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Introduction

Due to their disposition, most rocks of sedimentary origin which occur in the upper layers
of the earth’s crust exhibit some degree of anisotropy when subjected to stress.  Since the
deformation and fracture of these rocks is of importance to engineers concerned with the
design of shallow mining excavations or of foundations for civil engineering structures, it
is obvious that research into the effects of anisotropy on rock behaviour is necessary.

Most of the published research on anisotropic rock is of an experimental nature 1, 2, 3 and
in this paper an attempt is made to formulate a theoretical explanation for the observed
fracture behaviour.  This theoretical approach is based upon Griffith’s postulate that
fracture initiates from exiting cracks and flaws inherent in any brittle material 4,  5,  6.   In
the case of an anisotropic rock, these cracks are assumed to be oriented preferentially
along bedding planes.  The effect of anisotropy on the deformation and stress distribution
prior to fracture is not considered in this paper.

Results of triaxial strength tests on a South African slate are in good agreement with the
theoretical predictions.

Griffith’s theory of brittle fracture

The currently accepted interpretation of Griffith’s theory of brittle fracture 4,  5 is that
fracture initiates when the molecular cohesive strength of the material is exceeded by the
tensile stresses at the tips of inherent cracks and flaws in the material 6, 7.  If it is assumed
that these cracks and flaws are elliptical in shape, then the results presented by Inglis 8

can be used to calculate the stresses induced around the boundary of these very flat
elliptical cracks.

The stress system acting upon an elliptical crack is illustrated Figure 1.  The ellipse and
the surrounding stress field are related to the elliptical coordinates  and  which are
defined by the following equations of transformation of a rectangular system of
coordinates x  and z :

coscosh
,sinsinh

cz
cx

The stress system acting on the crack is given by two normal components xx and zz and
a shear component xz .  The stress zz , which acts parallel to the major axis of the crack,
has a negligible influence upon the stresses induced near the crack tip and need not be
considered in the following analysis,  The stresses xx and xz  are related to the principal
stresses 1 and 3 by the following equations:
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2cos2 3131xx (1)
2sin2 31xz (2)

Where  is the angle between the major axis of the elliptical crack and the direction of
the major principal stress 1 .  Note that 1  is defined as the algebraically largest and 3

the algebraically smallest of the three principal stresses.  The sign convention used in this
paper is such that compressive stresses are taken as positive.

Figure 1.  Stresses acting upon a crack which is inclined at an angle  to the direction of
the major principal stress 1
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The stresses n and n which act on the surface of the crack as shown in Figure 1 exist
only when closure of the crack has occurred and their influence is considered in a later
section of this paper which deals with the effects of crack closure.

The tangential stress n  at the boundary of an open elliptical crack, due to the applied
stresses xx and xx , neglecting zz  is given by the following equation 8:

2cos2cosh
2sin212cos2sinh

0

0
2

0
2

0 ee xzxx (3)

Where 0 is the value of the elliptical coordinate on the crack boundary.

The maximum tangential stresses, both tensile and compressive, occur near the ends of
the crack, i.e. when the value of  is small.  Since the value of 0 is also small for a very
flat ellipse, equation (3) may be simplified by series expansion in which terms of the
second order and higher which appear in the numerator are neglected.  This simplification
results in the following equation, valid only for the stresses near the crack tip:

22
0

02 xzxx (4)

Differentiation of equation (4) with respect to and equating  to zero results in
a quadratic equation in  from which the positions on the crack boundary at  which the
maximum and minimum stresses occur can be determined. Substituting these values of
into equation (4) gives the maximum and minimum stresses on the crack boundary as

22
0 xzxxxxN (5)

Where N  is the maximum value of .

Expressing equation (5) in terms of the principal stresses 1  and 3  from equations (1)
and (2) gives

2cos
2
12cos
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3

2
131310N      (6)

The critical crack orientation c at which the maximum and minimum stresses are
induced at or near the crack tip is found by differentiating equation (6) with respect to
and letting 0 .  This gives
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Where 13k .

