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4.1  Introduction 

 

In chapters 1 and 2 the mechanical properties of rock materials have been discussed in 

some detail and it has been shown that most rocks exhibit patterns of behaviour which 

can be usefully employed by the practical engineer.  Since most of the conclusions 

presented in chapters 1 and 2 are based upon empirical studies it is of interest to examine 

the basic mechanism of brittle failure of rock in order to gain some understanding of the 

underlying reasons for the behaviour patterns which are observed.  Not only does such an 

examination satisfy the curiosity of the academically inclined but it also provides a basis 

for meaningful extrapolation from available experimental results. 

 

A comprehensive review of the research effort which has been devoted to the study of the 

brittle failure of rock has recently been presented by Jaeger (1966).  Rather than present 

yet another review on the theoretical aspects of this subject the author has chosen to 

present the known physical facts in a form which will be both meaningful and useful to 

the practical engineer.  In order to achieve this end within the limited space available in 

this chapter, the dynamic aspects of rock fracture have been ignored and the discussion is 

limited to failure under quasi-static loading conditions such as those which can be 

expected to occur in rock structures. 

 

4.2  Fracture initiation 

 

A rock material contains a large number of randomly oriented zones of potential failure 

in the form of grain boundaries.  Let us assume that one such grain boundary, illustrated 

in figure 4.1, contains a number of open flaws and that, in accordance with the concept 

postulated by Griffith (1921, 1924), these flaws are approximately elliptical in shape.  It 

can be shown that very high tensile stresses occur on the boundary of a suitably oriented 

elliptical opening, even under compressive stress conditions, and it is assumed that 

fracture initiates from the boundary of an open flaw when the tensile stress on this 

boundary exceeds the local tensile strength of the material. 

 

In order to obtain an estimate of the stresses around the boundary of an open elliptical 

flaw it is necessary to make the following simplifying assumptions: 

 

a)  The ellipse can be treated as a single opening in a semi-infinite elastic medium, i.e. 

adjacent flaws do not interact and local variations in material properties are ignored. 

b)  The ellipse and the stress system which acts upon the material surrounding it can be 

treated two dimensionally, i.e. the influence of the three-dimensional shape of a flaw and 

of the stress zσ   in the crack plane can be ignored. 
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Figure 4.1  Stress system acting on a potential failure plane in rock. 

 

Although these assumptions do introduce certain errors (Jaeger 1966), the magnitude of 

these errors is estimated to be less than ± 10% which is within the order of accuracy 

aimed at in this analysis. 

 

The stress system acting upon the grain boundary under consideration is shown in Figure 

4.1.  The convention adopted in this analysis is such that compression is regarded as 

positive and that 321 σσσ >>  where 21, σσ  and 3σ  are the three principal stresses 

acting on the rock body.  The elliptical flaw is inclined at an angle β  to the major stress 

direction, i.e. the direction of maximum compressive stress.  The normal stress yσ  and 

the shear stress xyτ  which act on the material surrounding the elliptical flaw are related 

to the maximum and minimum principal stresses 1σ  and 3σ  by the following equations: 

 

 ( ) ( ) βσσσσσ 2cos2 3131 −−+=y          (4.1) 

 

( ) βσστ 2sin2 31 −=xy     (4.2) 
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Equation of ellipse: 
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 where α  is the eccentric angle; 

 

  ,tantan αθ ⋅= m  

 

 where ./ abm =  

 

Figure 4.2  Stresses acting on the material surrounding a two-dimensional 

elliptical flaw. 

 

 

The stress xσ  which acts parallel to the axis of the elliptical flaw and the intermediate 

principal stress zσ  which acts in the z direction will be shown to have a negligible 

influence upon the stresses near the tip of the flaw and can be ignored. 
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In the discussion which follows, the stress system will be discussed in terms of the 

normal and shear stresses yσ  and xyτ  only.  The interested reader can revert to the 

principal stresses 1σ  and 3σ  at any stage of the analysis by substitution of the relations 

given in equations (4.1) and (4.2). 

 

The parameters which define the boundary of the elliptical flaw are given in Figure 4.2 

and, of these, the most important are the ratio of the minor to the major axis of the ellipse 

mab =/  and the eccentric angle α  which defines the position of a point on the boundary 

of the ellipse.  The tangential stress on the boundary of the ellipse bσ  is given by the 

following equation (Inglis 1913; Denkhaus 1964): 

 

( ){ } ( ){ } ( ){ }
αα

ααταασαασ
σ

222

222222

sincos

cossin12cossin21sincos2

+

+−−++−+
=

m

mmmmm xyxy
b

(4.3) 

 

In a material such as rock it can be assumed that the elliptical flaws will have a very 

small axis ratio m , i.e. they will be very flat in shape.  This means that the maximum 

tensile stress will occur near the tip of the elliptical flaw, i.e. when the eccentric angle α  

is very small.  When ααα →→ sin,0  and 1cos →α .  Substitution of these relations 

into equation (4.3) and neglecting terms of the second order and higher which appear in 

the numerator gives the following approximate expression for the boundary stress bσ  

near the tip of the elliptical flaw: 

 

( )
22

2

α

ατσ
σ

+

⋅−⋅
=

m

m xyy
b      (4.4) 

 

An important fact which emerges from this simplification is that the stress xσ , which lies 

parallel to the major axis of the ellipse, has a negligible influence upon the boundary 

stress near the tip of the flaw.  By analogy the influence of the intermediate principal 

stress zσσ =2  can also be ignored.   

