 1952) were carried out using Slide (Rocscience 
Inc. 2010). The generalized anisotropic behavior 
was considered for the simulations where the com-
posite material had the properties of the weak planes 
with orientations ranging of θ ± 2°, and the proper-
ties of the intact rock for orientations other than that 
range. The configuration for θ = 45° is illustrated in 
Figure 9. Note that in limit equilibrium analysis, for 
the weak planes to have any effect on the stability, 
they should be aligned in the direction of slip sur-
face (Zienkiewicz & Pande 1977).  Thus for θ > 90° 
and even close to this value, the weak planes will 
show no effect on the stability of slope in a typical 
limit equilibrium analysis. In this set of simulations, 
θ varies from θ = 0° to θ = 65° with steps of Δθ = 5°. 
Similar to the finite element simulations, an addi-
tional analysis is carried out considering only the in-
tact material with no weak planes.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The composite material with generalized anisotropic 
strength properties used in limit equilibrium analysis (θ = 45°) 
 

Figure 10 presents the results of a set of finite el-
ement SSR simulations. The figures show distribu-
tions of maximum shear strain (distortion) for the 
SRF at failure. The results presented here are for the 
cases of no weak planes and one set of weak planes 
oriented at θ equal to 0°, 15°, 35°, 50° and 55°, re-
spectively. The slip surface predicted by the limit 
equilibrium analysis is also included in each figure.  

The high intensity of distortion indicates the loca-
tion of the slip surface. The first observation is that 
the shape of the failure surface is highly dependent 
on the orientation of weak planes. In the absence of 
weak planes, the slip surface has its classical circular 
shape (see Figure 10a). In the absence of weak 
planes, the finite element SSR predicts a safety fac-
tor of 2.12 for the slope, while the limit equilibrium 
analysis evaluates the safety factor to be 2.20. The 
presence of weak planes forces the failure surface to 
deviate from its original circular form. For θ = 0° 

and θ = 35°, the noncircular failure surface and the 
influence of weak planes is very clear. 
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(f) θ= 55°  

 
 
 
 

 
Figure 10. Numerical simulation results; the distribution of dis-
tortion in the domain obtained from finite element analyses us-
ing the constitutive model with embedded weak planes, and the 
slip surface predicted by limit equilibrium analysis, for the cas-
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es of no weakness planes and θ equal to 0°, 15°, 35°, 50° and 
55°. 

 
 
The evaluated safety factors are also highly af-

fected by the inclination angle as they vary from 2 to 
about 0.4. Evidently, the safety factor is higher in 
the absence of weak planes. Clearly by not consider-
ing the weak planes and their configuration in the 
slope stability simulations, the evaluation of safety 
factor would be far from being safe. 

The variation of safety factor with the orientation 
of the weak planes is presented in Figure 11. There 
is a good agreement between the finite element SSR 
results with the limit equilibrium results in cases 
where the weak planes are aligned in the direction of 
the slip surface, i.e. 0° ≤ θ ≤ 60°. Based on that, it 
can be concluded that for other orientations, where 
the limit equilibrium approach cannot estimate an 
accurate safety factor, the finite element SSR results 
are valid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Variation of factor of safety with the inclination an-
gle of weak planes. 

5 CONCLUSION 
 
The effects of strength anisotropy of geomaterials 
due to the presence of weak planes in the material on 
the stability of slopes were studied in this paper. To 
utilize this investigation, a constitutive model was 
developed based on the notion of the multi-yield-
surface elasto-plastic constitutive framework. The 
constitutive model is composed of 4 major shear 
failure mechanisms, i.e. Generalized Hoek-Brown 
for intact material and three sets of Coulomb weak 
planes, and their corresponding tension cut off crite-
ria.  The multi-yield surface plasticity model was 
programmed as an extension to a finite element pro-
gram and was used in finite element SSR simula-
tions to calculate the safety factor of slopes in such 
materials. The results of finite element SSR simula-
tions were verified by limit equilibrium analysis 
where possible. It was shown that the stability of 

slopes is highly dependent on the presence and con-
figuration of the weak planes in the material. The 
shape of the possible slip surface is also influenced 
by the orientation of the weak planes.  
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