Note that equation (7) is only meaningful if 33.0k . When 33.0k  then
.12cos c Substituting this value into equation (6) gives

30 2c (8)

Where c  is the maximum value of the tangential stress  at the critical crack
orientation c .

In other words, for 33.0k  the maximum tensile stress at the crack tip depends upon
the magnitude of the minor principal stress 3  only and, since this stress is tensile
because k  is negative, fracture occurs when the minor principal stress attains the uniaxial
tensile strength of the material.  Since the strength of a material cannot be lower than its
uniaxial tensile strength, the fracture condition expressed in equation (8) holds for the
entire range 33.0k .  The critical crack orientation c  remains unchanged at
zero .12cos c

Denoting the uniaxial tensile strength of the material by t , equation (8) can be re-
written as

tc 20 (9)

The term 0c  which appears in equations (8) and (9) is a product of the cohesive
strength c  of the material and the parameter 0 which  defines  the  shape  of  the  crack.
Both of these parameters are difficult to evaluate under practical conditions but equation
(9) offers the opportunity of determining their product fairly readily.

Substituting equation (9) into equation (6) gives the following relationship between the
stresses required to initiate fracture from a crack inclined at the angle  to the direction
of 1 and the uniaxial tensile strength of the material.

2cos
2
12cos

2
12 2

3
222

3131 131t   (10)

In the case of a homogeneous, isotropic material, it is normally assumed that the inherent
cracks are randomly distributed throughout the specimen and that fracture will initiate
from those cracks which are inclined at the angle c  defined by equation (7).
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Substituting equation (7) into equation (10) results in the following fracture criterion for
such a material:

21
1

)1(8

k

kt (11)

In the case of an anisotropic material where the weakest cracks are assumed to lie in the
bedding planes, it is necessary to consider the orientation of these cracks in relation to the
applied stress system in order to determine the fracture conditions.  In this case, the
fracture criterion is expressed by equation (10) where  is the orientation of the weakest
cracks to the direction of the major principal stress 1 .  A graphical representation of this
equation is given in Figure 2.

Modified fracture criterion for closed cracks

In deriving the fracture criterion outlined above, it has been assumed that the shape of the
crack does not change until fracture occurs.  In other words, the elliptical crack remains
open under all conditions of applied stress.  While this may be true for predominantly
tensile stress fields, it certainly does not hold for the case of very flat cracks which are
subjected to compressive stress.  Consequently, it is necessary to consider the effects of
crack closure upon the Griffith’s fracture criterion.

In the following analysis, based upon the modification to Griffith’s theory by McClintock
and Walsh 9, it is assumed that the initial crack in an unstressed body is uniformly closed
over its entire length.  If the normal stress xx is tensile, the crack opens and the Griffith’s
criterion holds.  If the normal stress xx  is compressive (positive) then a stress xxn

results from the reaction between the crack surfaces.  Under these conditions, the stress
xx  is transmitted across the crack without influencing the stresses induced at the crack

tips and, hence, it plays no direct part in the fracture process.

In addition, however, a frictional shear resistance n  occurs  parallel  to  the  crack  as  a
result of the contact pressure between the crack surfaces.  Denoting the coefficient of
friction between these surfaces by ;

xxnn (12)
The shear stress xz can only induce tensile stresses at the crack tip when this frictional
resistance has been overcome and when relative movement between the crack surfaces
can occur.  Consequently, the net shear stress which is effective in inducing tensile
stresses at the crack boundary is nxz  or xxxz .

From Equation (4), the tangential stress on the boundary of a closed crack due to the
net shear stress xxxz is

22
0

2 xxxz (13)
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Figure 2.  Fracture initiation from a single open Griffith crack inclined at an angle  to
the major principal stress 1 .
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Differentiating equation (13) with respect to  and equating  to zero gives the
position on the crack boundary at which the maximum and minimum stresses occur as

0 .  Substituting these values into equation (13) gives the maximum and minimum
tangential stresses on the crack boundary as

xxxzN 0 (14)

Since crack propagation occurs as a result of tensile stress, only the negative value given
by this equation need be considered.