The maximum tangential stress on the boundary of the elliptical flaw is given when 

 

,0=
α

σ

d

d b         

i.e. when 
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Or, rearranging in terms of 1/ :α  
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Solving equation (4.6) for 1/α : 

( )








+±
⋅

= 2211
xyyy

xym
τσσ

τα
   (4.7) 

 

From equations (4.5) and (4.7) 

( )22
xyyyb m τσσσ +±−=⋅      (4.8) 

 

The assumed criterion for fracture initiation is that a crack will propagate from the 

boundary of the elliptical flaw when the tangential stress bσ  reaches a limiting value 

equal to the tensile strength of the material at that point.  Since it is not practical to 

measure either the local tensile strength of the material surrounding the flaw or the axis 

ratio m, it is convenient to express the term mb ⋅σ  in equation (4.8) in terms of a quantity 

which can be measured more readily.  Such a quantity is the uniaxial tensile strength tσ  

of the rock body which contains the flaw under consideration and this is obtained when 

ty σσ = and 0=xyτ  giving 

 

tb m σσ 2−=⋅      (4.9) 

 

Substituting this relation into equation (4.8) and squaring both sides of the resulting 

equation gives 

 

( )yttxy σσστ −= 42     (4.10) 

 

This equation, which is the equation of a parabola in the yxy στ −  plane, defines the 
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relation between the shear and normal stresses xyτ  and yσ  at which fracture initiates on 

the boundary of an open elliptical flaw.  Note that, in substituting a numerical value for 

the uniaxial tensile strength tσ , it is necessary to include a negative sign in order to 

satisfy the sign convention adopted in this chapter.  Hence a particular rock will have a 

uniaxial tensile strength of -2000 lb/in
2
. 

 

4.3  Fracture propagation 

 

If it is assumed that the inclination β  of the elliptical flaw is such that the boundary 

stress bσ  is a maximum for any combination of the principal stresses 1σ and 3σ  then 

equation (4.10) becomes the equation of an envelope to a number of Mohr circles, one of 

which is illustrated in Figure 4.3.  

 

 

Figure 4.3.  Relation between the normal and shear stresses required to 

initiate tensile fracture from an elliptical flaw. 

 

 From the geometry of this circle and from the slope of the normal to the envelope 

defined by equation (4.10) it follows that 

 

t
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=    (4.11) 
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From equations (4.5) and (4.9) 

 

α

τ
σσ

xy
tb

m
m

⋅−
==⋅ 2 , 

hence 

β
σ

τ
α 2tan

2
⋅−=

⋅−
= m

m

t

xy
,    (4.12) 

 

which defines the relations between the position of the maximum tensile stress on the 

boundary of the elliptical flaw (α ) and the inclination of this flaw ( β ) to the direction of 

the minimum principal stress 3σ . 

 

Since fracture is assumed to occur when the tangential stress on the boundary of the flaw 

exceeds the local tensile strength of the material, it can be assumed that the crack will 

propagate in a direction which is normal to the boundary of the ellipse.  The normal to the 

ellipse defined by the equation given in Figure 4.2 is defined by 

 

dy

dx−
=γtan , 

where 

   




⋅⋅=

⋅⋅−=

αα

αα

dmady

dadx

cos

sin
                 (4.13) 

Hence 

m

α
γ

tan
tan =     (4.14) 

 

But, since α is small, tan αα → , hence 

 β
α

γ 2tantan −==
m

    (4.15) 

or 

βγ 2−=  or ( )βπ 2−      (4.16) 

 

This relation is illustrated in Figure 4.4.  From equation (4.11) it can be seen that as soon 

as  ,0,0 >> βτ xy  therefore 0>γ  and hence the crack which initiates on the boundary 

of the flaw will tend to propagate out of the plane of the flaw.  This is a very important 

result and it is interesting to investigate the propagation of this crack in greater detail. 
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Figure 4.4  Direction of crack propagation from the tip of an elliptical flaw 

under compressive stress conditions. 

 

4.3.1  Fracture propagation when 0=xyτ  

 

From equations (4.11) and (4.16), when 0,0 == βτ xy  and 0=λ .  In other words, under 

conditions of uniaxial tensile stress to which the crack is perpendicular, a crack is 

initiated at the tip ( 0=α ) of the elliptical flaw and it will propagate in the plane of the 

initial flaw. 

 

Substituting 0=xyτ  and 0=α  in equation (4.4) gives 

 

mm

y
b

322 σσ
σ ==      (4.17) 

 

If it assumed that the radius of curvature of the propagating crack is of the same order of 

magnitude as the radius of curvature of the original elliptical flaw, then propagation of 

this crack has the same effect as decreasing the axis ratio m of the original flaw.  From 
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equation (4.17) it will be seen that this results in an increase in the boundary stress bσ  

and hence the crack will continue to propagate, even if the applied stresses are decreased.  