Expressing equation (14) in terms of the principal stresses and the uniaxial tensile
strength of the material:

2cos2sin
2
12 313131t (15)

Differentiating equation (15) with respect to  and equating N  to zero gives the
critical crack orientation at which the highest tensile stresses are induced at the tip of a
closed crack as

12 cTan (16)

Substituting this critical crack orientation into equation (15) gives the fracture criterion
for a material in which the highest tensile stresses are induced at the tip of a closed crack
as

)111

4
21

kk
t (17)

Where k is the principal stress ratio 13 .

As in the case of the original Griffith criterion, it is generally assumed that the specimen
contains a sufficient number of randomly oriented cracks for fracture to initiate from
those cracks which are inclined at an angle defined by equation (16).  If, however, the
cracks are oriented preferentially as in the case of a highly antistrophic material, it is
necessary to consider the inclination of the cracks with respect to the applied stress
system.  In this case the case the conditions for fracture are determined from equation
(15).

In using the modified criterion outlined above, it must be remembered that equations (15)
and (17) apply only when the normal stress xx is compressive. When xx is tensile the
original Griffith theory must be applied.  A detailed discussion on the transition from the
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original to the modified fracture criteria has been given by the author in a previous
paper6.

Mohr envelopes for original and modified Griffith Theories

Murrell10 has  shown  that  the  original  Griffith  theory  can  be  represented  by  a  Mohr
fracture envelope which is defined by the following equation:

tt42 (18)

Brace11  has shown that the fracture criterion, modified to account for the effects of crack
closure in compression, can be represented by a limiting Mohr envelope which is a
straight line having the equation

t2 (19)

Fracture criterion for anisotropic rock

Brace12 has presented evidence which indicates that the cracks, from which the fracture
of rock propagates, probably lie within the grain boundaries of the material.  Even in
rocks of sedimentary origin which exhibit marked foliation and planar anisotropy, the
constituent lamellae are made up of grains which are cemented together and hence
randomly oriented grain boundary cracks are likely to be present.

In the case of an anisotropic rock, two distinct systems of inherent cracks can be
visualized:

a) A set of relatively large preferentially oriented cracks which lie along bedding
planes and which may sometimes be in the form of mica flakes;

b) A randomly oriented matrix of grain boundary cracks which are probably several
times smaller than the bedding plane cracks.

In the following analysis, the preferentially oriented bedding plane cracks will be referred
to as the primary crack system while the grain boundary cracks will be termed secondary
cracks.

In deciding upon the stress required to cause fracture of a particular specimen, it is
necessary  to  consider  the  inclination  of  the  primary  cracks  to  the  applied  stress  system
and to determine whether the tensile stresses induced at the tips of these primary cracks
are higher than those which occur at the tips of the most favourably oriented secondary
cracks.  If the primary cracks are oriented at an angle approaching the critical angle c ,
defined by equation (7) or (16), then fracture will generally initiate at the tips of these
cracks.  If, on the other hand, the primary cracks are parallel or perpendicular to the
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direction of the major principal stress 1 , then the tensile stresses induced at the tips of
these cracks will be relatively low and very high applied stresses will be necessary to
initiate fracture from these cracks (see Figure 2).   In this case, fracture will initiate at the
tips of the most favourably oriented secondary cracks.

Obviously, the transition from fracture initiation from primary cracks to the propagation
of secondary cracks depends upon the physical characteristics of the material, particularly
upon the relative crack lengths ( 0 ) and upon whether either or both of the crack systems
close under compressive stress ( ).   These  details  are  best  illustrated  by  means  of  a
practical example.

A study of the fracture of a South African slate

In order to illustrate the application of the theoretical considerations proposed in this
paper and to check their validity, a series of strength determination was carried out on a
sample of slate obtained from the Pretoria area.  These tests included uniaxial tensile tests
parallel to and perpendicular to the bedding planes as well as triaxial compression tests
on samples in which the bedding plane orientation was varied, in steps of 15º, from

0 º  to 90 º.

Details of the test procedures used by the National mechanical Engineering Research
institute for determining the strength of rock materials have not been published
previously and a brief description of these techniques is included as an appendix to this
paper.

Results of the tests on the slate material are given in Table I.  Note that, wherever
possible, two specimens were tested for each applied stress condition.

The uniaxial tensile strength of the material perpendicular to the bedding planes can be
assumed to be predominantly influenced by the primary crack system (bedding plane
cracks).  Consequently, this value of tensile strength is denoted by tp . The tensile
strength parallel to the bedding planes will not be influenced by the primary cracks and
fracture can be assumed to initiate at secondary cracks, hence this value of tensile
strength is denoted by ts .

In order that the results of these tests may readily be compared with the theoretical
predications (see Figure 2 for example), the strength values are reduced to dimensionless
form by dividing each by the uniaxial tensile strength perpendicular to bedding planes

tp .
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Table 1.  Fracture data for a South African slate

1.  Uniaxial tensile tests
a) Tensile strength perpendicular to bedding planes ( 0 º), tp 660 and

570 lb/sq.in.,  average 615 lb/sq.in.
b) Tensile strength parallel to bedding planes ( 90 º), ts = 2,780 and

3,000 lb/sq.in., average 2,880 lb/sq.in.

2)  Triaxial compression tests

13k k = 0 (uniaxial) k = 0.113 k = 0.171

1

lb/sq.in.
tp1 1

lb/sq.in.
tp1 1

lb/sq.in.
tp1

0 17,600
21,600

  28.6
  35.2

39,200
36,000

  63.7
  59.5

  55,700
  49,300

    90.8
    80.0

15   6,900
  8,700

  11.2
  14.2

18,300
30,000

  29.8
  48.0

  34,200
  39,000

    55.6
    63.4

30   4,500
  4,150

    7.3
    6.8

  7,300
     --

  11.8
    --

    8,730
    7,840

    14.2
    12.8

45   5,540
  6,560

    9.0
  10.7

13,900
11,000

  22.6
  17.9

  15,000
  16,300

    24.4
    26.7

60 11,850
11,600

  19.3
  18.8

24,600
19,400

  40.0
  31.6

  29,600
  32,400

    48.2
    52.6

75 16,000
16,600

  26.0
  27.0

31,200
31,900

  50.7
  52.0

  41,400
  42,900

    67,2
    69.7

90 15,600
16,100

  25.3
  26.2

30,600
     --

  49.8
    --

  41,700
  39,300

    68.0
    64.0

From the results presented in Table 1, the behaviour of the primary and secondary crack
systems of the slate can be approximated.

In the case of the primary cracks, the compressive fracture behaviour of the specimen
will be most strongly influenced by these cracks when they are oriented at between 30º
and 35º if the cracks remain open (equation (7)).  If the cracks close under compression,
they will exert their strongest influence when inclined at an angle defined by equation
(16).

Examination of the experimental results reveals that the compressive strength of the slate
is lowest when the bedding planes are inclined at approximately 30º to the direction of
the major principal stress.  Consequently, it can be concluded that the cracks have either
remained  open  or  that,  if  they  have  closed,  the  coefficient  of  internal  friction  has  a
value of approximately 0.6.
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In an attempt to establish which of these two possibilities is most likely, a Mohr fracture
diagram for the primary crack system was plotted and is illustrated in Figure 3.  In
plotting the Mohr circles, the tensile strength used is that obtained fro tests perpendicular
to the bedding planes.  The Mohr circles for uniaxial and triaxial compressive values are
taken as those given for tests in which the bedding planes were inclined at 30º to the
direction of the major principal stress.

On the  basis  of  the  limited  number  of  test  results  available,  the  indications  are  that  the
primary cracks have remained open and that the original Griffith fracture criterion can be
applied to them.  However, caution must be exercised in drawing definite conclusions
from so few results and, in the following analysis, both possibilities outlined above will
be explored.