 

Under these conditions the propagation of this crack results in tensile rupture
1
 of the 

specimen.  An important conclusion which can be drawn form this discussion is that 

tensile rupture will occur in a plane defined by 0=β , i.e. in a plane which is 

perpendicular to the direction of the applied tensile stress 3σ . 

  

4.3.2  Fracture propagation when 0>xyτ  

 

As already discussed, when 0>xyτ , the crack which initiates on the boundary of the 

elliptical flaw propagates out of the plane of this flaw.  It has been demonstrated 

experimentally (Brace & Bombolakis 1963; Hoek & Bieniawski 1965) and theoretically 

(Paul & Gangal 1966; Bray, personal communication) that this propagating crack will 

follow a curved path as indicated in Figure 4.4.  This crack path tends to align itself along 

the direction of the major principal stress 1σ  which, in effect, gives rise to a situation in 

which the equivalent elliptical flaw is inclined at 0=β  and the stress at the tip of the 

propagating crack can be approximated from equation (4.17). 

 

When 3σ  > 0, i.e. when 3σ  is compressive, an entirely different situation occurs in that 

the stress at the tip of the propagating crack becomes compressive when the crack is 

aligned in the direction of the major principal stress 1σ .  Under these conditions 

propagation of the crack will cease and the new flaw so created will be stable under the 

existing conditions of applied stress. 

 

The length of the crack which propagates from an open elliptical flaw for a given 

combination of applied stresses has been determined experimentally by Hoek and 

Bieniawski (1965) and the results of these experiments are plotted in Figure 4.5. 

 

The important conclusion to be drawn from these results is that a single open elliptical 

flaw cannot cause rupture of a rock specimen under conditions in which that applied 

stresses ( 1σ  and 3σ ) are both compressive. 

 

                                                 
1
 In this discussion the disintegration of the specimen into two or more separate pieces will be termed 

rupture. 
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4.4   Rock fracture in compression 

 

When the principal stresses 1σ and 3σ  applied to a rock body containing an open 

elliptical flaw are both compressive, the crack which is initiated on the boundary of this 

flaw will only propagate a short distance before it stops and becomes stable (Figure 4.5). 

In considering the problem of rupture under compressive stress, it is necessary to 

determine the conditions necessary to propagate the stable crack described above or the 

conditions necessary lo initiate some new failure mode. 

 

Experimental evidence obtained by Hoek and Bieniawski (1965) suggests that 

propagation of the stable cracks which were initiated from open flaws occurs when the 

shear resistance of the zone containing these flaws is overcome and shear movement 

occurs as suggested in Figure 4.6.  

 

The condition for the onset of shear movement may be expressed by the following 

equation: 

yoxy µσττ +=      (4.18) 

 

where oτ  is the intrinsic shear resistance of the material, i.e. the shear resistance when 

the normal stress yσ  = 0 and which is due to interlocking of asperities and to cohesive 

forces. The coefficient of internal friction µ  is the ratio between the shear stress xyτ  

required to sustain movement, once the intrinsic shear resistance oτ  has been overcome, 

and the normal stress yσ . 

 

The criterion expressed by equation (4.18) is familiar to most engineers and is most 

commonly associated with the names of Navier, Coulomb and Mohr (see Jaeger's 1966 

review for historical details). 

 

Since the condition expressed by equation (4.18) is that required to initiate shear 

movement, it does not follow automatically that this equation defines the conditions for 

rupture of the specimen. Consequently it is necessary to consider the events which follow 

initiation of the shear movement in order to establish whether rupture of the specimen 

will occur. 
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Figure 4.5  Length of stable crack propagated from an elliptical flaw under 

compressive stress conditions Hoek & Bieniawski 1965 

 

Figure 4.6    Mechanism of fracture propagation caused by displacement on a 

shear plane 
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In applying the Navier-Coulomb criterion, equation (4.18), to a rock failure problem it is 

usual to assume that rupture of the specimen takes place as a result of shear movement 

along a plane inclined at an angle β  to the minor principal stress direction as suggested 

in Figure 4.7(a). The relation between the angle β  and the coefficient of internal friction 

µ  can be found by considering the slope of the Mohr envelope as was done earlier in this 

paper in the case of the Griffith criterion (Figure 4.3): 

 

µτ

σ
β

1
2tan

−
=

−
=

xy

y

d

d
     (4.19) 

 

While it is accepted that simultaneous movement on the shear plane is a valid failure 

mode it is suggested that interlocking of asperities on this plane can also give rise to 

differential shear movement which results in the propagation of existing vertical cracks, 

as suggested in Figure 4.6. This would result in the vertical tensile type of rupture 

illustrated in Figure 4.7(b). 

 

A third possibility is that rupture can occur as a result of some combination of the two 

modes discussed above, giving a rupture surface which is intermediate between the 

direction of the major principal stress al and the direction of the shear plane which is 

inclined at an angle β  to the major principal stress direction. 

 

A final possibility is that the propagation of either of the above modes could be inhibited 

by changes in either the stress field or the material properties in the crack path, resulting 

in a stable crack configuration such as that illustrated in Figure 4.7(c).  Propagation of 

this stable crack system would require a further increase in the applied compressive 

stress 1σ . 

 

It will be evident to the reader, from the discussion given above, that the final appearance 

of a rock specimen which has been tested to rupture under compressive stress conditions 

will depend upon the size of the specimen and upon the degree of restraint imposed by 

the testing machine platens. The influence of laboratory test procedures upon the results 

of rupture tests on rock specimens will be discussed in a later section of this chapter in 

which the application of such results to practical rock mechanics problems is discussed. 

 

Factors which influence the material 'constants' ot τσ ,  and µ  and the effect of changes in 
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these constants upon the behaviour of the material will also be discussed in a later section 

of this chapter. 

 

 

Figure 4.7    Suggested rupture modes under compressive stress conditions, 

(a) Shear failure; (b) Tensile failure; (c) Stable crack configuration. 

 

4.5   A rupture criterion for brittle rock 

 

In order to obtain the simplest possible rupture criterion for a brittle rock, consider the 

behaviour of a specimen which contains a large number of randomly oriented flaws of 

similar size and shape, for example, a carefully selected sample of a homogeneous fine-
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grained rock, such as Witwatersrand quartzite (Hoek 1966). Such a material will exhibit 

no significant anisotropy in its strength behaviour and will have a uniaxial compressive 

strength of approximately ten times its uniaxial tensile strength. 

 

The rupture criterion for such a material can be expected to be a logical extension of the 

fracture initiation criteria already discussed and the complete rupture criterion is 

illustrated in Figure 4.8.   

 

 

Figure 4.8   A rupture criterion for brittle rock. 

 

In deriving this rupture criterion the following factors were taken into consideration. 

  

(a) The simplest type of tensile rupture occurs when the minor principal stress equals the 

uniaxial tensile strength of the material, i.e. tσσ =3 . This rupture is caused by the 

propagation of a crack which initiates at the tip (α  = 0) of the flaw which is 

perpendicular to the minor principal stress direction ( β  = 0). The conditions under which 

this type of rupture occurs can be deduced from figure 4.3, from which it can be seen that 

the radius of curvature of the Mohr envelope at the point of its intersection with the 
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normal stress axis ( xyτ  = 0) is equal to 2 tσ . Consequently, all Mohr stress circles which 

fall within this circle of radius 2 tσ  (see Figure 4.8) can only touch the rupture envelope 

at one point which is defined by xyτ  = 0 and tσσ =3 . This implies that pure tensile 

rupture occurs when 31 3 σσ −≤ . 

 

b) Rupture of a rock specimen, when the normal stress acting on the potential shear 

surface is compressive ( yσ > 0), is assumed to occur when the shear resistance of this 

plane is overcome, i.e. when equation (4.18) is satisfied. Shear movement on this plane 

can induce shear and/or tensile rupture of the specimen as suggested in Figure 4.7. 

 

c) The transition between the conditions which govern pure tensile rupture and the 

conditions under which rupture is induced as a result of shear displacement cannot be 

derived directly from the fracture initiation criteria already discussed in this chapter. This 

difficulty is caused by the fact that the crack which initiates on the boundary of a flaw 

subjected to a finite shear stress will tend to propagate out of the plane of the flaw (see 

Figure 4.4).  Although this crack will tend to align itself along the major principal stress 

direction it is not possible to calculate the magnitude of the minor principal stress 3σ  

which is required to cause rupture of the specimen. In order to overcome this difficulty it 

is proposed, on purely phenomenological grounds, that this transition should take the 

form suggested by the heavy dashed line in Figure 4.8,  i.e. it is assumed that the straight-

line rupture criterion which defines shear-induced rupture is tangential to the parabolic 

Mohr envelope which defines fracture initiation from open elliptical flaws. 

 

From the geometry of the rupture diagram presented in Figure 4.8, it is possible to 

estimate the relation between the intrinsic shear strength oτ  and the uniaxial tensile 

strength tσ : 









+−= µ

µ
στ

1
to      (4.20) 

The practical significance of this relation is that it enables an estimate of the maximum 

uniaxial tensile strength of a particular material to be obtained from the value of the 

intercept oτ  of a Mohr rupture envelope fitted to a number of triaxial compression or 

shear test results. 

 

Practical experience (Hoek 1966) confirms that the rupture criterion proposed in Figure 

4.8 provides an adequate basis for predicting the stresses required to cause rupture of a 
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brittle rock material under the conditions normally encountered in mining or civil 

engineering rock mechanics problems
2
.  However, from the discussion on the direction of 

fracture propagation (Figure 4.7), it is evident that no reliable estimate of the angle of 

rupture of a rock specimen can be made from the Mohr rupture diagram presented in 

Figure 4.8.  In other words, the angle 2 β  subtended by the normal to the rupture 

envelope (see Figure 4.3) defines the orientation of the flaw from which fracture initiates 

or upon which shear displacement occurs but it gives no information on the subsequent 

path which the fracture will follow. The author believes that the angle of rupture of an 

element of rock is critically dependent upon the restraints imosed upon it by the testing 

machine platens, in the case of a laboratory test, or by the surrounding material in the 

case of a rock structure. A great deal of careful thought and experimentation has still to 

be devoted to this problem in order to clarify the current confusion which exists in 

relation to the angle of rupture of rock materials. 