Figure 3.  Mohr fracture diagram for primary crack system of slate

Behaviour of the secondary crack system is fairly clearly defined by the Mohr fracture
diagram presented in Figure 4.  In this case, it can be anticipated that the cracks will be
initially  closed  and  it  will  be  seen  that  the  modified  Griffith  fracture  criterion  offers  a
reasonably good prediction of the observed behaviour.  In plotting the Mohr diagram
illustrated in Figure 4, the tensile strength parallel to the bedding planes ( ts ) has been
used. Compressive fracture data for specimens tested at 0 º and 90 º are included
since these values should not be influenced by the primary cracks.
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Figure 4.  Mohr fracture diagram for secondary crack system of slate

The influence of the bedding plane orientation upon the uniaxial compressive strength
and upon the strength of the slate, when subjected to triaxial stress conditions in which
the principal stress ratio k = 0.171, is illustrated in Figures 5 and 6.  In these graphs, the
experimental results are compared with the behaviour predicted by both the original
Griffith theory and by the modified fracture criterion.

The dipping portions of the theoretical curves are obtained by solving equation (10) for
the original Griffith theory and equation (15) for the modified fracture theory.  In both
cases t  is taken as tp  = 615 lb/sq.in.  The value of the coefficient of internal friction

substituted into equation (15) is 0.6 as deduced above.

The straight line portions of the theoretical curves are obtained from equation (17),
substituting tptst 7.4 .   The  coefficient  of  internal  friction  used  in  this  case  was
determined form the slope of the Mohr envelope presented in Figure 4 and was found to
be 0.61.
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Figure 5.  Influence of bedding plane orientation on the uniaxial compressive strength of
South African slate

Figure 6.  Influence of bedding plane orientation on triaxial compressive strength
(K = 0.171) of South African slate
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Discussion of results

The primary purpose of attempting to formulate a theoretical fracture criterion such as
that outlined in this paper is to facilitate the interpretation and rationalisation of
experimental results.  Unless such a fundamental theory exists, the results presented in
Table 1 are merely an interesting example of material behaviour which applies to this
particular sample of slate only. If, however, the experimental results can be compared
with and are found to substantiate the theoretical predictions, then they become part of a
rational behaviour pattern which can be extended to cover other materials.

Note that equations (10), (15) and (17), which have been used to predict the theoretical
fracture behaviour of this sample of slate, depend only upon two material constants,
namely the uniaxial tensile strength and the coefficient of internal friction.  If these
equations are found to be generally applicable to materials of this type, a reliable
prediction of their fracture behaviour could be made on the basis of a few simple physical
tests.

In spite of the approximations which have been made in deriving this theory the
agreement between the predicted and observed facture behaviour of slate is encouraging.
Results of similar tests on Martinsburg slate from Pennsylvania in the United States of
America have been presented by Donath 1, 2. Although the results have been presented in
a form which makes a complete analysis difficult, a number of approximate checks have
indicated that Donath’s results would also be in good agreement with the theory.

Considering the present empirical nature of the science of rock mechanics, the accuracy
of prediction offered by these theoretical considerations is adequate for most practical
purposes. It is believed that more detailed experiments as well as more sophisticated
mathematical  treatment  could  be  used  to  refine  the  existing  theory,  if  and  when  an
improvement in accuracy becomes necessary.

Although  the  present  theory  is  based  upon  the  assumption  that  only  two  distinct  crack
systems are present in an anisotropic material, it is obvious that these arguments can be
extended to the case where two or more major crack systems are superimposed upon the
randomly distributed grain boundary cracks.  Such an extension would probably prove
useful  in  the  analysis  of  fracture  of  coal  where  cleats  as  well  as  bedding  planes  are
present.

An important conclusion which can be drawn from the results presented in this paper is
that compression tests parallel to and perpendicular to the bedding planes are not
sufficient to define the fracture behaviour of an anisotropic material.  There is a tendency
to conclude that a material is isotropic with respect to strength if its compressive strength
perpendicular and parallel to the bedding planes is the same.  Examination of Figures 5
and 6 reveals that this deduction can be grossly in error.

The simplest test for strength isotropy is to compare the uniaxial tensile strength parallel
to and perpendicular to the bedding planes.  Failing this, a compression test in which the
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bedding planes are included at approximately 30º to the major principal stress direction
should be included in the test programme.

The  author  wishes  to  avail  himself  of  this  opportunity  to  emphasize  the  importance  of
choosing the correct specimen geometry and test conditions for strength determination of
rock materials.  If the calculated stress at fracture requires anything more than a simple
division of applied load by cross-sectional area, the results of strength tests will probably
be unreliable.  This is particularly true of an anisotropic material where not only the
strength but also the stress distribution in the specimen are markedly influenced by
anisotropy.