 

 

4.6   Factors which influence the rupture behaviour of rock 

 

The 'ideal' brittle material upon which the derivation of the fracture initiation and rupture 

criteria presented above is based cannot be considered representative of the material 

which would be found in a rock structure, such as a dam foundation or the rock 

surrounding a mine excavation.  Nor can the conditions to which a carefully selected 

laboratory test specimen is subjected be regarded as representative of the wide variety of 

conditions which are likely to be encountered in the field. 

 

Obviously, a theoretical rupture criterion which accounts for all possible deviations from 

the ‘ideal’ would be far too complex to have any practical value.  On the other hand, the 

‘ideal’ would be far to complex to have any practical value if some estimate can be made 

of the extent to which the rock behaviour is likely to be influenced by deviation from the 

idealized assumptions. 

 

 

                                                 
2
  Deviations from the linear Mohr envelope defined by equation (4.18) are discussed in a later section of 

this chapter. 
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4.6.1  Influence of moisture on the strength of rock 

 

The presence of moisture in a rock body can influence the rupture behaviour of the rock 

in two important ways: 

 

a)  The moisture can reduce the strength of the rock by chemical or physical alternation 

of its inherent properties.  This strength reduction can be very important; for example, the 

results obtained by Colback and Wiid (Colback & Wiid 1965) for tests on a quartzitic 

shale (Figure 4.9) show that the strength of specimens which had been dried over calcium 

chloride for several weeks.  This finding emphasizes the need to simulate field conditions 

as closely as possible in the laboratory and, if in doubt, to assume the worst conditions 

and to test the specimens in a saturated state. 

 

 

 

Figure 4.9.  Mohr rupture envelopes showing the effect of moisture on the 

compressive strength of quartzite shale (Colback & Wiid 1965) 

 

 

 (b) If the moisture is present under pressure, the strength of rock is further reduced. 

Numerous experimental observations (e.g. Murreli 1966 and Byerlee in press) have 
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confirmed the theoretical prediction that the influence of pore pressure can be allowed for 

in the rupture criteria discussed in this chapter by replacing the normal stress yσ  by an 

effective stress ( py −σ ). Noting that a compressive stress of magnitude p balances the 

internal pore pressure, it is clear that only the excess py −σ  can be effective in 

developing tensions. Consequently, equation (4.10) becomes 

 

( ){ }pyttxy −−= σσστ 42     (4.21) 

while equation (4.18) becomes 

 

( )pyoxy −+= σµττ     (4.22) 

 

It is important to note that in any testing involving a study of the influence of moisture or 

of pore-pressure effects, the rate of loading of the specimen is a critical factor. The 

discussion presented above is based upon static stress conditions and unless the rate of 

loading is low enough to permit the pore pressure to distribute itself uniformly throughout 

the volume of the specimen or, in the case of a drained test, to prevent the build up of 

dynamic pore pressures, the conclusions presented above will not be valid
3
. 

  

 

4.6.2   Influence of the normal stress upon the frictional behaviour of rock 

 

The envelope fitted to a set of Mohr circles obtained from low pressure triaxial 

compression tests on brittle rocks is usually adequately represented by a straight line as 

suggested by equation (4.18) (Wuerker 1959).  Since many civil and mining engineering 

applications involve low confining pressures (up to say one-half the uniaxial compressive 

strength of the rock), the assumption that the coefficient of friction µ  is a constant is 

sufficiently accurate for these applications. 

 

 

However, in the case of problems involving high confining pressures such as those which 

may be encountered in deep-level mining or in problems of interest to the geologist, this 

                                                 
3
 Professor W. F. Brace of the Massachusetts Institute of Technology, in a personal communication to the 

author, gives the critical strain rate for the loading of a small specimen (approximately 0.5 inch diameter x 

1.5 inches long) of Westerly granite as approximately 10
-7

 in/in/s. 
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assumption can be seriously in error. The assumption that the coefficient of friction is a 

constant can also be misleading in the case of 'soft' rocks, such as shales and siltstones, 

which exhibit non-linear rupture envelopes, even at very low confining pressures. 

 

Experimental evidence obtained by Murrell (1966), Hobbs (1966), Patton (1966) and 

Byerlee (in press) suggests that the coefficient of internal friction µ  in equation (4.18) is 

not a constant but depends upon the magnitude of the normal compressive stress yσ . The 

reason for this breakdown of Amonton's law of friction is associated with the interlocking 

of the asperities on the shear plane (see Figure 4.6). This interlocking depends upon the 

intimacy of the contact of the asperities which, in turn, depends upon the magnitude of 

the normal stress yσ . 

 

Although a number of theoretical models of this interlocking behaviour have been 

considered (Murrell 1966; Hobbs 1966; Byerlee in press), the problem has not been 

adequately solved and, in the author's opinion, a considerable amount of theoretical work 

is still necessary. However, in the absence of a rigorous theoretical solution, a useful 

empirical solution can be obtained by assuming that the rupture behaviour of a brittle 

rock can be characterized by the following equation: 

 
b
mo Aσττ += maxmax     (4.23) 

 

where            ( )
312

1
max σστ −=   is the maximum shear stress, 

  ( )
312

1
σσσ +=m  is the mean normal stress 

 and  omaxτ  is the intercept of the maxτ  versus mσ  plot when mσ  = 0. 

 

The reasons for the choice of the maximum shear stress  maxτ  and the mean normal stress 

mσ  in place of the shear and normal stresses xyτ  and yσ  as suggested by (Murrell 1966) 

and (Hobbs 1966) are important and are worthy of some consideration. 

 

In analysing the results of conventional triaxial compression tests, we are faced with the 

problem of determining the values of the shear and normal stresses xyτ  and yσ  from the 

experimentally determined values of the applied axial and lateral stresses 1σ  and 3σ    ( = 

2σ ). If the inclination β  of the plane upon which the shear and normal stresses act is 
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known, their values can be calculated from equations (4.1) and (4.2). However, as 

discussed earlier in this chapter, available evidence suggests that the fracture path is a 

complex one which may have no direct relation to the shear and normal stresses which 

were responsible for its initiation and propagation (see Figure 4.7b). In addition, current 

triaxial testing techniques are such that the fracture path is almost certainly influenced by 

platen effects and by the non-uniformity of the stress distribution in the specimen at the 

final stages of rupture. Consequently, any attempt to determine the inclination β  of the 

rupture surface from the configuration of a ruptured triaxial specimen must be treated 

with suspicion. 

 

In order to overcome these difficulties, the author suggests the use of the maximum shear 

stress and the mean normal stress which can be calculated directly from the axial stress 

1σ  and  confining pressure 3σ  values obtained from a set of triaxial tests. It will be seen 

from Figure 4.11 that, for an actual set of experimental results, the maxτ  versus yσ  plot 

is closely related to the xyτ  versus yσ  relation which is assumed to be defined by the 

Mohr envelope.  This suggests that the relation proposed in equation (4.23) and a similar 

relation between xyτ  and yσ  proposed by Murrell (1966) and Hobbs (1966) are not 

contradictory and that the advantage of using equation (4.23) depends solely upon its 

practical convenience
4
. 

 

In order to evaluate the constants A and b in equation (4.23) for a given material, it is 

convenient to rewrite the equation in the following form: 

 

c

m

c

o bA
σ

σ

σ

ττ
1010

maxmax
10 logloglog +=

−
  (4.24) 

 

where cσ  is the uniaxial compressive strength of the material. 

 

The advantage of normalizing the experimental results by dividing each measured value 

by the uniaxial compressive strength of a number of tests on the same plot.  This 

advantage is obvious in Figure 4.10 in which the results of triaxial tests on the eight 

                                                 
4
 An interesting application of the maximum shear stress versus mean normal stress plot has been described 

by the author (Hoek 1966) in connection with the analysis of rock fracture around underground excavations 

by means of photoelastic models 
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sandstones listed in Table 4.1 are plotted on the same graph.  Normalizing the results has 

the additional advantage of minimizing the influence of testing techniques, specimen 

sizes and environmental conditions since these conditions are usually common to both 

numerator and denominator of the dimensionless ratios. 

 

 

Figure 4.10    Relation between the maximum shear and mean normal stresses 

at rupture for sandstones 

 

Plotting the experimental results on logarithmic scales permits a direct evaluation of the 

constants A and b since A is given by the value of  cσττ )( 0max −  when 1=cm σσ , 

)0)((log10 =cm σσ , and the value of b is given by the slope of the straight line through 

the experimental points.  However, complete evaluation of the constants requires that the 

value of the intercept 0maxτ  be known and, in the absence of experimental values, the 

author suggests that a reasonable estimate is given by 1.00max =cστ . 

 

Fitting the best straight line to the experimental points plotted in Figure 4.10 by the 

method of least squares and substitution of the resulting values of A and b into equation 

(4.23) gives 
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    (4.25) 

 

which, as shown in Figure 4.11, adequately defines the rupture behaviour of the 

sandstones listed in Table 4.1. 

 

 

Table 4.1  Sandstones included in Figure 4.10 

 

Uniaxial compressive strength Name Experimenter Country 

       lb.in
2  

                    kg/cm
2 

--- Jaeger Australia 9,000 633 

Darley Dale 1 Price England 5,780 406 

Pennant Price England 22,500 1,582 

Rush Springs Bredthauer America 25,000 1,758 

Iwaki Horibe and 

Kobayashi 

Japan 1,780 125 

---- Everling Germany 18,500 1,300 

Darley Dale II Murrell England 11,500 1,300 

Warmbaths Wiid South Africa 14,750 1,037 

 

 

In Figure 4.11, a set of idealized Mohr circles and their envelope are shown and it will be 

noted that, having defined the relation between the maximum shear stress and mean 

normal stress, the construction of these circles and the fitting of the envelope is reduced 

to a simple and reliable graphical operation.  This is in contrast to the difficulties of 

fitting an envelope by eye to a set of experimentally determined Mohr circles since such 

an envelope is invariably fitted to the circles of maximum diameter and does not take into 

account the scatter of the experimental values
5
. 