As  an  example  of  an  uncertainty  involved  in  indirect  strength  tests,  the  case  of  the
uniaxial tensile strength of the specimen of slate discussed in this paper is quoted.

Direct tensile tests on carefully designed and prepared specimens (see Appendix) gave
the tensile strength perpendicular to the bedding planes as 615 lb/sq.in. and that parallel
to the bedding planes as 2,880 lb/sq.in..

Indirect  tests  in  which  a  tensile  stress  is  induced  in  the  centre  of  a  disc  subjected  to
diametral compression3 gave values of 438 lb/sq.in. perpendicular to the bedding planes
and 1,310 lb/sq.in. in parallel to the bedding planes.

Correct specimen design is equally important for compression specimens and the same
laws apply whether the specimen being tested is a single rock grain or a block of rock of
10 ft cube.  Only if the stress conditions in the specimen are accurately known can the
results be interpreted with any degree of certainty.

Conclusions

It has been shown that Griffith’s theory of brittle fracture, modified where necessary to
account for the effects of crack closure in compression, can be used to predict the fracture
behaviour of a material such as slate which exhibits a high degree of planar anisotropy.

It is suggested that this theory could be extended to the case of a material such as coal
which may have several major weakness planes oriented at various angles to each other.

While the accuracy of the present theory is regarded as adequate for most practical
purposes, it is believed that, if necessary, refinements to this theory are possible.

As a result of this study, it is concluded that special care should be exercised in planning
strength tests on anisotropic material.  It is particularly important that deductions should
not be made unless adequate experimental data is available.
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Appendix – Equipment and experimental techniques used for the determination of
strength of rock materials

Experimental verification of the theoretical postulates contained in this and in a previous
paper6, necessitates the loading of specimens of rock to fracture under various accurately
known and controlled stress conditions.  This appendix contains a brief description of the
triaxial test apparatus, designed by the author and used by the Rock Mechanics division
of the National Mechanical Engineering Research Institute for compressive tests on rock
material.  Details of the specimens used for the determination of tensile strength are also
given.

Triaxial test apparatus

The triaxial test apparatus, illustrated diagrammatically in Figure 7, is designed to apply a
constant  ratio  of  lateral  hydraulic  pressure  to  axial  stress  in  the  specimen.   This  is
achieved by loading the specimen in series with a piston and cylinder unit which
generates the hydraulic pressure.

If  the diameters of the loading piston, specimen and pressure piston are denoted by DL,
DS and Dp respectively, then the lateral stress 3 , which is equal to the hydraulic pressure
acting on the specimen, is given by

23
4

pD
L (1A)

Where L is the total load applied to the loading and pressure pistons.

The axial stress 1  in the specimen is given by the following equation

2

22

21 14

p

SL

S D

DD

D
L (2A)
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Figure 7.  Triaxial test apparatus

18
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The apparatus, illustrated in Figure 7, for testing EX core specimens (0.85 in. diameter)
has been designed for applying axial stresses ( 1 ) of up to 350,000 lb/in.2  and lateral
stresses ( 3 ) of up to 35,000 lb/in.2 .  The ratio of 13 , which is chosen for any
particular test depends upon the diameter of the pressure piston pD which is used.

Changes in the stress ratio 13  are achieved by replacing the entire oil pressure
cylinder  and  piston  unit  with  another  of  a  different  diameter.   Sealing  between  the  oil
pressure cylinder and the body of the test cell is achieved by a method which was
originally suggested to the author by Professor G.T. van Rooyen at Pretoria University.
The principal features of this method are illustrated in Figure 8.

The oil pressure cylinder is attached to the test cell body by means of a loosely fitting
thread – designed to provide location and initial sealing only.  A thin deformable gasket
of the impregnated paper type is placed between the sealing faces and serves to
compensate for any irregularities of these faces and to provide initial sealing.