                                                 
5
 The interested reader can easily check this difficulty for himself by constructing a few Mohr circles from 

the experimental values given in Figure 4.11 and noting the exaggerated curvature of the envelope fitted to 

the maximum diameter circles. 
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Figure 4.11  Mohr stress diagram for the rupture of sandstone. 

 

 

Although no attempt is made here to develop the theoretical relation between the Mohr 

envelope and the maxτ  versus yσ  plot, it is interesting to examine the relation between 

the intrinsic shear strength oτ  and the maximum shear stress intercept omaxτ .  As 

discussed earlier in this chapter, pure tensile rupture is assumed to occur when 

31 3σσ −≤  which means that all Mohr stress circles within this stress range touch the 

envelope at one point defined by tσσ =3  (see Figure 4.8).  Rupture under conditions of 

pure shear, i.e. 31 σσ −= , falls into this category and it can be seen from Figure 4.,8 that 

the radius of the Mohr circle defining this condition is equal to tσ  and, since this circle 

defines the maximum shear stress intercept ( 0=mσ ), it follows that  

 

to στ ±=max       (4.26) 

Comparing equations (4.20) and (4.26) gives 

 









+= µ

µτ

τ 1

max o

o     (4.27) 

 

and substitution of a range of values for µ  between 0.5 and 2 shows that a reasonable 

estimate for the relation between oτ and omaxτ is given by 
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oo max2ττ ≅      (4.28) 

 

Although the prime purpose of plotting the triaxial test results for sandstone in Figures 

4.10 and 4.11 is to demonstrate the influence of the normal stress upon the frictional 

behaviour of rock, these figures cannot be left without noting the remarkable similarity in 

the rupture behaviour of the eight sandstones which, from the information given in Table 

4.1, have widely varying geographical locations and geologic materials, any attempt at an 

explanation of this similarity would be based on pure speculation and would be out of 

place in this chapter.  However, since similar patterns of behaviour have been noted for 

many other rock types (Hoek & Bieniawski 1965; Hoek 1966), the practical significance 

of such patterns, even if they can only be defined by empirical relations such as that 

suggested by Equation (4.23), is important. 

 

Following the thoughts which probably motivated Wuerker (1959) when he prepared his 

annotated tables of rock strength, it is suggested that the availability of a collection of 

dimensionless results, such as those presented in figure 4.10, could be of considerable 

assistance to the practical engineer who may have neither the time nor the facilities to 

carry out the large number of triaxial tests necessary to define the behaviour of the 

material with which he is concerned.  In order to obtain an estimate of the behaviour of a 

particular material, it would only be necessary to determine the uniaxial compressive 

strength cσ , under the environmental conditions and using the testing technique and size 

of specimen most appropriate to the particular problem under consideration.  Substitution 

of this value of cσ   into the characteristic equation of that type of material (e.g. equation 

(4.25) for sandstone) would give a maxτ  versus mσ  plot, and if necessary the Mohr 

circles and envelope, which would be sufficiently accurate for most practical purposes
6
. † 

 

                                                 
6
 The author wishes to make it quite clear that he does not advocate the procedure suggested above as a 

solution to all problems of rock testing.  The curve which defines the rupture behaviour of a rock may be an 

extremely useful tool but it cannot replace the ‘feel’ of his material which an engineer can only obtain by 

working with it and observing its behaviour under test conditions.  However, since the ever-increasing 

demands of progress restrict the time which the modern engineer can afford to spend on the luxury of 

getting to know his material, the suggested procedure, while academically unattractive to the physicist, may 

still prove very practical in engineering application. In order to implement the ideas outlined above, a 

research project has been initiated at Imperial College, London, which involves the collection and computer 

analysis of all available results for triaxial rock tests, using published data and whatever raw data it proves 

practical to obtain. 
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4.6.2 Influence of anisiotropy on the strength of rock 

 

The ideal brittle rock, upon which most of the discussion presented thus far has been 

based, is assumed to contain a large number of randomly oriented flaws of equal size.  

These conditions would very seldom be found in practical rock mechanics problems and, 

hence, it is necessary to make an estimate of the probable influence of anisotropy would 

exceed the scope of this chapter and it will suffice to illustrate the main points of practical 

interest by one example. 

 

Figure 4.12  Mohr envelopes defining the rupture behaviour of the bedding 

planes (dashed line) and parent material (solid line) of a South African state. 