Once the oil pressure is generated by the application of load, the thread load is relieved
and the gasket is acted upon by a force which is directly proportional to the oil pressure.
Since the area A of the sealing face is smaller than the area B of the step in the cylinder
wall, the sealing pressure on the gasket is always greater than the pressure of the oil
trying to escape and hence the device is self-sealing.

The moving seals on the loading and pressure pistons are a combination of neoprene
rubber ‘O’–rings and brass anti-extrusion rings as illustrated in Figure 9.  At the high
pressures dealt with in this application, extrusion of the rubber rings into the clearance
gap between piston and cylinder becomes a serious problem unless special steps are taken
to prevent it.  The provision of an anti-extrusion ring of the type illustrated ensures that
there is virtual metal to metal contact between this ring and the cylinder wall and
extrusion of the rubber is thereby prevented.  The anti-extrusion ring is made from a
softer metal than the cylinder to prevent scoring of the ground cylinder wall.

Figure 8.  Detail of self-sealing joint
between oil pressure and test cell body.

Figure 9.  Detail of high pressure moving
seal.
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These sealing devices have proved to be completely reliable for the range of pressures
generated in this apparatus.  Measurements have shown that the frictional resistance due
to the moving seals is very low – of the order of 1 per cent of the hydraulic pressure.

Although the neoprene rings and anti-extrusion rings are regarded as expendable items
and can easily be replaced, it has not been found necessary to replace the original sealing
units in spite of the fact that several hundred triaxial tests have already been completed.

The specimens used for the triaxial tests described in this paper consist of 1.7 in. length
of  standard  EX  diamond  drill  core  (0.85  in.  diameter).   The  ends  of  the  specimen  are
ground flat and parallel but no additional grinding of the cylindrical surface is necessary.
The specimen is loaded between hardened steel platens as illustrated in Figure 7.  A
spherical seat at the base of one of these platens eliminates bending in the specimen.

The specimen is sheathed in a thin rubber sleeve as illustrated and this effectively
prevents ingress of the pressurized hydraulic fluid.

The load applied to the specimen is measured by means of a strain gauge type load cell
which is loaded in series with the specimen.  Provision is also made of measurement of
the hydraulic pressure.  The deformation of the specimen is measured by means of a
linear potentiometer which measures the displacement between the loading piston and the
test cell body.

During a test, the electrical outputs of the load cell (or pressure gauge) and the linear
potentiometer are plotted automatically on an X-Y recorder.  The resulting load-
deformation graph is then converted to a stress-strain graph by applying experimentally
determined calibration factors.

The triaxial test apparatus together with its loading frame and the X-Y recorder are
shown in the photograph which is reproduced in Figure 10.

Figure 10.  Triaxial compression test apparatus set
up in a 100 ton loading frame.
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Tensile test specimens

Tensile testing of rock materials is generally regarded as difficult because of the problem
of gripping the specimen.  After a great deal of unsuccessful effort had been devoted to
devising methods for gripping specimens, the author came to the conclusion that, if the
results  of  tensile  tests  are  to  have  any  meaning,  correctly  shaped  tensile  specimen  are
essential.

The shape of the tensile specimen which is used by the Rock Mechanics Division of the
national mechanical Engineering Research institute is illustrated in Figure 11.

Figure 11.  Detail of tensile specimen

Note that the actual ‘test section’ is 0.85 in. diameter by 1.7 in. long, in other words, it
has the same dimensions as the compression specimen.  The fillets forming the transition
between the test section and the gripping section are designed to reduce the stress
concentration at this transition to a minimum.  The specimen is gripped by means of
conventional wedge type grips and the tests which have been carried out on such
specimens are regarded as completely successful.

The specimens are prepared by grinding with a high speed water-cooled diamond wheel.
The  grinding  attachment  is  carried  on  the  tool  post  of  a  lathe  and  the  profile  of  the
specimen is generated by a profile and follower device which is actuated by the lead
screw of the lathe.  This grinding attachment, illustrated in Figure 12, was designed by
Mr. J. B. Kennard of the rock Mechanics Division of the National Mechanical
Engineering Research Institute.
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Figure 12.  Grinding attachment for the preparation of tensile specimens of rock materials
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