 

Figure 4.12 shows the rupture behaviour of a South African slate (Hoek 1964).  The solid 

line is for tests carried out on specimens in which the bedding planes were oriented in 

such a way as to minimize their influence ( °= 90β for tensile tests and °= 90β  or 0° for 

compressive tests).  The dashed envelope represents the results obtained from specimens 

in which the bedding planes were oriented to exert their maximum influence 0=β  for 

tensile tests and 
µ

β 1arctan
2

1
=  for compression tests). 

 

It is evident from this figure that the rupture envelope of the slate in its weakest state is 

merely a scaled down version of the rupture envelope for the strongest state.  Plotting 

these results on dimensionless logarithmic scales as was done in figure 4.29 confirms that 

the constants A and  b (equation 4.23) are not significantly different for these two rupture 

envelopes but Figure 4.10 shows that the value of the uniaxial compressive strength cσ  
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varies by a factor of approximately 4, depending upon the orientation of the bedding 

planes to the principal stress directions. 

 

The practical significance of these findings is that, in problems in which the principal 

stress directions and major weakness planes in the material are known, the appropriate 

value of cσ  can be determined and used in analysing the rupture behaviour of the rock.  

Hence, for example, the analysis of the stability of a slope in which the rock contains 

well-defined planes of weakness must take the orientation of these planes into account.  

Note that, in such cases, the weakness planes may contain soft filling material which may 

reduce the frictional resistance of this plane, i.e. the values of A and b will differ from 

those of the parent material and must be determined independently. 

 

In cases in which the orientations of the weakness planes in relation to the principal stress 

directions are not known, it can only be assumed that the rupture behaviour of the 

material will lie somewhere between the two envelopes representing its weakest and 

strongest states (e.g. Figure 4.12 for slate).  Since this would be the case in many 

practical rock mechanics problems, it is suggested that, where the stability of a structure 

is at stake, the only safe course to follow is to use the envelope defining the weakest state 

of the material. 

 

4.6.4  Influence of laboratory testing techniques upon the rupture of rock 

 

A large proportion of the research effort which has gone into building up the science of 

rock mechanics has been devoted to the detailed study of laboratory testing techniques.  

Jaeger (1966) has given an excellent review of this work which includes studies of the 

influence of specimen geometry, platen friction, rate of loading, size of specimen and of 

the stiffness of the testing machine upon the behaviour of the rock specimen.  No useful 

purpose would be served by attempting to repeat the details of this review and the 

following discussion will be confined to certain basic principles of rock testing. 

 

The results of presented in Figures 4.10 and 4.11 suggest that the shape of the 

characteristic curve which defines the rupture behaviour of a rock is largely independent 

of the method of testing.  Consequently, in choosing a testing technique, which 

determines the position of the characteristic curve on the στ −  plane, it is necessary to 

consider: 



Brittle fracture of rock 

 

 

 

28 

 a) the basic principles of materials testing which have to be fulfilled and  

 

 b) the purpose for which the test results are required. 

 

The most important requirement which must be met in carrying out a test is that it must 

be possible to determine the stresses acting on the specimen.  Since most rocks exhibit 

some degree of anisotropy and all rock become anisotropic as a point of rupture is 

approached (Walsh 1965; Brace, Pauling & Scholz 1966), any test specimen in which 

there are significant stress gradients and for which the stress at rupture has to be 

calculated on the basis of the theory of elasticity must be treated with suspicion.  This 

applies to specimens tested in bending, torsion and to certain indirect tests which involve 

high stress gradients, e.g. indentation of the specimen with a steel ball or diamond point.  

The simplest solution to the problem is to choose a specimen geometry which permits 

calculation of the applied stresses from a simple load/area relation.  However, even when 

this condition is met, e.g. in the case of a cylindrical specimen subjected to direct 

compressive stress, it is still necessary to ensure that stress gradients are not induced as a 

result of poor end conditions (Hoek 1966,  Mogi, 1966). 

 

The purpose for which the results of laboratory tests on rock specimens is required can 

have an important bearing upon the test method chosen.  This is particularly true in 

relation to the direction of the most important failure surface in a ruptured specimen 

(Figure 4.7).  For example, if the results of a set of laboratory tests are to be applied to a 

slope stability problem in which the shear rupture mode (Figure 4.7a) is of prime 

importance, an applied stress condition which encourages the development of this shear 

mode, i.e. a shear-box test, would be a logical choice for the test method. 

 

In the case of the rock surrounding underground mine excavations, both tensile and shear 

modes may be important.  An even more important consideration may be the stress 

redistribution associated with fracture which may result in the load on an element being 

relieved if it tends to deform by a large amount in relation to the surrounding rock.  An 

appreciation of this problem has led to the development of ‘stiff-machine’ testing 

techniques (Cook and Hojem 1966; Bieniawski in submission) which restrict the strain 

which takes place in the specimen. 

 

The conclusion to be drawn from the discussion presented above is that, while it is 



Brittle fracture of rock 

 

 

 

29 

important to exercise care in preparing and testing rock specimens, it is even more 

important to give serious consideration to the use to which the results are to be put.  

Unless the test method chosen bears a direct relation to the problem under consideration, 

a great deal of effort can be expended on obtaining information which may have little or 

no practical significance. 
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